Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38082571

RESUMEN

Federated learning (FL) is a machine learning framework that allows remote clients to collaboratively learn a global model while keeping their training data localized. It has emerged as an effective tool to solve the problem of data privacy protection. In particular, in the medical field, it is gaining relevance for achieving collaborative learning while protecting sensitive data. In this work, we demonstrate the feasibility of FL in the development of a deep learning model for screening diabetic retinopathy (DR) in fundus photographs. To this end, we conduct a simulated FL framework using nearly 700,000 fundus photographs collected from OPHDIAT, a French multi-center screening network for detecting DR. We develop two FL algorithms: 1) a cross-center FL algorithm using data distributed across the OPHDIAT centers and 2) a cross-grader FL algorithm using data distributed across the OPHDIAT graders. We explore and assess different FL strategies and compare them to a conventional learning algorithm, namely centralized learning (CL), where all the data is stored in a centralized repository. For the task of referable DR detection, our simulated FL algorithms achieved similar performance to CL, in terms of area under the ROC curve (AUC): AUC =0.9482 for CL, AUC = 0.9317 for cross-center FL and AUC = 0.9522 for cross-grader FL. Our work indicates that the FL algorithm is a viable and reliable framework that can be applied in a screening network.Clinical relevance- Given that data sharing is regarded as an essential component of modern medical research, achieving collaborative learning while protecting sensitive data is key.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Humanos , Retinopatía Diabética/diagnóstico , Algoritmos , Fondo de Ojo , Aprendizaje Automático , Técnicas de Diagnóstico Oftalmológico
2.
Sci Rep ; 13(1): 11493, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460629

RESUMEN

Independent validation studies of automatic diabetic retinopathy screening systems have recently shown a drop of screening performance on external data. Beyond diabetic retinopathy, this study investigates the generalizability of deep learning (DL) algorithms for screening various ocular anomalies in fundus photographs, across heterogeneous populations and imaging protocols. The following datasets are considered: OPHDIAT (France, diabetic population), OphtaMaine (France, general population), RIADD (India, general population) and ODIR (China, general population). Two multi-disease DL algorithms were developed: a Single-Dataset (SD) network, trained on the largest dataset (OPHDIAT), and a Multiple-Dataset (MD) network, trained on multiple datasets simultaneously. To assess their generalizability, both algorithms were evaluated whenever training and test data originate from overlapping datasets or from disjoint datasets. The SD network achieved a mean per-disease area under the receiver operating characteristic curve (mAUC) of 0.9571 on OPHDIAT. However, it generalized poorly to the other three datasets (mAUC < 0.9). When all four datasets were involved in training, the MD network significantly outperformed the SD network (p = 0.0058), indicating improved generality. However, in leave-one-dataset-out experiments, performance of the MD network was significantly lower on populations unseen during training than on populations involved in training (p < 0.0001), indicating imperfect generalizability.


Asunto(s)
Retinopatía Diabética , Oftalmopatías , Humanos , Retinopatía Diabética/diagnóstico por imagen , Fondo de Ojo , Oftalmopatías/diagnóstico , Técnicas de Diagnóstico Oftalmológico , Curva ROC , Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA