RESUMEN
Freshwater habitats are drying more frequently and for longer under the combined pressures of climate change and overabstraction. Unsurprisingly, many aquatic species decline or become locally extinct as their benthic habitat is lost during stream droughts, but less is known about the potential 'winners': those terrestrial species that may exploit emerging niches in drying riverbeds. In particular, we do not know how these transient ecotones will respond as droughts become more extreme in the future. To find out we used a large-scale, long-term mesocosm experiment spanning a wide gradient of drought intensity, from permanent flows to full streambed dewatering, and analysed terrestrial invertebrate community assembly after 1 year. Droughts that caused stream fragmentation gave rise to the most diverse terrestrial invertebrate assemblages, including 10 species with UK conservation designations, and high species turnover between experimental channels. Droughts that caused streambed dewatering produced lower terrestrial invertebrate richness, suggesting that the persistence of instream pools may benefit these taxa as well as aquatic biota. Particularly intense droughts may therefore yield relatively few 'winners' among either aquatic or terrestrial species, indicating that the threat to riverine biodiversity from future drought intensification could be more pervasive than widely acknowledged.
Asunto(s)
Sequías , Invertebrados , Animales , Ecosistema , Biodiversidad , BiotaRESUMEN
Climate change is expected to intensify the effect of environmental stressors on riverine ecosystems. Extreme events, such as low flow and heatwaves, could have profound consequences for stream ecosystem functioning, but research on the impact of these stressors and their interaction across multiple processes, remains scarce. Here, we report the results of a two-month stream mesocosm experiment testing the effect of low flow (66% water level reduction, without gravel exposure) and heatwaves (three 8-d episodes of +5 °C above ambient with 10-15 days recovery between each episode) on a suite of ecosystem processes (i.e. detrital decomposition, biofilm accrual, ecosystem metabolism and DOC quantity and quality). Low flow reduced whole system metabolism, suppressing the rates of gross primary production (GPP) and ecosystem respiration (ER), but elevated DOC concentration. Overall, habitat contraction was the main driver of reduced ecosystem functioning in the low flow treatment. By contrast, heatwaves increased decomposition, algal accrual, and humic-like DOC, but reduced leaf decomposition efficiency. Net ecosystem production (NEP) generally decreased across the experiment but was most pronounced for low flow and heatwaves when occurring independently. Assessment of NEP responses to the three successive heatwave events revealed that responses later in the sequence were more reduced (i.e. more similar to controls), suggesting biofilm communities may acclimate to autumn heatwaves. However, when heatwaves co-occurred with low flow, a strong reduction in both ER and GPP was observed, suggesting increased microbial mortality and reduced acclimation. Our study reveals autumn heatwaves potentially elongate the growth season for primary producers and stimulate decomposers. With climate change, river ecosystems may become more heterotrophic, with faster processing of recalcitrant carbon. Further research is required to identify the impacts on higher trophic levels, meta-community dynamics and the potential for legacy effects generated by successive low flows and heatwaves.
RESUMEN
Functional traits are increasingly being used to predict extinction risks and range shifts under long-term climate change scenarios, but have rarely been used to study vulnerability to extreme climatic events, such as supraseasonal droughts. In streams, drought intensification can cross thresholds of habitat loss, where marginal changes in environmental conditions trigger disproportionate biotic responses. However, these thresholds have been studied only from a structural perspective, and the existence of functional nonlinearity remains unknown. We explored trends in invertebrate community functional traits along a gradient of drought intensity, simulated over 18 months, using mesocosms analogous to lowland headwater streams. We modelled the responses of 16 traits based on a priori predictions of trait filtering by drought, and also examined the responses of trait profile groups (TPGs) identified via hierarchical cluster analysis. As responses to drought intensification were both linear and nonlinear, generalized additive models (GAMs) were chosen to model response curves, with the slopes of fitted splines used to detect functional thresholds during drought. Drought triggered significant responses in 12 (75%) of the a priori-selected traits. Behavioural traits describing movement (dispersal, locomotion) and diet were sensitive to moderate-intensity drought, as channels fragmented into isolated pools. By comparison, morphological and physiological traits showed little response until surface water was lost, at which point we observed sudden shifts in body size, respiration mode and thermal tolerance. Responses varied widely among TPGs, ranging from population collapses of non-aerial dispersers as channels fragmented to irruptions of small, eurythermic dietary generalists upon extreme dewatering. Our study demonstrates for the first time that relatively small changes in drought intensity can trigger disproportionately large functional shifts in stream communities, suggesting that traits-based approaches could be particularly useful for diagnosing catastrophic ecological responses to global change.
Asunto(s)
Biota/fisiología , Cambio Climático , Sequías , Invertebrados/fisiología , Animales , Ecosistema , Modelos Biológicos , RíosRESUMEN
Land use and climate change are driving widespread modifications to the biodiverse and functionally unique headwaters of rivers. In temperate and boreal regions, many headwaters drain peatlands where land management and climate change can cause significant soil erosion and peat deposition in rivers. However, effects of peat deposition in river ecosystems remain poorly understood. We provide two lines of evidence-derived from sediment deposition gradients in experimental mesocosms (0-7.5 g/m2 ) and headwaters (0.82-9.67 g/m2 )-for the adverse impact of peat deposition on invertebrate community biodiversity. We found a consistent negative effect of sediment deposition across both the experiment and survey; at the community level, decreases in density (1956 to 56 individuals per m2 in headwaters; mean 823 ± 129 (SE) to 288 ± 115 individuals per m2 in mesocosms) and richness (mean 12 ± 1 to 6 ± 2 taxa in mesocosms) were observed. Sedimentation increased beta diversity amongst experimental replicates and headwaters, reflecting increasing stochasticity amongst tolerant groups in sedimented habitats. With increasing sedimentation, the density of the most common species, Leuctra inermis, declined from 290 ± 60 to 70 ± 30 individuals/m2 on average in mesocosms and >800 individuals/m2 to 0 in the field survey. Traits analysis of mesocosm assemblages suggested biodiversity loss was driven by decreasing abundance of invertebrates with trait combinations sensitive to sedimentation (longer life cycles, active aquatic dispersal of larvae, fixed aquatic eggs, shredding feeding habit). Functional diversity metrics reinforced the idea of more stochastic community assembly under higher sedimentation rates. While mesocosm assemblages showed some compositional differences to surveyed headwaters, ecological responses were consistent across these spatial scales. Our results suggest short-term, small-scale stressor experiments can inform understanding of "real-world" peatland river ecosystems. As climate change and land-use change are expected to enhance peatland erosion, significant alterations to invertebrate biodiversity can be expected where these eroded soils are deposited in rivers.
Asunto(s)
Biodiversidad , Sedimentos Geológicos/análisis , Invertebrados/fisiología , Ríos , Humedales , Animales , Cambio Climático , Inglaterra , Movimientos del AguaRESUMEN
There is growing recognition of the essential services provided to humanity by functionally intact ecosystems. Freshwater ecosystems are found throughout agricultural and urban landscapes and provide a wide range of ecosystem services, but globally they are also amongst the most vulnerable. In particular, ponds (lentic waters typically less than 2 ha), provide natural flood management, sequester carbon and hold significant cultural value. However, to inform their management it is important to understand (1) how functional diversity varies in response to disturbance and (2) the link between biodiversity conservation and ecosystem function. In this study, a meta-analysis of seven separate pond studies from across England and Wales was carried out to explore the effect of urban and agricultural land-use gradients, shading, emergent vegetation, surface area and pH upon groups of functionally similar members of the macroinvertebrate fauna. Functional effect groups were first identified by carrying out a hierarchical cluster analysis using body size, voltinism and feeding habits (18 categories) that are closely related to biogeochemical processes (e.g. nutrient and carbon recycling). Secondly, the influence of the gradients upon effect group membership (functional redundancy-FR) and the breadth of traits available to aid ecosystem recovery (response diversity) was assessed using species counts and functional dispersion (FDis) using 12 response traits. The effect of land-use gradients was unpredictable, whilst there was a negative response in both FR and FDis to shading and positive responses to increases in emergent vegetation cover and surface area. An inconsistent association between FDis and FR suggested that arguments for taxonomic biodiversity conservation to augment ecosystem functioning are too simplistic. Thus, a deeper understanding of the response of functional diversity to disturbance could have greater impact with decision-makers who may relate better to the loss of ecosystem function in response to environmental degradation than species loss alone.
Asunto(s)
Biodiversidad , Agua Dulce , Agricultura , Animales , Cambio Climático , Inglaterra , Restauración y Remediación Ambiental , Estanques , GalesRESUMEN
Pond networks support high levels of biodiversity when compared to other freshwater ecosystems such as rivers, lakes and streams. The persistence of species in these small, sometimes ephemeral, aquatic habitats depends on the dispersal of individuals among ponds in the landscape. However, the number of ponds across the landscape is at a historical low as urbanisation and intensified agricultural practices have led to a substantial loss of ponds (nodes in the pond network) over more than a century. Here, we examine the extent and drivers of pond loss in a heavily urbanised landscape (Birmingham, UK) over 105 years and determine how pond loss influences key structural properties of the pond network using graph theoretic approaches. Specifically, we calculated minimum spanning trees (MST) and performed percolation analyses to determine changes in both the spatial configuration and resilience of the pond network through time. Pond numbers declined by 82% between ca1904 and 2009, such that pond density decreased from 7.1 km-2 to 1.3 km-2. The MST analyses revealed increased distance between ponds in the network (i.e. edge length increased) by up to 49% over the 105-year period, indicating that ponds in the modern landscape (2009) were considerably more isolated, with fewer neighbours. This study demonstrates that graph theory has an excellent potential to inform the management of pond networks in order to support ecological communities that are less vulnerable to environmental change.
RESUMEN
Urbanisation represents a growing threat to natural communities across the globe. Small aquatic habitats such as ponds are especially vulnerable and are often poorly protected by legislation. Many ponds are threatened by development and pollution from the surrounding landscape, yet their biodiversity and conservation value remain poorly described. Here we report the results of a survey of 30 ponds along an urban land-use gradient in the West Midlands, UK. We outline the environmental conditions of these urban ponds to identify which local and landscape scale environmental variables determine the biodiversity and conservation value of the macroinvertebrate assemblages in the ponds. Cluster analysis identified four groups of ponds with contrasting macroinvertebrate assemblages reflecting differences in macrophyte cover, nutrient status, riparian shading, the nature of the pond edge, surrounding land-use and the availability of other wetland habitats. Pond conservation status varied markedly across the sites. The richest macroinvertebrate assemblages with high conservation value were found in ponds with complex macrophyte stands and floating vegetation with low nutrient concentrations and little surrounding urban land. The most impoverished assemblages were found in highly urban ponds with hard-engineered edges, heavy shading and nutrient rich waters. A random forest classification model revealed that local factors usually had primacy over landscape scale factors in determining pond conservation value, and constitute a priority focus for management.
RESUMEN
Most research on the effects of environmental change in freshwaters has focused on incremental changes in average conditions, rather than fluctuations or extreme events such as heatwaves, cold snaps, droughts, floods or wildfires, which may have even more profound consequences. Such events are commonly predicted to increase in frequency, intensity and duration with global climate change, with many systems being exposed to conditions with no recent historical precedent. We propose a mechanistic framework for predicting potential impacts of environmental fluctuations on running-water ecosystems by scaling up effects of fluctuations from individuals to entire ecosystems. This framework requires integration of four key components: effects of the environment on individual metabolism, metabolic and biomechanical constraints on fluctuating species interactions, assembly dynamics of local food webs, and mapping the dynamics of the meta-community onto ecosystem function. We illustrate the framework by developing a mathematical model of environmental fluctuations on dynamically assembling food webs. We highlight (currently limited) empirical evidence for emerging insights and theoretical predictions. For example, widely supported predictions about the effects of environmental fluctuations are: high vulnerability of species with high per capita metabolic demands such as large-bodied ones at the top of food webs; simplification of food web network structure and impaired energetic transfer efficiency; and reduced resilience and top-down relative to bottom-up regulation of food web and ecosystem processes. We conclude by identifying key questions and challenges that need to be addressed to develop more accurate and predictive bio-assessments of the effects of fluctuations, and implications of fluctuations for management practices in an increasingly uncertain world.
Asunto(s)
Cambio Climático , Cadena Alimentaria , Ríos , Ecosistema , Modelos BiológicosRESUMEN
Experimental data from intergenerational field manipulations of entire food webs are scarce, yet such approaches are essential for gauging impacts of environmental change in natural systems. We imposed 2 years of intermittent drought on stream channels in a replicated field trial, to measure food web responses to simulated climate change. Drought triggered widespread losses of species and links, with larger taxa and those that were rare for their size, many of which were predatory, being especially vulnerable. Many network properties, including size-scaling relationships within food chains, changed in response to drought. Other properties, such as connectance, were unaffected. These findings highlight the need for detailed experimental data from different organizational levels, from pairwise links to the entire food web. The loss of not only large species, but also those that were rare for their size, provides a newly refined way to gauge likely impacts that may be applied more generally to other systems and/or impacts.
Asunto(s)
Peso Corporal , Cambio Climático , Cadena Alimentaria , Animales , Biomasa , Tamaño Corporal , Biología Computacional/métodos , Simulación por Computador , Sequías , Modelos Logísticos , Densidad de Población , Dinámica Poblacional , Conducta PredatoriaRESUMEN
1. Mesocosms are used extensively by ecologists to gain a mechanistic understanding of ecosystems based on the often untested assumption that these systems can replicate the key attributes of natural assemblages. 2. Previous investigations of stream mesocosm utility have explored community composition, but here for the first time, we extend the approach to consider the replicability and realism of food webs in four outdoor channels (4 m(2)). 3. The four food webs were similarly complex, consisting of diverse assemblages (61-71 taxa) with dense feeding interactions (directed connectance 0.09-0.11). Mesocosm food web structural attributes were within the range reported for 82 well-characterized food webs from natural streams and rivers. When compared with 112 additional food webs from standing freshwater, marine, estuarine and terrestrial environments, stream food webs (including mesocosms) had similar characteristic path lengths, but typically lower mean food chain length and exponents for the species-link relationship. 4. Body size (M) abundance (N) allometric scaling coefficients for trivariate taxonomic mesocosm food webs (-0.53 to -0.49) and individual size distributions (-0.60 to -0.58) were consistent and similar to those from natural systems, suggesting that patterns of energy flux between mesocosm consumers and resources were realistic approximations. 5. These results suggest that stream mesocosms of this scale can support replicate food webs with a degree of biocomplexity that is comparable to 'natural' streams. The findings highlight the potential value of mesocosms as model systems for performing experimental manipulations to test ecological theories, at spatiotemporal scales of relevance to natural ecosystems.
Asunto(s)
Biota , Cadena Alimentaria , Ecosistema , Inglaterra , RíosRESUMEN
1. A fundamental goal of ecological network research is to understand how the complexity observed in nature can persist and how this affects ecosystem functioning. This is essential for us to be able to predict, and eventually mitigate, the consequences of increasing environmental perturbations such as habitat loss, climate change, and invasions of exotic species. 2. Ecological networks can be subdivided into three broad types: 'traditional' food webs, mutualistic networks and host-parasitoid networks. There is a recent trend towards cross-comparisons among network types and also to take a more mechanistic, as opposed to phenomenological, perspective. For example, analysis of network configurations, such as compartments, allows us to explore the role of co-evolution in structuring mutualistic networks and host-parasitoid networks, and of body size in food webs. 3. Research into ecological networks has recently undergone a renaissance, leading to the production of a new catalogue of evermore complete, taxonomically resolved, and quantitative data. Novel topological patterns have been unearthed and it is increasingly evident that it is the distribution of interaction strengths and the configuration of complexity, rather than just its magnitude, that governs network stability and structure. 4. Another significant advance is the growing recognition of the importance of individual traits and behaviour: interactions, after all, occur between individuals. The new generation of high-quality networks is now enabling us to move away from describing networks based on species-averaged data and to start exploring patterns based on individuals. Such refinements will enable us to address more general ecological questions relating to foraging theory and the recent metabolic theory of ecology. 5. We conclude by suggesting a number of 'dead ends' and 'fruitful avenues' for future research into ecological networks.
Asunto(s)
Ecología , Cadena Alimentaria , Animales , Conducta Animal/fisiología , Evolución Biológica , Ecología/métodos , Ecología/tendenciasRESUMEN
Disturbance is integral to the organisation of riverine ecosystems. Fluctuating low flows caused by supra-seasonal drought and water management periodically dewater habitat patches, potentially creating heterogeneity in the taxonomic composition and successional dynamics of benthic communities. The frequency of disturbance induced by low flows is contingent upon the topography of the river bed and thus varies among patches. We investigated whether the frequency of patch dewatering influenced the structure and temporal dynamics of benthic algal communities attached to the upper surfaces of stones in stream mesocosms (4 m2). In a 693-day disturbance experiment, we applied short dewatering disturbances (6 days) at high (33-day cycles) and low frequencies (99-day cycles) and compared algal assemblages with undisturbed controls at 21 endpoints. In the absence of disturbance, epilithic space was dominated by the green encrusting alga Gongrosira incrustans. However, drying disturbances consistently reduced the dominance of the green alga, and crust abundance decreased with increasing disturbance frequency, thereby opening space for a diversity of mat-forming diatoms. The response of mat diatoms to disturbance varied markedly during the experiment, from strong reductions in the abundance of loosely attached mats in mid-late 2000 to the exploitation of open space by closely adhering mats in 2001. Contrary responses were attributed to changes in the species composition of mat diatoms, which influenced the physiognomy and hence stress-resistance and resilience of the assemblage. Our results indicate that patchy dewatering of habitat patches during periods of low flow influences the successional dynamics of algae, thereby creating distinctive mosaics on the stream bed.
Asunto(s)
Biodiversidad , Desastres , Eucariontes/fisiología , Análisis de Varianza , Densidad de Población , Dinámica Poblacional , Ríos , Factores de TiempoRESUMEN
It has been suggested that differences in body size between consumer and resource species may have important implications for interaction strengths, population dynamics, and eventually food web structure, function, and evolution. Still, the general distribution of consumer-'resource body-size ratios in real ecosystems, and whether they vary systematically among habitats or broad taxonomic groups, is poorly understood. Using a unique global database on consumer and resource body sizes, we show that the mean body-size ratios of aquatic herbivorous and detritivorous consumers are several orders of magnitude larger than those of carnivorous predators. Carnivorous predator-prey body-size ratios vary across different habitats and predator and prey types (invertebrates, ectotherm, and endotherm vertebrates). Predator-prey body-size ratios are on average significantly higher (1) in freshwater habitats than in marine or terrestrial habitats, (2) for vertebrate than for invertebrate predators, and (3) for invertebrate than for ectotherm vertebrate prey. If recent studies that relate body-size ratios to interaction strengths are general, our results suggest that mean consumer-resource interaction strengths may vary systematically across different habitat categories and consumer types.
Asunto(s)
Tamaño Corporal/fisiología , Cadena Alimentaria , Animales , Ecosistema , Agua Dulce , Océanos y Mares , Conducta Predatoria/fisiologíaRESUMEN
Disturbances reduce the biota in stream ecosystems, and leave biological legacies, including remnant species, which potentially influence post-disturbance community development but are poorly understood. We investigated whether three remnant species, the snail Radix peregra, the mayfly Serratella ignita and the freshwater shrimp Gammarus pulex, affected community development in mesocosms that mimicked disturbed habitat patches in streams. Following 21 days of colonisation, we found that the occurrence of legacy effects depended on the identity of the remnant species. Radix had the strongest effect. By bulldozing epilithon, the snails acted as ecological engineers that promoted settlement of filter feeders (Simuliidae) and invertebrate predators (especially Pentaneura and Aphelocheirus) and strongly deterred settlement of non-predatory chironomids (e.g. Heterotrissocladius and Microtendipes). Gammarus increased in density (by 665%) where remnant, probably through rapid reproduction. Baetis and Pentaneura were scarce, and Asellus absent, in remnant Gammarus treatments, as a consequence of interference and/or predation by the amphipods. In contrast, Serratella tolerated the colonisation of immigrant species and did not affect the structure of the developing benthic community. Despite the observed effects on the presence and abundance of benthos, remnant fauna had no significant effect on assemblage taxon richness, or that of any specific trophic group. The contrasting effects of remnant species on immigrant colonisation echoed differences in their life-history traits and foraging behaviours. Our results indicate that biota can generate spatial patchiness of epilithon and benthic invertebrates in stream ecosystems.