Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Nat Med ; 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333316

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccines are effective at protecting from severe disease, but the protective antibodies wane rapidly even though SARS-CoV-2-specific plasma cells can be found in the bone marrow (BM). Here, to explore this paradox, we enrolled 19 healthy adults at 2.5-33 months after receipt of a SARS-CoV-2 mRNA vaccine and measured influenza-, tetanus- or SARS-CoV-2-specific antibody-secreting cells (ASCs) in long-lived plasma cell (LLPC) and non-LLPC subsets within the BM. Only influenza- and tetanus-specific ASCs were readily detected in the LLPCs, whereas SARS-CoV-2 specificities were mostly absent. The ratios of non-LLPC:LLPC for influenza, tetanus and SARS-CoV-2 were 0.61, 0.44 and 29.07, respectively. In five patients with known PCR-proven history of recent infection and vaccination, SARS-CoV-2-specific ASCs were mostly absent from the LLPCs. We show similar results with measurement for secreted antibodies from BM ASC culture supernatant. While serum IgG titers specific for influenza and tetanus correlated with IgG LLPCs, serum IgG levels for SARS-CoV-2, which waned within 3-6 months after vaccination, were associated with IgG non-LLPCs. In all, our studies suggest that rapid waning of SARS-CoV-2-specific serum antibodies could be accounted for by the absence of BM LLPCs after these mRNA vaccines.

2.
medRxiv ; 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-39006446

RESUMEN

Post-acute sequelae of SARS-CoV-2 (SARS2) infection (PASC) is a heterogeneous condition, but the main viral drivers are unknown. Here, we use MENSA, Media Enriched with Newly Synthesized Antibodies, secreted exclusively from circulating human plasmablasts, to provide an immune snapshot that defines the underlying viral triggers. We provide proof-of-concept testing that the MENSA technology can capture the new host immune response to accurately diagnose acute primary and breakthrough infections when known SARS2 virus or proteins are present. It is also positive after vaccination when spike proteins elicit an acute immune response. Applying the same principles for long-COVID patients, MENSA is positive for SARS2 in 40% of PASC vs none of the COVID recovered (CR) patients without any sequelae demonstrating ongoing SARS2 viral inflammation only in PASC. Additionally, in PASC patients, MENSAs are also positive for Epstein-Barr Virus (EBV) in 37%, Human Cytomegalovirus (CMV) in 23%, and herpes simplex virus 2 (HSV2) in 15% compared to 17%, 4%, and 4% in CR controls respectively. Combined, a total of 60% of PASC patients have a positive MENSA for SARS2, EBV, CMV, and/or HSV2. MENSA offers a unique antibody snapshot to reveal the underlying viral drivers in long-COVID thus demonstrating the persistence of SARS2 and reactivation of viral herpes in 60% of PASC patients.

3.
Cell ; 187(18): 4981-4995.e14, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39059381

RESUMEN

Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is the most advanced blood-stage malaria vaccine candidate and is being evaluated for efficacy in endemic regions, emphasizing the need to study the underlying antibody response to RH5 during natural infection, which could augment or counteract responses to vaccination. Here, we found that RH5-reactive B cells were rare, and circulating immunoglobulin G (IgG) responses to RH5 were short-lived in malaria-exposed Malian individuals, despite repeated infections over multiple years. RH5-specific monoclonal antibodies isolated from eight malaria-exposed individuals mostly targeted non-neutralizing epitopes, in contrast to antibodies isolated from five RH5-vaccinated, malaria-naive UK individuals. However, MAD8-151 and MAD8-502, isolated from two malaria-exposed Malian individuals, were among the most potent neutralizers out of 186 antibodies from both cohorts and targeted the same epitopes as the most potent vaccine-induced antibodies. These results suggest that natural malaria infection may boost RH5-vaccine-induced responses and provide a clear strategy for the development of next-generation RH5 vaccines.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antiprotozoarios , Antígenos de Protozoos , Vacunas contra la Malaria , Malaria Falciparum , Plasmodium falciparum , Humanos , Anticuerpos Neutralizantes/inmunología , Plasmodium falciparum/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Malaria Falciparum/parasitología , Vacunas contra la Malaria/inmunología , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Proteínas Protozoarias/inmunología , Anticuerpos Monoclonales/inmunología , Adulto , Linfocitos B/inmunología , Epítopos/inmunología , Femenino , Malí , Proteínas Portadoras/inmunología , Masculino , Adolescente
4.
J Leukoc Biol ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814679

RESUMEN

Neutrophils and eosinophils share common hematopoietic precursors and usually diverge into distinct lineages with unique markers before being released from their hematopoietic site, which is the bone marrow (BM). However, previous studies identified an immature Ly6g(+) Il-5Rα(+) neutrophil population in mouse BM, expressing both neutrophil and eosinophil markers suggesting hematopoietic flexibility. Moreover, others have reported neutrophil populations expressing eosinophil-specific cell surface markers in tissues and altered disease states, confusing the field regarding eosinophil origins, function, and classification. Despite these reports, it is still unclear whether hematopoietic flexibility exists in human granulocytes. To answer this, we utilized single-cell RNA sequencing (scRNA-seq) and CITE-seq to profile human BM and circulating neutrophils and eosinophils at different stages of differentiation and determine whether neutrophil plasticity plays role in asthmatic inflammation. We show that immature metamyelocyte neutrophils in humans expand during severe asthmatic inflammation and express both neutrophil and eosinophil markers. We also show an increase in tri-lobed eosinophils with mixed neutrophil and eosinophil markers in allergic asthma and that IL-5 promotes differentiation of immature blood neutrophils into tri-lobed eosinophilic phenotypes suggesting a mechanism of emergency granulopoiesis to promote myeloid inflammatory or remodeling response in patients with chronic asthma. By providing insights into unexpectedly flexible granulocyte biology and demonstrating emergency hematopoiesis in asthma, our results highlight the importance of granulocyte plasticity in eosinophil development and allergic diseases.

5.
Nat Commun ; 15(1): 1899, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429276

RESUMEN

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple autoantibody types, some of which are produced by long-lived plasma cells (LLPC). Active SLE generates increased circulating antibody-secreting cells (ASC). Here, we examine the phenotypic, molecular, structural, and functional features of ASC in SLE. Relative to post-vaccination ASC in healthy controls, circulating blood ASC from patients with active SLE are enriched with newly generated mature CD19-CD138+ ASC, similar to bone marrow LLPC. ASC from patients with SLE displayed morphological features of premature maturation and a transcriptome epigenetically initiated in SLE B cells. ASC from patients with SLE exhibited elevated protein levels of CXCR4, CXCR3 and CD138, along with molecular programs that promote survival. Furthermore, they demonstrate autocrine production of APRIL and IL-10, which contributed to their prolonged in vitro survival. Our work provides insight into the mechanisms of generation, expansion, maturation and survival of SLE ASC.


Asunto(s)
Enfermedades Autoinmunes , Lupus Eritematoso Sistémico , Humanos , Citocinas , Transcriptoma , Lupus Eritematoso Sistémico/genética , Células Productoras de Anticuerpos
6.
medRxiv ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38496525

RESUMEN

The goal of any vaccine is to induce long-lived plasma cells (LLPC) to provide life-long protection. Natural infection by influenza, measles, or mumps viruses generates bone marrow (BM) LLPC similar to tetanus vaccination which affords safeguards for decades. Although the SARS-CoV-2 mRNA vaccines protect from severe disease, the serologic half-life is short-lived even though SARS-CoV-2-specific plasma cells can be found in the BM. To better understand this paradox, we enrolled 19 healthy adults at 1.5-33 months after SARS-CoV-2 mRNA vaccine and measured influenza-, tetanus-, or SARS-CoV-2-specific antibody secreting cells (ASC) in LLPC (CD19 - ) and non-LLPC (CD19 + ) subsets within the BM. All individuals had IgG ASC specific for influenza, tetanus, and SARS-CoV-2 in at least one BM ASC compartment. However, only influenza- and tetanus-specific ASC were readily detected in the LLPC whereas SARS-CoV-2 specificities were mostly excluded. The ratios of non-LLPC:LLPC for influenza, tetanus, and SARS-CoV-2 were 0.61, 0.44, and 29.07, respectively. Even in five patients with known PCR-proven history of infection and vaccination, SARS-CoV-2-specific ASC were mostly excluded from the LLPC. These specificities were further validated by using multiplex bead binding assays of secreted antibodies in the supernatants of cultured ASC. Similarly, the IgG ratios of non-LLPC:LLPC for influenza, tetanus, and SARS-CoV-2 were 0.66, 0.44, and 23.26, respectively. In all, our studies demonstrate that rapid waning of serum antibodies is accounted for by the inability of mRNA vaccines to induce BM LLPC.

7.
Curr Opin Pulm Med ; 30(3): 287-293, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38411178

RESUMEN

PURPOSE OF REVIEW: Asthma exacerbations are associated with substantial symptom burden and healthcare costs. Viral infections are the most common identified cause of asthma exacerbations. The epidemiology of viral respiratory infections has undergone a significant evolution during the COVID-19 pandemic. The relationship between viruses and asthmatic hosts has long been recognized but it is still incompletely understood. The use of newly approved asthma biologics has helped us understand this interaction better. RECENT FINDINGS: We review recent updates on the interaction between asthma and respiratory viruses, and we address how biologics and immunotherapies could affect this relationship by altering the respiratory mucosa cytokine milieu. By exploring the evolving epidemiological landscape of viral infections during the different phases of the COVID-19 pandemic, we emphasize the early post-pandemic stage, where a resurgence of pre-pandemic viruses with atypical seasonality patterns occurred. Finally, we discuss the newly developed RSV and SARS-CoV-2 vaccines and how they reduce respiratory infections. SUMMARY: Characterizing how respiratory viruses interact with asthmatic hosts will allow us to identify tailored therapies to reduce the burden of asthma exacerbations. New vaccination strategies are likely to shape the future viral asthma exacerbation landscape.


Asunto(s)
Asma , Productos Biológicos , COVID-19 , Infecciones del Sistema Respiratorio , Virosis , Humanos , COVID-19/epidemiología , Pandemias , Productos Biológicos/uso terapéutico , Vacunas contra la COVID-19 , SARS-CoV-2 , Asma/tratamiento farmacológico , Asma/epidemiología , Asma/complicaciones , Virosis/epidemiología , Infecciones del Sistema Respiratorio/complicaciones
8.
Sci Rep ; 14(1): 3616, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38350990

RESUMEN

Following infection or vaccination, early-minted antibody secreting cells (ASC) or plasmablasts appear in circulation transiently, and a small fraction migrates to the spleen or bone marrow (BM) to mature into long-lived plasma cells (LLPC). While LLPC, by definition, are quiescent or non-dividing, the majority of blood ASC are thought to be "blasting" or proliferative. In this study, we find > 95% nascent blood ASC in culture express Ki-67 but only 6-12% incorporate BrdU after 4 h or 24 h labeling. In contrast, < 5% BM LLPC in culture are Ki-67+ with no BrdU uptake. Due to limitations of traditional flow cytometry, we utilized a novel optofluidic technology to evaluate cell division with simultaneous functional IgG secretion. We find 11% early-minted blood ASC undergo division, and none of the terminally differentiated BM LLPC (CD19-CD38hiCD138+) divide during the 7-21 days in culture. While BM LLPC undergo complete cell cycle arrest, the process of differentiation into an ASC or plasmablasts also discourages entry into S phase. Since the majority of Ki-67+ nascent blood ASC have exited cell cycle and are no longer actively "blasting", the term "plasmablast", which traditionally refers to an ASC that still has the capacity to divide, may probably be a misnomer.


Asunto(s)
Médula Ósea , Células Plasmáticas , Humanos , Células Plasmáticas/metabolismo , Antígeno Ki-67 , Médula Ósea/metabolismo , Inmunoglobulina G , Antígenos CD19/metabolismo
9.
PLoS One ; 18(11): e0293203, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37922270

RESUMEN

BACKGROUND: Diagnostic immunoassays for Lyme disease have several limitations including: 1) not all patients seroconvert; 2) seroconversion occurs later than symptom onset; and 3) serum antibody levels remain elevated long after resolution of the infection. INTRODUCTION: MENSA (Medium Enriched for Newly Synthesized Antibodies) is a novel diagnostic fluid that contains antibodies produced in vitro by circulating antibody-secreting cells (ASC). It enables measurement of the active humoral immune response. METHODS: In this observational, case-control study, we developed the MicroB-plex Anti-C6/Anti-pepC10 Immunoassay to measure antibodies specific for the Borrelia burgdorferi peptide antigens C6 and pepC10 and validated it using a CDC serum sample collection. Then we examined serum and MENSA samples from 36 uninfected Control subjects and 12 Newly Diagnosed Lyme Disease Patients. RESULTS: Among the CDC samples, antibodies against C6 and/or pepC10 were detected in all seropositive Lyme patients (8/8), but not in sera from seronegative patients or healthy controls (0/24). Serum antibodies against C6 and pepC10 were detected in one of 36 uninfected control subjects (1/36); none were detected in the corresponding MENSA samples (0/36). In samples from newly diagnosed patients, serum antibodies identified 8/12 patients; MENSA antibodies also detected 8/12 patients. The two measures agreed on six positive individuals and differed on four others. In combination, the serum and MENSA tests identified 10/12 early Lyme patients. Typically, serum antibodies persisted 80 days or longer while MENSA antibodies declined to baseline within 40 days of successful treatment. DISCUSSION: MENSA-based immunoassays present a promising complement to serum immunoassays for diagnosis and tracking therapeutic success in Lyme infections.


Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Humanos , Estudios de Casos y Controles , Antígenos Bacterianos , Inmunoglobulina G , Anticuerpos Antibacterianos , Biomarcadores , Células Productoras de Anticuerpos , Diagnóstico Precoz
10.
bioRxiv ; 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37745615

RESUMEN

Following infection or vaccination, early-minted antibody secreting cells (ASC) or plasmablasts appear in circulation transiently, and a small fraction migrates to the spleen or bone marrow (BM) to mature into long-lived plasma cells (LLPC). While LLPC, by definition, are quiescent or non-dividing, the majority of blood ASC are thought to be "blasting" or proliferative. In this study, we find >95% nascent blood ASC in culture express Ki-67 but only 6-12% incorporate BrdU after 4h or 24h labeling. In contrast, <5% BM LLPC in culture are Ki-67 + with no BrdU uptake. Due to limitations of traditional flow cytometry, we utilized a novel optofluidic technology to evaluate cell division with simultaneous functional Ig secretion. We find 11% early-minted blood ASC undergo division, and none of the terminally differentiated BM LLPC (CD19 - CD38 hi CD138 + ) divide during the 7-21 days in culture. While BM LLPC undergo complete cell cycle arrest, the process of differentiation into an ASC of plasmablasts discourages entry into S phase. Since the majority of Ki-67 + nascent blood ASC have exited cell cycle and are no longer actively "blasting", the term "plasmablast", which traditionally refers to an ASC that still has the capacity to divide, may probably be a misnomer.

11.
medRxiv ; 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37398319

RESUMEN

Novel mRNA vaccines have resulted in a reduced number of SARS-CoV-2 infections and hospitalizations. Yet, there is a paucity of studies regarding their effectiveness on immunocompromised autoimmune subjects. In this study, we enrolled subjects naïve to SARS-CoV-2 infections from two cohorts of healthy donors (HD, n=56) and systemic lupus erythematosus (SLE, n=69). Serological assessments of their circulating antibodies revealed a significant reduction of potency and breadth of neutralization in the SLE group, only partially rescued by a 3rd booster dose. Immunological memory responses in the SLE cohort were characterized by a reduced magnitude of spike-reactive B and T cell responses that were strongly associated with poor seroconversion. Vaccinated SLE subjects were defined by a distinct expansion and persistence of a DN2 spike-reactive memory B cell pool and a contraction of spike-specific memory cTfh cells, contrasting with the sustained germinal center (GC)-driven activity mediated by mRNA vaccination in the healthy population. Among the SLE-associated factors that dampened the vaccine responses, treatment with the monoclonal antibody anti-BAFF/Belimumab (a lupus FDA-approved B cell targeting agent) profoundly affected the vaccine responsiveness by restricting the de novo B cell responses and promoting stronger extra-follicular (EF)-mediated responses that were associated with poor immunogenicity and impaired immunological memory. In summary, this study interrogates antigen-specific responses and characterized the immune cell landscape associated with mRNA vaccination in SLE. The identification of factors associated with reduced vaccine efficacy illustrates the impact of SLE B cell biology on mRNA vaccine responses and provides guidance for the management of boosters and recall vaccinations in SLE patients according to their disease endotype and modality of treatment.

12.
PLoS One ; 18(7): e0288391, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37428786

RESUMEN

BACKGROUND: The impact of COVID-19 severity on development of long-term sequelae remains unclear, and symptom courses are not well defined. METHODS: This ambidirectional cohort study recruited adults with new or worsening symptoms lasting ≥3 weeks from confirmed SARS-CoV-2 infection between August 2020-December 2021. COVID-19 severity was defined as severe for those requiring hospitalization and mild for those not. Symptoms were collected using standardized questionnaires. Multivariable logistical regression estimated odds ratios (OR) and 95% confidence intervals (CI) for associations between clinical variables and symptoms. RESULTS: Of 332 participants enrolled, median age was 52 years (IQR 42-62), 233 (70%) were female, and 172 (52%) were African American. Antecedent COVID-19 was mild in 171 (52%) and severe in 161 (48%). In adjusted models relative to severe cases, mild COVID-19 was associated with greater odds of fatigue (OR:1.83, CI:1.01-3.31), subjective cognitive impairment (OR:2.76, CI:1.53-5.00), headaches (OR:2.15, CI:1.05-4.44), and dizziness (OR:2.41, CI:1.18-4.92). Remdesivir treatment was associated with less fatigue (OR:0.47, CI:0.26-0.86) and fewer participants scoring >1.5 SD on PROMIS Cognitive scales (OR:0.43, CI:0.20-0.92). Fatigue and subjective cognitive impairment prevalence was higher 3-6 months after COVID-19 and persisted (fatigue OR:3.29, CI:2.08-5.20; cognitive OR:2.62, CI:1.67-4.11). Headache was highest at 9-12 months (OR:5.80, CI:1.94-17.3). CONCLUSIONS: Mild antecedent COVID-19 was associated with highly prevalent symptoms, and those treated with remdesivir developed less fatigue and cognitive impairment. Sequelae had a delayed peak, ranging 3-12 months post infection, and many did not improve over time, underscoring the importance of targeted preventative measures.


Asunto(s)
COVID-19 , Síndrome Post Agudo de COVID-19 , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios de Cohortes , COVID-19/complicaciones , Progresión de la Enfermedad , Fatiga/etiología , Cefalea/etiología , Síndrome Post Agudo de COVID-19/epidemiología
13.
Nat Commun ; 14(1): 4201, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452024

RESUMEN

While immunologic correlates of COVID-19 have been widely reported, their associations with post-acute sequelae of COVID-19 (PASC) remain less clear. Due to the wide array of PASC presentations, understanding if specific disease features associate with discrete immune processes and therapeutic opportunities is important. Here we profile patients in the recovery phase of COVID-19 via proteomics screening and machine learning to find signatures of ongoing antiviral B cell development, immune-mediated fibrosis, and markers of cell death in PASC patients but not in controls with uncomplicated recovery. Plasma and immune cell profiling further allow the stratification of PASC into inflammatory and non-inflammatory types. Inflammatory PASC, identifiable through a refined set of 12 blood markers, displays evidence of ongoing neutrophil activity, B cell memory alterations, and building autoreactivity more than a year post COVID-19. Our work thus helps refine PASC categorization to aid in both therapeutic targeting and epidemiological investigation of PASC.


Asunto(s)
COVID-19 , Neutrófilos , Humanos , Síndrome Post Agudo de COVID-19 , Inflamación , Antivirales , Progresión de la Enfermedad
14.
Res Sq ; 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37461641

RESUMEN

Systemic Lupus Erythematosus (SLE) is an autoimmune disease characterized by multiple autoantibodies, some of which are present in high titers in a sustained, B cell-independent fashion consistent with their generation from long-lived plasma cells (LLPC). Active SLE displays high numbers of circulating antibody-secreting cells (ASC). Understanding the mechanisms of generation and survival of SLE ASC would contribute important insight into disease pathogenesis and novel targeted therapies. We studied the properties of SLE ASC through a systematic analysis of their phenotypic, molecular, structural, and functional features. Our results indicate that in active SLE, relative to healthy post-immunization responses, blood ASC contain a much larger fraction of newly generated mature CD19- CD138+ ASC similar to bone marrow (BM) LLPC. SLE ASC were characterized by morphological and structural features of premature maturation. Additionally, SLE ASC express high levels of CXCR4 and CD138, and molecular programs consistent with increased longevity based on pro-survival and attenuated pro-apoptotic pathways. Notably, SLE ASC demonstrate autocrine production of APRIL and IL-10 and experience prolonged in vitro survival. Combined, our findings indicate that SLE ASC are endowed with enhanced peripheral maturation, survival and BM homing potential suggesting that these features likely underlie BM expansion of autoreactive PC.

15.
Cell Rep ; 42(7): 112682, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37355988

RESUMEN

Human bone marrow (BM) plasma cells are heterogeneous, ranging from newly arrived antibody-secreting cells (ASCs) to long-lived plasma cells (LLPCs). We provide single-cell transcriptional resolution of 17,347 BM ASCs from five healthy adults. Fifteen clusters are identified ranging from newly minted ASCs (cluster 1) expressing MKI67 and high major histocompatibility complex (MHC) class II that progress to late clusters 5-8 through intermediate clusters 2-4. Additional ASC clusters include the following: immunoglobulin (Ig) M predominant (likely of extra-follicular origin), interferon responsive, and high mitochondrial activity. Late ASCs are distinguished by G2M checkpoints, mammalian target of rapamycin (mTOR) signaling, distinct metabolic pathways, CD38 expression, utilization of tumor necrosis factor (TNF)-receptor superfamily members, and two distinct maturation pathways involving TNF signaling through nuclear factor κB (NF-κB). This study provides a single-cell atlas and molecular roadmap of LLPC maturation trajectories essential in the BM microniche. Altogether, understanding BM ASC heterogeneity in health and disease enables development of new strategies to enhance protective ASCs and to deplete pathogenic ones.


Asunto(s)
Médula Ósea , Células Plasmáticas , Adulto , Humanos , Células Productoras de Anticuerpos/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Análisis de la Célula Individual , Células de la Médula Ósea
16.
Mucosal Immunol ; 16(3): 287-301, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36931600

RESUMEN

Immunoglobulin (Ig) E is central to the pathogenesis of allergic conditions, including allergic fungal rhinosinusitis. However, little is known about IgE antibody secreting cells (ASCs). We performed single-cell RNA sequencing from cluster of differentiation (CD)19+ and CD19- ASCs of nasal polyps from patients with allergic fungal rhinosinusitis (n = 3). Nasal polyps were highly enriched in CD19+ ASCs. Class-switched IgG and IgA ASCs were dominant (95.8%), whereas IgE ASCs were rare (2%) and found only in the CD19+ compartment. Through Ig gene repertoire analysis, IgE ASCs shared clones with IgD-CD27- "double-negative" B cells, IgD+CD27+ unswitched memory B cells, and IgD-CD27+ switched memory B cells, suggesting ontogeny from both IgD+ and memory B cells. Transcriptionally, mucosal IgE ASCs upregulate pathways related to antigen presentation, chemotaxis, B cell receptor stimulation, and survival compared with non-IgE ASCs. Additionally, IgE ASCs have a higher expression of genes encoding lysosomal-associated protein transmembrane 5 (LAPTM5) and CD23, as well as upregulation of CD74 (receptor for macrophage inhibitory factor), store-operated Calcium entry-associated regulatory factor (SARAF), and B cell activating factor receptor (BAFFR), which resemble an early minted ASC phenotype. Overall, these findings reinforce the paradigm that human ex vivo mucosal IgE ASCs have a more immature plasma cell phenotype than other class-switched mucosal ASCs and suggest unique functional roles for mucosal IgE ASCs in concert with Ig secretion.


Asunto(s)
Pólipos Nasales , Humanos , Inmunoglobulina E , Células Productoras de Anticuerpos , Mucosa Nasal , Fenotipo , Análisis de la Célula Individual
17.
J Exp Med ; 220(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36811605

RESUMEN

Evolutionarily conserved, "natural" (n)IgM is broadly reactive to both self and foreign antigens. Its selective deficiency leads to increases in autoimmune diseases and infections. In mice, nIgM is secreted independent of microbial exposure to bone marrow (BM) and spleen B-1 cell-derived plasma cells (B-1PC), generating the majority of nIgM, or by B-1 cells that remain non-terminally differentiated (B-1sec). Thus, it has been assumed that the nIgM repertoire is broadly reflective of the repertoire of body cavity B-1 cells. Studies here reveal, however, that B-1PC generate a distinct, oligoclonal nIgM repertoire, characterized by short CDR3 variable immunoglobulin heavy chain regions, 7-8 amino acids in length, some public, many arising from convergent rearrangements, while specificities previously associated with nIgM were generated by a population of IgM-secreting B-1 (B-1sec). BM, but not spleen B-1PC, or B-1sec also required the presence of TCRαß CD4 T cells for their development from fetal precursors. Together, the studies identify important previously unknown characteristics of the nIgM pool.


Asunto(s)
Subgrupos de Linfocitos B , Ratones , Animales , Linfocitos B , Inmunoglobulina M , Linfocitos T CD4-Positivos , Células Plasmáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA