Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 436(11): 168576, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38641239

RESUMEN

Prions, the misfolding form of prion proteins, are contagious proteinaceous macromolecules. Recent studies have shown that infectious prion fibrils formed in the brain and non-infectious fibrils formed from recombinant prion protein in a partially denaturing condition have distinct structures. The amyloid core of the in vitro-prepared non-infectious fibrils starts at about residue 160, while that of infectious prion fibrils formed in the brain involves a longer sequence (residues ∼90-230) of structural conversion. The C-terminal truncated prion protein PrP(23-144) can form infectious fibrils under certain conditions and cause disease in animals. In this study, we used cryogenic electron microscopy (cryo-EM) to resolve the structure of hamster sHaPrP(23-144) fibrils prepared at pH 3.7. This 2.88 Å cryo-EM structure has an amyloid core covering residues 94-144. It comprises two protofilaments, each containing five ß-strands arranged as a long hairpin plus an N-terminal ß-strand. This N-terminal ß-strand resides in a positively charged cluster region (named PCC2; sequence 96-111), which interacts with the turn region of the opposite protofilaments' hairpin to stabilize the fibril structure. Interestingly, this sHaPrP(23-144) fibril structure differs from a recently reported structure formed by the human or mouse counterpart at pH 6.5. Moreover, sHaPrP(23-144) fibrils have many structural features in common with infectious prions. Whether this structure is infectious remains to be determined. More importantly, the sHaPrP(23-144) structure is different from the sHaPrP(108-144) fibrils prepared in the same fibrillization buffer, indicating that the N-terminal disordered region, possibly the positively charged cluster, influences the misfolding pathway of the prion protein.


Asunto(s)
Amiloide , Proteínas Priónicas , Pliegue de Proteína , Animales , Cricetinae , Amiloide/química , Microscopía por Crioelectrón/métodos , Modelos Moleculares , Proteínas Priónicas/química , Proteínas Priónicas/genética , Conformación Proteica
2.
J Am Chem Soc ; 144(30): 13888-13894, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35857020

RESUMEN

Fibrils of the hamster prion peptide (sHaPrP, sequence 108-144) were prepared in an acidic solution, and their structure was solved by cryogenic electron microscopy with a resolution of 2.23 Å based on the gold-standard Fourier shell correlation (FSC) curve. The fibril has a novel architecture that has never been found in other amyloid fibrils. Each fibril is assembled by four protofilaments (PFs) and has an ordered water channel in the center. Each protofilament contains three ß-strands (125-130, 133-135, and 138-141) arranged in an "R"-shaped construct. The structural data indicate that these three ß-strand segments are the most amyloidogenic region of the prion peptide/protein and might be the site of nucleation during fibrillization under conditions without denaturants.


Asunto(s)
Acuaporinas , Priones , Amiloide/química , Animales , Cricetinae , Microscopía por Crioelectrón , Péptidos , Proteínas Priónicas , Priones/química
3.
IUBMB Life ; 74(8): 780-793, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34288372

RESUMEN

Prion protein is composed of a structure-unsolved N-terminal domain and a globular C-terminal domain. Under limited trypsin digestion, mouse recombinant prion protein can be cleaved into two parts at residue Lys105. Here, we termed these two fragments as the N-domain (sequence 23-105) and the C-domain (sequence 106-230). In this study, the structural properties of the N-domain, the C-domain, and the full-length protein were explored using small-angle X-ray scattering, analytical ultracentrifugation, circular dichroism spectroscopy, and the 8-anilino-1-naphthalenesulfonic acid binding assay. The conformation and size of the prion protein were found to change sensitively under the solvent conditions. The positive residues in the sequence 23-99 of the N-domain were found to be responsible for the enhanced flexibility with the salt concentration reduced below 5 mM. The C-domain containing a hydrophobic patch tends to unfold and aggregate during a salt-induced structural collapse. The N-domain collapsed together with the C-domain at pH 5.2, whereas it collapsed independently at pH 4.2. The positively charged cluster (sequence 100-105) in the N-domain contributed to protecting the exposed hydrophobic surface of the C-domain.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Priónicas , Animales , Dicroismo Circular , Proteínas Intrínsecamente Desordenadas/química , Ratones , Proteínas Priónicas/química , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA