Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39198117

RESUMEN

Nicotinamide adenine dinucleotide (NAD+) is an essential coenzyme for redox reactions and regulates cellular catabolic pathways. An intertwined relationship exists between NAD+ and mitochondria, with consequences for mitochondrial function. Dysregulation in NAD+ homeostasis can lead to impaired energetics and increased oxidative stress, contributing to the pathogenesis of cardiometabolic diseases. In this review, we explore how disruptions in NAD+ homeostasis impact mitochondrial function in various cardiometabolic diseases. We discuss emerging studies demonstrating that enhancing NAD+ synthesis or inhibiting its consumption can ameliorate complications of this family of pathological conditions. Additionally, we highlight the potential role and therapeutic promise of mitochondrial NAD+ transporters in regulating cellular and mitochondrial NAD+ homeostasis.

3.
bioRxiv ; 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37398078

RESUMEN

Diastolic dysfunction is a key feature of the aging heart. We have shown that late-life treatment with mTOR inhibitor, rapamycin, reverses age-related diastolic dysfunction in mice but the molecular mechanisms of the reversal remain unclear. To dissect the mechanisms by which rapamycin improves diastolic function in old mice, we examined the effects of rapamycin treatment at the levels of single cardiomyocyte, myofibril and multicellular cardiac muscle. Compared to young cardiomyocytes, isolated cardiomyocytes from old control mice exhibited prolonged time to 90% relaxation (RT 90 ) and time to 90% Ca 2+ transient decay (DT 90 ), indicating slower relaxation kinetics and calcium reuptake with age. Late-life rapamycin treatment for 10 weeks completely normalized RT 90 and partially normalized DT 90 , suggesting improved Ca 2+ handling contributes partially to the rapamycin-induced improved cardiomyocyte relaxation. In addition, rapamycin treatment in old mice enhanced the kinetics of sarcomere shortening and Ca 2+ transient increase in old control cardiomyocytes. Myofibrils from old rapamycin-treated mice displayed increased rate of the fast, exponential decay phase of relaxation compared to old controls. The improved myofibrillar kinetics were accompanied by an increase in MyBP-C phosphorylation at S282 following rapamycin treatment. We also showed that late-life rapamycin treatment normalized the age-related increase in passive stiffness of demembranated cardiac trabeculae through a mechanism independent of titin isoform shift. In summary, our results showed that rapamycin treatment normalizes the age-related impairments in cardiomyocyte relaxation, which works conjointly with reduced myocardial stiffness to reverse age-related diastolic dysfunction.

4.
Elife ; 122023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37276142

RESUMEN

Mitochondria play an important role in both normal heart function and disease etiology. We report analysis of common genetic variations contributing to mitochondrial and heart functions using an integrative proteomics approach in a panel of inbred mouse strains called the Hybrid Mouse Diversity Panel (HMDP). We performed a whole heart proteome study in the HMDP (72 strains, n=2-3 mice) and retrieved 848 mitochondrial proteins (quantified in ≥50 strains). High-resolution association mapping on their relative abundance levels revealed three trans-acting genetic loci on chromosomes (chr) 7, 13 and 17 that regulate distinct classes of mitochondrial proteins as well as cardiac hypertrophy. DAVID enrichment analyses of genes regulated by each of the loci revealed that the chr13 locus was highly enriched for complex-I proteins (24 proteins, P=2.2E-61), the chr17 locus for mitochondrial ribonucleoprotein complex (17 proteins, P=3.1E-25) and the chr7 locus for ubiquinone biosynthesis (3 proteins, P=6.9E-05). Follow-up high resolution regional mapping identified NDUFS4, LRPPRC and COQ7 as the candidate genes for chr13, chr17 and chr7 loci, respectively, and both experimental and statistical analyses supported their causal roles. Furthermore, a large cohort of Diversity Outbred mice was used to corroborate Lrpprc gene as a driver of mitochondrial DNA (mtDNA)-encoded gene regulation, and to show that the chr17 locus is specific to heart. Variations in all three loci were associated with heart mass in at least one of two independent heart stress models, namely, isoproterenol-induced heart failure and diet-induced obesity. These findings suggest that common variations in certain mitochondrial proteins can act in trans to influence tissue-specific mitochondrial functions and contribute to heart hypertrophy, elucidating mechanisms that may underlie genetic susceptibility to heart failure in human populations.


Asunto(s)
Insuficiencia Cardíaca , Proteoma , Animales , Ratones , Cardiomegalia/genética , ADN Mitocondrial/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Ratones Endogámicos , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteoma/metabolismo
5.
Am J Physiol Heart Circ Physiol ; 323(4): H774-H781, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36053750

RESUMEN

Nicotinamide adenine dinucleotide (NAD+) decline is repeatedly observed in heart disease and its risk factors. Although strategies promoting NAD+ synthesis to elevate NAD+ levels improve cardiac function, whether inhibition of NAD+ consumption can be therapeutic is less investigated. In this study, we examined the role of sterile-α and TIR motif containing 1 (SARM1) NAD+ hydrolase in mouse hearts, using global SARM1-knockout mice (KO). Cardiac function was assessed by echocardiography in male and female KO mice and wild-type (WT) controls. Hearts were collected for biochemical, histological, and molecular analyses. We found that the cardiac NAD+ pool was elevated in female KO mice, but only trended to increase in male KO mice. SARM1 deletion induced changes to a greater number of NAD+ metabolism transcripts in male mice than in female mice. Body weights, cardiac systolic and diastolic function, and geometry showed no changes in both male and female KO mice compared with WT counterparts. Male KO mice showed a small, but significant, elevation in cardiac collagen levels compared with WT counterparts, but no difference in collagen levels was detected in female mice. The increased collagen levels were associated with greater number of altered profibrotic and senescence-associated inflammatory genes in male KO mice, but not in female KO mice.NEW & NOTEWORTHY We examined the effects of SARM1 deletion on NAD+ pool, transcripts of NAD+ metabolism, and fibrotic pathway for the first time in mouse hearts. We observed the sexually dimorphic effects of SARM1 deletion. How these sex-dependent effects influence the outcomes of SARM1 deficiency in male and female mice in responses to cardiac stresses warrant further investigation. The elevation of cardiac NAD+ pool by SARM1 deletion provides evidence that targeting SARM1 may reverse disease-related NAD+ decline.


Asunto(s)
Proteínas del Dominio Armadillo , NAD , Animales , Proteínas del Dominio Armadillo/química , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Femenino , Hidrolasas , Masculino , Ratones , Ratones Noqueados , NAD/metabolismo
6.
Curr Heart Fail Rep ; 19(4): 157-169, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35556214

RESUMEN

PURPOSE OF THE REVIEW: This review summarizes current understanding on the roles of nicotinamide adenine dinucleotide (NAD+) metabolism in the pathogeneses and treatment development of metabolic and cardiac diseases. RECENT FINDINGS: NAD+ was identified as a redox cofactor in metabolism and a co-substrate for a wide range of NAD+-dependent enzymes. NAD+ redox imbalance and depletion are associated with many pathologies where metabolism plays a key role, for example cardiometabolic diseases. This review is to delineate the current knowledge about harnessing NAD+ metabolism as potential therapy for cardiometabolic diseases. The review has summarized how NAD+ redox imbalance and depletion contribute to the pathogeneses of cardiometabolic diseases. Therapeutic evidence involving activation of NAD+ synthesis in pre-clinical and clinical studies was discussed. While activation of NAD+ synthesis shows great promise for therapy, the field of NAD+ metabolism is rapidly evolving. Therefore, it is expected that new mechanisms will be discovered as therapeutic targets for cardiometabolic diseases.


Asunto(s)
Cardiopatías , Insuficiencia Cardíaca , Humanos , NAD/metabolismo , Oxidación-Reducción
7.
Circ Heart Fail ; 14(8): e008170, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34374300

RESUMEN

BACKGROUND: Diabetes is a risk factor for heart failure and promotes cardiac dysfunction. Diabetic tissues are associated with nicotinamide adenine dinucleotide (NAD+) redox imbalance; however, the hypothesis that NAD+ redox imbalance causes diabetic cardiomyopathy has not been tested. This investigation used mouse models with altered NAD+ redox balance to test this hypothesis. METHODS: Diabetic stress was induced in mice by streptozotocin. Cardiac function was measured by echocardiography. Heart and plasma samples were collected for biochemical, histological, and molecular analyses. Two mouse models with altered NAD+ redox states (1, Ndufs4 [NADH:ubiquinone oxidoreductase subunit S4] knockout, cKO, and 2, NAMPT [nicotinamide phosphoribosyltranferase] transgenic mice, NMAPT) were used. RESULTS: Diabetic stress caused cardiac dysfunction and lowered NAD+/NADH ratio (oxidized/reduced ratio of nicotinamide adenine dinucleotide) in wild-type mice. Mice with lowered cardiac NAD+/NADH ratio without baseline dysfunction, cKO mice, were challenged with chronic diabetic stress. NAD+ redox imbalance in cKO hearts exacerbated systolic (fractional shortening: 27.6% versus 36.9% at 4 weeks, male cohort P<0.05), and diastolic dysfunction (early-to-late ratio of peak diastolic velocity: 0.99 versus 1.20, P<0.05) of diabetic mice in both sexes. Collagen levels and transcripts of fibrosis and extracellular matrix-dependent pathways did not show changes in diabetic cKO hearts, suggesting that the exacerbated cardiac dysfunction was due to cardiomyocyte dysfunction. NAD+ redox imbalance promoted superoxide dismutase 2 acetylation, protein oxidation, troponin I S150 phosphorylation, and impaired energetics in diabetic cKO hearts. Importantly, elevation of cardiac NAD+ levels by NAMPT normalized NAD+ redox balance, alleviated cardiac dysfunction (fractional shortening: 40.2% versus 24.8% in cKO:NAMPT versus cKO, P<0.05; early-to-late ratio of peak diastolic velocity: 1.32 versus 1.04, P<0.05), and reversed pathogenic mechanisms in diabetic mice. CONCLUSIONS: Our results show that NAD+ redox imbalance to regulate acetylation and phosphorylation is a critical mediator of the progression of diabetic cardiomyopathy and suggest the therapeutic potential for diabetic cardiomyopathy by harnessing NAD+ metabolism.


Asunto(s)
Cardiomiopatías Diabéticas/fisiopatología , Insuficiencia Cardíaca/fisiopatología , NAD/farmacología , Oxidación-Reducción/efectos de los fármacos , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/fisiopatología , Cardiomiopatías Diabéticas/patología , Complejo I de Transporte de Electrón/metabolismo , Insuficiencia Cardíaca/patología , Ratones , Miocitos Cardíacos/patología , NAD/metabolismo , Oxidación-Reducción/efectos de la radiación
8.
Sci Rep ; 9(1): 3073, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30816177

RESUMEN

Leigh syndrome is a mitochondrial disease characterized by neurological disorders, metabolic abnormality and premature death. There is no cure for Leigh syndrome; therefore, new therapeutic targets are urgently needed. In Ndufs4-KO mice, a mouse model of Leigh syndrome, we found that Complex I deficiency led to declines in NAD+ levels and NAD+ redox imbalance. We tested the hypothesis that elevation of NAD+ levels would benefit Ndufs4-KO mice. Administration of NAD+ precursor, nicotinamide mononucleotide (NMN) extended lifespan of Ndufs4-KO mice and attenuated lactic acidosis. NMN increased lifespan by normalizing NAD+ redox imbalance and lowering HIF1a accumulation in Ndufs4-KO skeletal muscle without affecting the brain. NMN up-regulated alpha-ketoglutarate (KG) levels in Ndufs4-KO muscle, a metabolite essential for HIF1a degradation. To test whether supplementation of KG can treat Ndufs4-KO mice, a cell-permeable KG, dimethyl ketoglutarate (DMKG) was administered. DMKG extended lifespan of Ndufs4-KO mice and delayed onset of neurological phenotype. This study identified therapeutic mechanisms that can be targeted pharmacologically to treat Leigh syndrome.


Asunto(s)
Enfermedad de Leigh/tratamiento farmacológico , Enfermedad de Leigh/metabolismo , NAD/metabolismo , Mononucleótido de Nicotinamida/uso terapéutico , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Femenino , Enfermedad de Leigh/genética , Longevidad/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , Terapia Molecular Dirigida
10.
Cell Syst ; 6(1): 136-141.e5, 2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-29199018

RESUMEN

While modern structural biology technologies have greatly expanded the size and type of protein complexes that can now be studied, the ability to derive large-scale structural information on proteins and complexes as they exist within tissues is practically nonexistent. Here, we demonstrate the application of crosslinking mass spectrometry to identify protein structural features and interactions in tissue samples, providing systems structural biology insight into protein complexes as they exist in the mouse heart. This includes insights into multiple conformational states of sarcomere proteins, as well as interactions among OXPHOS complexes indicative of supercomplex assembly. The extension of crosslinking mass spectrometry analysis into the realm of tissues opens the door to increasing our understanding of protein structures and interactions within the context of the greater biological system.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Corazón/fisiología , Espectrometría de Masas/métodos , Animales , Femenino , Cromatografía de Gases y Espectrometría de Masas/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Conformación Proteica , Proteínas/química , Biología de Sistemas/métodos
11.
Proc Natl Acad Sci U S A ; 114(7): 1732-1737, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28130547

RESUMEN

Mitochondrial protein interactions and complexes facilitate mitochondrial function. These complexes range from simple dimers to the respirasome supercomplex consisting of oxidative phosphorylation complexes I, III, and IV. To improve understanding of mitochondrial function, we used chemical cross-linking mass spectrometry to identify 2,427 cross-linked peptide pairs from 327 mitochondrial proteins in whole, respiring murine mitochondria. In situ interactions were observed in proteins throughout the electron transport chain membrane complexes, ATP synthase, and the mitochondrial contact site and cristae organizing system (MICOS) complex. Cross-linked sites showed excellent agreement with empirical protein structures and delivered complementary constraints for in silico protein docking. These data established direct physical evidence of the assembly of the complex I-III respirasome and enabled prediction of in situ interfacial regions of the complexes. Finally, we established a database and tools to harness the cross-linked interactions we observed as molecular probes, allowing quantification of conformation-dependent protein interfaces and dynamic protein complex assembly.


Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón/química , Espectrometría de Masas/métodos , Proteínas Mitocondriales/química , Mapas de Interacción de Proteínas , Animales , Reactivos de Enlaces Cruzados/química , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Ratones , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Fosforilación Oxidativa , Unión Proteica , Conformación Proteica
12.
Circulation ; 134(12): 883-94, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27489254

RESUMEN

BACKGROUND: Impairments of mitochondrial function in the heart are linked intricately to the development of heart failure, but there is no therapy for mitochondrial dysfunction. METHODS: We assessed the reduced/oxidized ratio of nicotinamide adenine dinucleotide (NADH/NAD(+) ratio) and protein acetylation in the failing heart. Proteome and acetylome analyses were followed by docking calculation, mutagenesis, and mitochondrial calcium uptake assays to determine the functional role of specific acetylation sites. The therapeutic effects of normalizing mitochondrial protein acetylation by expanding the NAD(+) pool also were tested. RESULTS: Increased NADH/NAD(+) and protein hyperacetylation, previously observed in genetic models of defective mitochondrial function, also are present in human failing hearts as well as in mouse hearts with pathologic hypertrophy. Elevation of NAD(+) levels by stimulating the NAD(+) salvage pathway suppressed mitochondrial protein hyperacetylation and cardiac hypertrophy, and improved cardiac function in responses to stresses. Acetylome analysis identified a subpopulation of mitochondrial proteins that was sensitive to changes in the NADH/NAD(+) ratio. Hyperacetylation of mitochondrial malate-aspartate shuttle proteins impaired the transport and oxidation of cytosolic NADH in the mitochondria, resulting in altered cytosolic redox state and energy deficiency. Furthermore, acetylation of oligomycin-sensitive conferring protein at lysine-70 in adenosine triphosphate synthase complex promoted its interaction with cyclophilin D, and sensitized the opening of mitochondrial permeability transition pore. Both could be alleviated by normalizing the NAD(+) redox balance either genetically or pharmacologically. CONCLUSIONS: We show that mitochondrial protein hyperacetylation due to NAD(+) redox imbalance contributes to the pathologic remodeling of the heart via 2 distinct mechanisms. Our preclinical data demonstrate a clear benefit of normalizing NADH/NAD(+) imbalance in the failing hearts. These findings have a high translational potential as the pharmacologic strategy of increasing NAD(+) precursors are feasible in humans.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , NAD/metabolismo , Animales , Transporte Biológico/fisiología , Calcio/metabolismo , Insuficiencia Cardíaca/terapia , Humanos , Ratones , Mitocondrias Cardíacas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Oxidación-Reducción
13.
Anal Chem ; 88(9): 4817-24, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27043450

RESUMEN

Coenzymes of cellular redox reactions and cellular energy mediate biochemical reactions fundamental to the functioning of all living cells. Despite their immense interest, no simple method exists to gain insights into their cellular concentrations in a single step. We show that a simple (1)H NMR experiment can simultaneously measure oxidized and reduced forms of nicotinamide adenine dinucleotide (NAD(+) and NADH), oxidized and reduced forms of nicotinamide adenine dinucleotide phosphate (NADP(+) and NADPH), and adenosine triphosphate (ATP) and its precursors, adenosine diphosphate (ADP) and adenosine monophosphate (AMP), using mouse heart, kidney, brain, liver, and skeletal muscle tissue extracts as examples. Combining 1D/2D NMR experiments, chemical shift libraries, and authentic compound data, reliable peak identities for these coenzymes have been established. To assess this methodology, cardiac NADH and NAD(+) ratios/pool sizes were measured using mouse models with a cardiac-specific knockout of the mitochondrial Complex I Ndufs4 gene (cKO) and cardiac-specific overexpression of nicotinamide phosphoribosyltransferase (cNAMPT) as examples. Sensitivity of NAD(+) and NADH to cKO or cNAMPT was observed, as anticipated. Time-dependent investigations showed that the levels of NADH and NADPH diminish by up to ∼50% within 24 h; concomitantly, NAD(+) and NADP(+) increase proportionately; however, degassing the sample and flushing the sample tubes with helium gas halted such changes. The analysis protocol along with the annotated characteristic fingerprints for each coenzyme is provided for easy identification and absolute quantification using a single internal reference for routine use. The ability to visualize the ubiquitous coenzymes fundamental to cellular functions, simultaneously and reliably, offers a new avenue to interrogate the mechanistic details of cellular function in health and disease.


Asunto(s)
Coenzimas/análisis , Complejo I de Transporte de Electrón/análisis , NADP/análisis , NAD/análisis , Nicotinamida Fosforribosiltransferasa/análisis , Espectroscopía de Protones por Resonancia Magnética , Adenosina Difosfato/análisis , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/análisis , Adenosina Trifosfato/metabolismo , Animales , Coenzimas/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Ratones , NAD/metabolismo , NADP/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Oxidación-Reducción
14.
Circ J ; 79(9): 1863-70, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26248514

RESUMEN

Heart failure is a leading cause of death worldwide. Despite medical advances, the dismal prognosis of heart failure has not been improved. The heart is a high energy-demanding organ. Impairments of cardiac energy metabolism and mitochondrial function are intricately linked to cardiac dysfunction. Mitochondrial dysfunction contributes to impaired myocardial energetics and increased oxidative stress in heart failure, and the opening of mitochondrial permeability transition pore triggers cell death and myocardial remodeling. Therefore, there has been growing interest in targeting mitochondria and metabolism for heart failure therapy. Recent developments suggest that mitochondrial protein lysine acetylation modulates the sensitivity of the heart to stress and hence the propensity to heart failure. This article reviews the role of mitochondrial dysfunction in heart failure, with a special emphasis on the regulation of the nicotinamide adenine dinucleotide (NAD(+)/NADH) ratio and sirtuin-dependent lysine acetylation by mitochondrial function. Strategies for targeting NAD(+)-sensitive mechanisms in order to intervene in protein lysine acetylation and, thereby, improve stress tolerance, are described, and their usefulness in heart failure therapy is discussed.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/terapia , Mitocondrias Cardíacas/metabolismo , Proteínas Mitocondriales/metabolismo , Acetilación , Insuficiencia Cardíaca/patología , Humanos , Lisina/metabolismo , Mitocondrias Cardíacas/patología , Sirtuinas/metabolismo
15.
PLoS Comput Biol ; 11(6): e1004332, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26083688

RESUMEN

Development of heart diseases is driven by dynamic changes in both the activity and connectivity of gene pathways. Understanding these dynamic events is critical for understanding pathogenic mechanisms and development of effective treatment. Currently, there is a lack of computational methods that enable analysis of multiple gene networks, each of which exhibits differential activity compared to the network of the baseline/healthy condition. We describe the iMDM algorithm to identify both unique and shared gene modules across multiple differential co-expression networks, termed M-DMs (multiple differential modules). We applied iMDM to a time-course RNA-Seq dataset generated using a murine heart failure model generated on two genotypes. We showed that iMDM achieves higher accuracy in inferring gene modules compared to using single or multiple co-expression networks. We found that condition-specific M-DMs exhibit differential activities, mediate different biological processes, and are enriched for genes with known cardiovascular phenotypes. By analyzing M-DMs that are present in multiple conditions, we revealed dynamic changes in pathway activity and connectivity across heart failure conditions. We further showed that module dynamics were correlated with the dynamics of disease phenotypes during the development of heart failure. Thus, pathway dynamics is a powerful measure for understanding pathogenesis. iMDM provides a principled way to dissect the dynamics of gene pathways and its relationship to the dynamics of disease phenotype. With the exponential growth of omics data, our method can aid in generating systems-level insights into disease progression.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Redes Reguladoras de Genes/genética , Insuficiencia Cardíaca/genética , Animales , Perfilación de la Expresión Génica/métodos , Insuficiencia Cardíaca/metabolismo , Ratones , Ratones Transgénicos , Biología de Sistemas , Transcriptoma/genética
16.
Apoptosis ; 20(1): 29-37, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25378215

RESUMEN

Diabetes is a pandemic disease with a higher occurrence in minority populations. The molecular mechanism to initiate diabetes-associated retinal angiogenesis remains largely unknown. We propose an inflammatory pathway of diabetic retinopathy in which macrophages in the diabetic eye provide TGFß to retinal endothelial cells (REC) in the retinal microvasculature. In response to TGFß, REC synthesize and secrete a pro-apoptotic BIGH3 (TGFß-Induced Gene Human Clone 3) protein, which acts in an autocrine loop to induce REC apoptosis. Rhesus monkey retinal endothelial cells (RhREC) were treated with dMCM (cell media of macrophages treated with high glucose and LDL) and assayed for apoptosis (TUNEL), BIGH3 mRNA (qPCR), and protein (Western blots) expressions. Cells were also treated with ΤGFß1 and 2 for BIGH3 mRNA and protein expression. Inhibition assays were carried out using antibodies for TGFß1 and for BIGH3 to block apoptosis and mRNA expression. BIGH3 in cultured RhREC cells were identified by immunohistochemistry (IHC). Distribution of BIGH3 and macrophages in the diabetic mouse retina was examined with IHC. RhRECs treated with dMCM or TGFß showed a significant increase in apoptosis and BIGH3 protein expression. Recombinant BIGH3 added to RhREC culture medium led to a dose-dependent increase in apoptosis. Antibodies (Ab) directed against BIGH3 and TGFß, as well as TGFß receptor blocker resulted in a significant reduction in apoptosis induced by either dMCM, TGFß or BIGH3. IHC showed that cultured RhREC constitutively expressed BIGH3. Macrophage and BIGH3 protein were co-localized to the inner retina of the diabetic mouse eye. Our results support a novel inflammatory pathway for diabetic retinopathy. This pathway is initiated by TGFß released from macrophages, which promotes synthesis and release of BIGH3 protein by REC and REC apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Células Endoteliales/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Macrófagos/metabolismo , Retina/citología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/farmacología , Humanos , Macaca mulatta , Ratones Endogámicos C57BL , Ratones Noqueados , Retina/efectos de los fármacos , Retina/metabolismo , Vasos Retinianos/citología , Vasos Retinianos/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/farmacología
17.
Am J Physiol Heart Circ Physiol ; 307(9): H1307-16, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25172896

RESUMEN

Mitochondrial dysfunction in animal models of heart failure is associated with downregulation of the peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α pathway. To test whether PGC-1α is an appropriate therapeutic target for increasing mitochondrial biogenesis and improving function in heart failure, we used a transgenic (TG) mouse model of moderate overexpression of PGC-1α (∼3-fold) in the heart. TG mice had small increases in citrate synthase activity and mitochondria size in the heart without alterations in myocardial energetics or cardiac function at baseline. In vivo dobutamine stress increased fractional shortening in wild-type mice, but this increase was attenuated in TG mice, whereas ex vivo isolated perfused TG hearts demonstrated normal functional and energetic response to high workload challenge. When subjected to pressure overload by transverse aortic constriction (TAC), TG mice displayed a significantly greater acute mortality for both male and female mice; however, long-term survival up to 8 wk was similar between the two groups. TG mice also showed a greater decrease in fractional shortening and a greater increase in left ventricular chamber dimension in response to TAC. Mitochondrial gene expression and citrate synthase activity were mildly increased in TG mice compared with wild-type mice, and this difference was also maintained after TAC. Our data suggest that a moderate level of PGC-1α overexpression in the heart compromises acute survival and does not improve cardiac function during chronic pressure overload in mice.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Mitocondrias Cardíacas/metabolismo , Recambio Mitocondrial , Factores de Transcripción/metabolismo , Animales , Citrato (si)-Sintasa/genética , Citrato (si)-Sintasa/metabolismo , Femenino , Insuficiencia Cardíaca/fisiopatología , Masculino , Ratones , Mitocondrias Cardíacas/ultraestructura , Contracción Miocárdica , Factores de Transcripción/genética , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/fisiopatología
18.
J Am Heart Assoc ; 3(1): e000555, 2014 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-24470522

RESUMEN

BACKGROUND: The NADPH oxidase family (Nox) produces reactive oxygen species by adding the electron donated by NADPH to oxygen. Excessive reactive oxygen species production under a variety of pathological conditions has been attributed to increased Nox activity. Here, we aimed at investigating the role of Nox in cardiac ischemic injury through gain- and loss-of-function approaches. METHODS AND RESULTS: We modulated Nox activity in the heart by cardiac-specific expression of Nox4 and dominant negative Nox4. Modulation of Nox activity drastically changes the cellular redox status. Increasing Nox activity by cardiac-specific overexpression of Nox4 imposed oxidative stress on the myocardium [increased NAD(P)(+)/NAD(P)H and decreased glutathione/glutathione disulfide ratio] and worsened cardiac energetics and contractile function after ischemia-reperfusion. Overexpression of the dominant negative Nox4 (DN), which abolished the Nox function, led to a markedly reduced state [decreased NAD(P)(+)/NAD(P)H and increased glutathione/glutathione disulfide ratio] at baseline and paradoxically promoted mitochondrial reactive oxygen species production during ischemia resulting in no recovery of heart function after reperfusion. Limiting the generation of reducing equivalent through modulating carbon substrates availability partially restored the NAD(+)/NADH ratio and protected dominant negative Nox4 hearts from ischemic injury. CONCLUSIONS: This study reveals an important role of Nox in cardiac redox regulation and highlights the complexity of developing therapies that affect the intricately connected redox states.


Asunto(s)
Infarto del Miocardio/enzimología , Daño por Reperfusión Miocárdica/enzimología , Miocardio/metabolismo , NADPH Oxidasas/deficiencia , Estrés Oxidativo , Animales , Modelos Animales de Enfermedad , Metabolismo Energético , Glutatión/metabolismo , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/metabolismo , Contracción Miocárdica , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/patología , NAD/metabolismo , NADPH Oxidasa 4 , NADPH Oxidasas/genética , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo
19.
Cell Metab ; 18(2): 239-50, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23931755

RESUMEN

Mitochondrial respiratory dysfunction is linked to the pathogenesis of multiple diseases, including heart failure, but the specific mechanisms for this link remain largely elusive. We modeled the impairment of mitochondrial respiration by the inactivation of the Ndufs4 gene, a protein critical for complex I assembly, in the mouse heart (cKO). Although complex I-supported respiration decreased by >40%, the cKO mice maintained normal cardiac function in vivo and high-energy phosphate content in isolated perfused hearts. However, the cKO mice developed accelerated heart failure after pressure overload or repeated pregnancy. Decreased NAD(+)/NADH ratio by complex I deficiency inhibited Sirt3 activity, leading to an increase in protein acetylation and sensitization of the permeability transition in mitochondria (mPTP). NAD(+) precursor supplementation to cKO mice partially normalized the NAD(+)/NADH ratio, protein acetylation, and mPTP sensitivity. These findings describe a mechanism connecting mitochondrial dysfunction to the susceptibility to diseases and propose a potential therapeutic target.


Asunto(s)
Complejo I de Transporte de Electrón/deficiencia , Insuficiencia Cardíaca/metabolismo , Mitocondrias Cardíacas/metabolismo , Enfermedades Mitocondriales/metabolismo , NAD/metabolismo , Acetilación , Animales , Cardiotónicos/farmacología , Dobutamina/farmacología , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Estrés Oxidativo , Embarazo , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 3/metabolismo
20.
PLoS One ; 8(6): e66964, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23825596

RESUMEN

We showed that metabolic disorders promote thiol oxidative stress in monocytes, priming monocytes for accelerated chemokine-induced recruitment, and accumulation at sites of vascular injury and the progression of atherosclerosis. The aim of this study was to identify both the source of reactive oxygen species (ROS) responsible for thiol oxidation in primed and dysfunctional monocytes and the molecular mechanisms through which ROS accelerate the migration and recruitment of monocyte-derived macrophages. We found that Nox4, a recently identified NADPH oxidase in monocytes and macrophages, localized to focal adhesions and the actin cytoskeleton, and associated with phospho-FAK, paxillin, and actin, implicating Nox4 in the regulation of monocyte adhesion and migration. We also identified Nox4 as a new, metabolic stress-inducible source of ROS that controls actin S-glutathionylation and turnover in monocytes and macrophages, providing a novel mechanistic link between Nox4-derived H2O2 and monocyte adhesion and migration. Actin associated with Nox4 was S-glutathionylated, and Nox4 association with actin was enhanced in metabolically-stressed monocytes. Metabolic stress induced Nox4 and accelerated monocyte adhesion and chemotaxis in a Nox4-dependent mechanism. In conclusion, our data suggest that monocytic Nox4 is a central regulator of actin dynamics, and induction of Nox4 is the rate-limiting step in metabolic stress-induced monocyte priming and dysfunction associated with accelerated atherosclerosis and the progression of atherosclerotic plaques.


Asunto(s)
Adhesión Celular/fisiología , Monocitos/citología , NADPH Oxidasas/fisiología , Actinas/metabolismo , Línea Celular , Quimiotaxis de Leucocito , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Técnicas de Silenciamiento del Gen , Glutatión/metabolismo , Humanos , Monocitos/metabolismo , NADPH Oxidasa 4 , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA