Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Ecol Evol ; 9(17): 9736-9747, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31534689

RESUMEN

The Montseny brook newt (Calotriton arnoldi) is a critically endangered amphibian species which inhabits a small 20 km2 holm oak and beech forest area in NE Spain. Calotriton arnoldi strictly lives in running waters and might be highly vulnerable to hydrological perturbations expected to occur under climate and vegetation cover changes. Knowledge about the potential response of the species habitat to environmental changes can help assessing the actions needed for its conservation. Based on knowledge of the species and supported by observations, we proposed daily low and high streamflow event thresholds for the viability of C. arnoldi. We used the rainfall-runoff model PERSiST to simulate changes in the frequency and duration of these events, which were predicted under two climate and four vegetation cover scenarios for near-future (2031-2050) and far-future (2081-2100) periods in a reference catchment. All future scenarios projected a significant decrease in annual streamflow (from 21% to as much as 67%) with respect to the reference period. The frequency and length of low streamflow events will dramatically increase. In contrast, the risk of catastrophic drift linked to high streamflow events was predicted to decrease. The potential change in vegetation toward an expansion of holm oak forests will be more important than climate changes in determining threshold low flow conditions. We thus demonstrated that consideration of potential changes in vegetation and not only changes in climate variables is essential in simulating future streamflows. This study shows that future low streamflow conditions will pose a severe threat for the survival of C. arnoldi and may help taking management actions, including limiting the expansion of holm oak forest, for ameliorating the species habitat and help its conservation.

2.
Sci Total Environ ; 651(Pt 1): 103-113, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30227280

RESUMEN

Surface water eutrophication resulting from excessive phosphorus (P) inputs is one of today's most challenging environmental issues. Riverine total phosphorus (TP) concentrations have high temporal variability, which complicates flux estimation. We evaluated the usefulness of high frequency in-situ turbidity measurements as a proxy for TP in Sävjaån, a river draining a mixed land use catchment (722 km2) in central Sweden. Turbidity was monitored every 10th-15th minute during 6 consecutive years (2012-2017). Linear regression showed a good relationship between high frequency turbidity and TP (r2 = 0.64) and could hence be used for comparison of flux estimation methods. Predictive power of the turbidity-TP relationship was not improved by adding seasons, hydrograph rising/falling limb or high/low stream discharge to the model which argues for a single transfer function relating turbidity and TP. Both TP and turbidity were log-normally distributed. However, flux estimates were sensitive to data transformation; predicted TP concentrations and fluxes based on log-transformed data were biased towards lower concentrations and fluxes compared to non-transformed data. In five of six years grab sample and high frequency estimated TP fluxes were similar (grab sample estimates -10% to +13% P transport compared to high frequency flux estimates). The exception was in 2013, when a 50-year spring flood occurred, and the grab sample estimated flux was 56% larger than that estimated from high frequency data. Thus, the flux comparisons were mostly affected by stream discharge, which underlines the importance of capturing high discharge episodes with, e.g. in situ sensors. While uncertainties regarding the use of turbidity as a proxy for TP remain, it is clear that credible water chemistry data can be obtained with current high frequency sensors. We conclude that high frequency data can be used to better understand catchment response to external pressures and gain insights into water quality that will be missed with grab sampling.

3.
Sci Total Environ ; 655: 1495-1504, 2019 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-30577140

RESUMEN

With ongoing global climate change and an increasingly urbanized population, the importance of city parks and other forms of urban vegetation increases. Trees in urban parks can play an important role in mitigating runoff and delivering other ecosystem services. Park managers, E-NGOs, citizen scientists and others are increasingly called upon to evaluate the possible consequences of changes in park management such as, e.g., tree removal. Here, we present an unorthodox approach to hydrological modelling and its potential use in local policy making regarding urban greenery. The approach consists of a minimalist field campaign to characterize vegetation and soil moisture status combined with a novel model calibration using freely available data and software. During modelling, we were able to obtain coefficients of determination (R2) of 0.66 and 0.73 for probe-measured and simulated soil moisture under tree stand and park lawn land covers respectively. The results demonstrated that tree cover had a significant positive effect on the hydrological regime of the locality through interception, transpiration and effects on soil moisture. Simulations suggested that tree cover was twice as effective at mitigating runoff than park lawn and almost seven times better than impervious surfaces. In the case of a potential replacement of tree vegetation in favour of park lawn or impervious surfaces an increase in runoff of 14% and 81% respectively could be expected. The main conclusion drawn from our study was that such an approach can be a very useful tool for supporting local decision-making processes as it offers a freely available, cheap and relatively easy-to-use way to describe the hydrological consequences of landcover change (e.g., tree removal) with sufficient accuracy.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Parques Recreativos , Programas Informáticos , Árboles , Ciudades , República Checa , Ecosistema , Hidrología
4.
Water Res ; 144: 172-182, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30029076

RESUMEN

Large-scale studies are needed to identify the drivers of total mercury (THg) and monomethyl-mercury (MeHg) concentrations in aquatic ecosystems. Studies attempting to link dissolved organic matter (DOM) to levels of THg or MeHg are few and geographically constrained. Additionally, stream and river systems have been understudied as compared to lakes. Hence, the aim of this study was to examine the influence of DOM concentration and composition, morphological descriptors, land uses and water chemistry on THg and MeHg concentrations and the percentage of THg as MeHg (%MeHg) in 29 streams across Europe spanning from 41°N to 64 °N. THg concentrations (0.06-2.78 ng L-1) were highest in streams characterized by DOM with a high terrestrial soil signature and low nutrient content. MeHg concentrations (7.8-159 pg L-1) varied non-systematically across systems. Relationships between DOM bulk characteristics and THg and MeHg suggest that while soil derived DOM inputs control THg concentrations, autochthonous DOM (aquatically produced) and the availability of electron acceptors for Hg methylating microorganisms (e.g. sulfate) drive %MeHg and potentially MeHg concentration. Overall, these results highlight the large spatial variability in THg and MeHg concentrations at the European scale, and underscore the importance of DOM composition on mercury cycling in fluvial systems.


Asunto(s)
Compuestos de Metilmercurio/química , Ríos/química , Contaminantes Químicos del Agua/química , Ecosistema , Monitoreo del Ambiente/métodos , Europa (Continente) , Lagos/química , Mercurio/análisis , Mercurio/química , Compuestos de Metilmercurio/análisis , Suelo/química , Contaminantes Químicos del Agua/análisis
5.
Sci Total Environ ; 630: 869-877, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29499542

RESUMEN

Natural organic matter poses an increasing challenge to water managers because of its potential adverse impacts on water treatment and distribution, and subsequently human health. Projections were made of impacts of climate change on dissolved organic carbon (DOC) in the primarily agricultural Boyne catchment which is used as a potable water supply in Ireland. The results indicated that excluding a potential rise in extreme precipitation, future projected loads are not dissimilar to those observed under current conditions. This is because projected increases in DOC concentrations are offset by corresponding decreases in precipitation and hence river flow. However, the results presented assume no changes in land use and highlight the predicted increase in DOC loads from abstracted waters at water treatment plants.

6.
Sci Total Environ ; 627: 733-743, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29426198

RESUMEN

Interactions between climate change and land use change might have substantial effects on aquatic ecosystems, but are still poorly understood. Using the Welsh River Wye as a case study, we linked models of water quality (Integrated Catchment - INCA) and climate (GFDL - Geophysical Fluid Dynamics Laboratory and IPSL - Institut Pierre Simon Laplace) under greenhouse gas scenarios (RCP4.5 and RCP8.5) to drive a bespoke ecosystem model that simulated the responses of aquatic organisms. The potential effects of economic and social development were also investigated using scenarios from the EU MARS project (Managing Aquatic Ecosystems and Water Resources under Multiple Stress). Longitudinal position along the river mediated response to increasing anthropogenic pressures. Upland locations appeared particularly sensitive to nutrient enrichment or potential re-acidification compared to lowland environments which are already eutrophic. These results can guide attempts to mitigate future impacts and reiterate the need for sensitive land management in upland, temperate environments which are likely to become increasingly important to water supply and biodiversity conservation as the effects of climate change intensify.


Asunto(s)
Cambio Climático , Ecosistema , Monitoreo del Ambiente/métodos , Modelos Teóricos , Ríos/química , Ecología , Guanina/análogos & derivados , Gales
7.
Environ Sci Technol ; 52(3): 1339-1347, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29281783

RESUMEN

The long-term application of road salts has led to a rise in surface water chloride (Cl-) concentrations. While models have been used to assess the potential future impacts of continued deicing practices, prior approaches have not incorporated changes in climate that are projected to impact hydrogeology in the 21st century. We use an INtegrated CAtchment (INCA) model to simulate Cl- concentrations in the Tioughnioga River watershed. The model was run over a baseline period (1961-1990) and climate simulations from a range of GCMs run over three 30-year intervals (2010-2039; 2040-2069; 2070-2099). Model projections suggest that Cl- concentrations in the two river branches will continue to rise for several decades, before beginning to decline around 2040-2069, with all GCM scenarios indicating reductions in snowfall and associated salt applications over the 21st century. The delay in stream response is most likely attributed to climate change and continued contribution of Cl- from aquifers. By 2100, surface water Cl- concentrations will decrease to below 1960s values. Catchments dominated by urban lands will experience a decrease in average surface water Cl-, although moderate compared to more rural catchments.


Asunto(s)
Agua Subterránea , Salinidad , Cambio Climático , New York , Ríos
8.
Sci Total Environ ; 560-561: 110-22, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27096491

RESUMEN

In boreal forest catchments, solute transfer to streams is controlled by hydrological and biogeochemical processes occurring in the riparian zone (RZ). However, RZs are spatially heterogeneous and information about solute chemistry is typically limited. This is problematic when making inferences about stream chemistry. Hypothetically, the strength of links between riparian and stream chemistry is time-scale dependent. Using a ten-year (2003-2012) dataset from a northern Swedish catchment, we evaluated the suitability of RZ data to infer stream dynamics at different time scales. We focus on the role of the RZ versus upslope soils in controlling sulfate (SO4(2)(-)) and dissolved organic carbon (DOC). A priori, declines in acid deposition and redox-mediated SO4(2)(-) pulses control sulfur (S) fluxes and pool dynamics, which in turn affect dissolved organic carbon (DOC). We found that the catchment is currently a net source of S, presumably due to release of the S pool accumulated during the acidification period. In both, RZ and stream, SO4(2-) concentrations are declining over time, whereas DOC is increasing. No temporal trends in SO4(2-) and DOC were observed in upslope mineral soils. SO4(2-) explained the variation of DOC in stream and RZ, but not in upslope mineral soil. Moreover, as SO4(2-) decreased with time, temporal variability of DOC increased. These observations indicate that: (1) SO4(2-) is still an important driver of DOC trends in boreal catchments and (2) RZ processes control stream SO4(2-) and subsequently DOC independently of upslope soils. These phenomena are likely occurring in many regions recovering from acidification. Because water flows through a heterogeneous mosaic of RZs before entering the stream, upscaling information from limited RZ data to the catchment level is problematic at short-time scales. However, for long-term trends and annual dynamics, the same data can provide reasonable representations of riparian processes and support meaningful inferences about stream chemistry.

9.
Glob Chang Biol ; 21(8): 2963-79, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25611952

RESUMEN

Boreal regions store most of the global terrestrial carbon, which can be transferred as dissolved organic carbon (DOC) to inland waters with implications for both aquatic ecology and carbon budgets. Headwater riparian zones (RZ) are important sources of DOC, and often just a narrow 'dominant source layer' (DSL) within the riparian profile is responsible for most of the DOC export. Two important questions arise: how long boreal RZ could sustain lateral DOC fluxes as the sole source of exported carbon and how its hydromorphological variability influences this role. We estimate theoretical turnover times by comparing carbon pools and lateral exports in the DSL of 13 riparian profiles distributed over a 69 km(2) catchment in northern Sweden. The thickness of the DSL was 36 ± 18 (average ± SD) cm. Thus, only about one-third of the 1-m-deep riparian profile contributed 90% of the lateral DOC flux. The 13 RZ exported 8.7 ± 6.5 g C m(-2) year(-1) , covering the whole range of boreal stream DOC exports. The variation could be explained by local hydromorphological characteristics including RZ width (R(2) = 0.90). The estimated theoretical turnover times were hundreds to a few thousands of years, that is there is a potential long-lasting supply of DOC. Estimates of net ecosystem production in the RZ suggest that lateral fluxes, including both organic and inorganic C, could be maintained without drawing down the riparian pools. This was supported by measurements of stream DO(14) C that indicated modern carbon as the predominant fraction exported, including streams disturbed by ditching. The transfer of DOC into boreal inland waters from new and old carbon sources has a major influence on surface water quality and global carbon balances. This study highlights the importance of local variations in RZ hydromorphology and DSL extent for future DOC fluxes under a changing climate.


Asunto(s)
Carbono , Modelos Teóricos , Ciclo del Carbono , Cambio Climático , Ríos , Suelo , Suecia
10.
Sci Total Environ ; 432: 1-11, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22705901

RESUMEN

Surface waters are the main source of drinking water in many regions. Increasing organic carbon concentrations are a cause for concern in Nordic countries since both dissolved and particulate organic carbon can transport contaminants and adversely affect drinking water treatment processes. We present a long-term study of dynamics of total (particulate and dissolved) organic carbon (TOC) concentrations in the River Fyris. This river supplies drinking water to approximately 200000 people in Uppsala, Sweden. The River Fyris is a main tributary to Lake Mälaren, which supplies drinking water to approximately 2 million people in the greater Stockholm area. Utilities responsible for drinking water supply in both Uppsala and Stockholm have expressed concerns about possible increases in TOC. We evaluate organic carbon dynamics within the Fyris catchment by calculating areal mass exports using observed TOC concentrations and modeled flows and by modeling dissolved organic carbon (as a proxy for TOC) using the dynamic, process based INCA-C model. Exports of TOC from the catchment ranged from 0.8 to 5.8 g m(-2) year(-1) in the period 1995-2010. The variation in annual exports was related to climatic variability which influenced seasonality and amount of runoff. Exports and discharge uncoupled at the end of 2008. A dramatic increase in TOC concentrations was observed in 2009, which gradually declined in 2010-2011. INCA-C successfully reproduced the intra- and inter-annual variation in concentrations during 1996-2008 and 2010-2011 but failed to capture the anomalous increase in 2009. We evaluated a number of hypotheses to explain the anomaly in 2009 TOC values, ultimately none proved satisfactory. We draw two main conclusions: there is at least one unknown or unmeasured process controlling or influencing surface water TOC and INCA-C can be used as part of the decision-making process for current and future use of rivers for drinking water supply.


Asunto(s)
Carbono/análisis , Agua Potable/análisis , Monitoreo del Ambiente/métodos , Compuestos Orgánicos/análisis , Ríos/química , Clima , Simulación por Computador , Modelos Teóricos , Estaciones del Año , Suecia , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA