Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nat Commun ; 14(1): 7859, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030597

RESUMEN

Ligand-induced epidermal growth factor receptor (EGFR) endocytosis followed by endosomal EGFR signaling and lysosomal degradation plays important roles in controlling multiple biological processes. ADP-ribosylation factor (Arf)-like protein 4 A (Arl4A) functions at the plasma membrane to mediate cytoskeletal remodeling and cell migration, whereas its localization at endosomal compartments remains functionally unknown. Here, we report that Arl4A attenuates EGFR degradation by binding to the endosomal sorting complex required for transport (ESCRT)-II component VPS36. Arl4A plays a role in prolonging the duration of EGFR ubiquitinylation and deterring endocytosed EGFR transport from endosomes to lysosomes under EGF stimulation. Mechanistically, the Arl4A-VPS36 direct interaction stabilizes VPS36 and ESCRT-III association, affecting subsequent recruitment of deubiquitinating-enzyme USP8 by CHMP2A. Impaired Arl4A-VPS36 interaction enhances EGFR degradation and clearance of EGFR ubiquitinylation. Together, we discover that Arl4A negatively regulates EGFR degradation by binding to VPS36 and attenuating ESCRT-mediated late endosomal EGFR sorting.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Receptores ErbB , Humanos , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Células HeLa , Receptores ErbB/metabolismo , Endosomas/metabolismo , Transducción de Señal , Transporte de Proteínas/fisiología
2.
Mol Biol Cell ; 34(11): ar112, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37610835

RESUMEN

Vesicular trafficking involving SNARE proteins play a crucial role in the delivery of cargo to the target membrane. Arf-like protein 1 (Arl1) is an important regulator of the endosomal trans-Golgi network (TGN) and secretory trafficking. In yeast, ER stress-enhances Arl1 activation and Golgin Imh1 recruitment to the late-Golgi. Although Arl1 and Imh1 are critical for GARP-mediated endosomal SNARE-recycling transport in response to ER stress, their downstream effectors are unknown. Here, we report that the SNARE-associated protein Sft2 acts downstream of the Arl1-Imh1 axis to regulate SNARE recycling upon ER stress. We first demonstrated that Sft2 is required for Tlg1/Snc1 SNARE-recycling transport under tunicamycin-induced ER stress. Interestingly, we found that Imh1 regulates Tlg2 retrograde transport to the late-Golgi under ER stress, which in turn is required for Sft2 targeting to the late-Golgi. We further showed that Sft2 with 40 amino acids deleted from the N-terminus exhibits defective mediation of SNARE recycling and decreased association with Tlg1 under ER stress. Finally, we demonstrated that Sft2 is required for GARP-dependent endosome-to-Golgi transport in the absence of Rab protein Ypt6. This study highlights Sft2 as a critical downstream effector of the Arl1-Imh1 axis, mediating the endosome-to-Golgi transport of SNAREs.


Asunto(s)
Aminoácidos , Endosomas , Transporte Biológico , Aparato de Golgi , Proteínas SNARE , Saccharomyces cerevisiae
3.
J Cell Sci ; 135(18)2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36017701

RESUMEN

AMP-activated protein kinase (AMPK) is a crucial cellular nutrient and energy sensor that maintains energy homeostasis. AMPK also governs cancer cell invasion and migration by regulating gene expression and activating multiple cellular signaling pathways. ADP-ribosylation factor 6 (Arf6) can be activated via nucleotide exchange by guanine-nucleotide-exchange factors (GEFs), and its activation also regulates tumor invasion and migration. By studying GEF-mediated Arf6 activation, we have elucidated that AMPK functions as a noncanonical GEF for Arf6 in a kinase-independent manner. Moreover, by examining the physiological role of the AMPK-Arf6 axis, we have determined that AMPK activates Arf6 upon glucose starvation and 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside (AICAR) treatment. We have further identified the binding motif in the C-terminal regulatory domain of AMPK that is responsible for promoting Arf6 activation and, thus, inducing cell migration and invasion. These findings reveal a noncanonical role of AMPK in which its C-terminal regulatory domain serves as a GEF for Arf6 during glucose deprivation.


Asunto(s)
Factor 6 de Ribosilación del ADP , Glucosa , Factores de Ribosilacion-ADP/genética , Factores de Ribosilacion-ADP/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(30): e2207414119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35857868

RESUMEN

The Arl4 small GTPases participate in a variety of cellular events, including cytoskeleton remodeling, vesicle trafficking, cell migration, and neuronal development. Whereas small GTPases are typically regulated by their GTPase cycle, Arl4 proteins have been found to act independent of this canonical regulatory mechanism. Here, we show that Arl4A and Arl4D (Arl4A/D) are unstable due to proteasomal degradation, but stimulation of cells by fibronectin (FN) inhibits this degradation to promote Arl4A/D stability. Proteomic analysis reveals that FN stimulation induces phosphorylation at S143 of Arl4A and at S144 of Arl4D. We identify Pak1 as the responsible kinase for these phosphorylations. Moreover, these phosphorylations promote the chaperone protein HYPK to bind Arl4A/D, which stabilizes their recruitment to the plasma membrane to promote cell migration. These findings not only advance a major mechanistic understanding of how Arl4 proteins act in cell migration but also achieve a fundamental understanding of how these small GTPases are modulated by revealing that protein stability, rather than the GTPase cycle, acts as a key regulatory mechanism.


Asunto(s)
Factores de Ribosilacion-ADP , Proteínas Portadoras , Membrana Celular , Chaperonas Moleculares , Factores de Ribosilacion-ADP/metabolismo , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Fosforilación , Unión Proteica , Proteómica
5.
Cell Rep ; 38(12): 110488, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35320730

RESUMEN

The accumulation of misfolded proteins in the endoplasmic reticulum (ER) induces the unfolded protein response (UPR), which acts through various mechanisms to reduce ER stress. While the UPR has been well studied for its effects on the ER, its impact on the Golgi is less understood. The Golgi complex receives transport vesicles from the endosome through two types of tethering factors: long coiled-coil golgin and the multisubunit Golgi-associated retrograde protein (GARP) complex. Here, we report that ER stress increases the phosphorylation of golgin Imh1 to maintain the GARP-mediated recycling of the SNAREs Snc1 and Tlg1. We also identify a specific function of the Golgi affected by ER stress and elucidate a homeostatic response to restore this function, which involves both an Ire1-dependent and a MAP kinase Slt2/ERK2-dependent mechanism. Furthermore, our findings advance a general understanding of how two different types of tethers act cooperatively to mediate a transport pathway.


Asunto(s)
Aparato de Golgi , Proteínas SNARE , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi/metabolismo , Fusión de Membrana , Proteínas SNARE/metabolismo
6.
Mol Biol Cell ; 31(21): 2348-2362, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32755434

RESUMEN

ADP-ribosylation factor (Arf)-like 4D (Arl4D), one of the Arf-like small GTPases, functions in the regulation of cell morphology, cell migration, and actin cytoskeleton remodeling. End-binding 1 (EB1) is a microtubule (MT) plus-end tracking protein that preferentially localizes at the tips of the plus ends of growing MTs and at the centrosome. EB1 depletion results in many centrosome-related defects. Here, we report that Arl4D promotes the recruitment of EB1 to the centrosome and regulates MT nucleation. We first showed that Arl4D interacts with EB1 in a GTP-dependent manner. This interaction is dependent on the C-terminal EB homology region of EB1 and partially dependent on an SxLP motif of Arl4D. We found that Arl4D colocalized with γ-tubulin in centrosomes and the depletion of Arl4D resulted in a centrosomal MT nucleation defect. We further demonstrated that abolishing Arl4D-EB1 interaction decreased MT nucleation rate and diminished the centrosomal recruitment of EB1 without affecting MT growth rate. In addition, Arl4D binding to EB1 increased the association between the p150 subunit of dynactin and the EB1, which is important for MT stabilization. Together, our results indicate that Arl4D modulates MT nucleation through regulation of the EB1-p150 association at the centrosome.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Centrosoma/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Factores de Ribosilacion-ADP/fisiología , Animales , Células COS , Chlorocebus aethiops/metabolismo , Chlorocebus aethiops/fisiología , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/fisiología
7.
J Cell Sci ; 133(3)2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31932503

RESUMEN

Cell migration requires the coordination of multiple signaling pathways involved in membrane dynamics and cytoskeletal rearrangement. The Arf-like small GTPase Arl4A has been shown to modulate actin cytoskeleton remodeling. However, evidence of the function of Arl4A in cell migration is insufficient. Here, we report that Arl4A acts with the serine/threonine protein kinase Pak1 to modulate cell migration through their cooperative recruitment to the plasma membrane. We first observed that Arl4A and its isoform Arl4D interact with Pak1 and Pak2 and showed that Arl4A recruits Pak1 and Pak2 to the plasma membrane. The fibronectin-induced Pak1 localization at the plasma membrane is reduced in Arl4A-depleted cells. Unexpectedly, we found that Pak1, but not Arl4A-binding-defective Pak1, can recruit a cytoplasmic myristoylation-deficient Arl4A-G2A mutant to the plasma membrane. Furthermore, we found that the Arl4A-Pak1 interaction, which is independent of Rac1 binding to Pak1, is required for Arl4A-induced cell migration. Thus, we infer that there is feedback regulation between Arl4A and Pak1, in which they mutually recruit each other to the plasma membrane for Pak1 activation, thereby modulating cell migration through direct interaction.


Asunto(s)
Citoesqueleto , Quinasas p21 Activadas , Membrana Celular , Movimiento Celular/genética , Transducción de Señal , Quinasas p21 Activadas/genética
8.
Mol Biol Cell ; 30(11): 1249-1271, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31084567

RESUMEN

Detailed structural, biochemical, cell biological, and genetic studies of any gene/protein are required to develop models of its actions in cells. Studying a protein family in the aggregate yields additional information, as one can include analyses of their coevolution, acquisition or loss of functionalities, structural pliability, and the emergence of shared or variations in molecular mechanisms. An even richer understanding of cell biology can be achieved through evaluating functionally linked protein families. In this review, we summarize current knowledge of three protein families: the ARF GTPases, the guanine nucleotide exchange factors (ARF GEFs) that activate them, and the GTPase-activating proteins (ARF GAPs) that have the ability to both propagate and terminate signaling. However, despite decades of scrutiny, our understanding of how these essential proteins function in cells remains fragmentary. We believe that the inherent complexity of ARF signaling and its regulation by GEFs and GAPs will require the concerted effort of many laboratories working together, ideally within a consortium to optimally pool information and resources. The collaborative study of these three functionally connected families (≥70 mammalian genes) will yield transformative insights into regulation of cell signaling.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Transducción de Señal , Animales , Eucariontes/metabolismo , Humanos
9.
Mol Biol Cell ; 30(8): 1008-1019, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30726160

RESUMEN

The Arf and Rab/Ypt GTPases coordinately regulate membrane traffic and organelle structure by regulating vesicle formation and fusion. Ample evidence has indicated that proteins in these two families may function in parallel or complementarily; however, the manner in which Arf and Rab/Ypt proteins perform interchangeable functions remains unclear. In this study, we report that a Golgi-localized Arf, Arl1, could suppress Ypt6 dysfunction via its effector golgin, Imh1, but not via the lipid flippase Drs2. Ypt6 is critical for the retrograde transport of vesicles from endosomes to the trans-Golgi network (TGN), and its mutation leads to severe protein mislocalization and growth defects. We first overexpress the components of the Arl3-Syt1-Arl1-Imh1 cascade and show that only Arl1 and Imh1 can restore endosome-to-TGN trafficking in ypt6-deleted cells. Interestingly, increased abundance of Arl1 or Imh1 restores localization of the tethering factor Golgi associated retrograde-protein (GARP) complex to the TGN in the absence of Ypt6. We further show that the N-terminal domain of Imh1 is critical for restoring GARP localization and endosome-to-TGN transport in ypt6-deleted cells. Together, our results reveal the mechanism by which Arl1-Imh1 facilitates the recruitment of GARP to the TGN and compensates for the endosome-to-TGN trafficking defects in dysfunctional Ypt6 conditions.


Asunto(s)
Proteínas de Unión al GTP Monoméricas/metabolismo , Transporte de Proteínas/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Factores de Ribosilacion-ADP/metabolismo , Transporte Biológico , Endocitosis , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi , Proteínas de la Membrana/metabolismo , Proteínas de Unión al GTP Monoméricas/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Proteínas de Transporte Vesicular/fisiología , Proteínas de Unión al GTP rab/metabolismo , Red trans-Golgi/metabolismo , Red trans-Golgi/fisiología
10.
Mol Biol Cell ; 30(1): 69-81, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30427759

RESUMEN

Cell migration is a highly regulated event that is initiated by cell membrane protrusion and actin reorganization. Robo1, a single-pass transmembrane receptor, is crucial for neuronal guidance and cell migration. ADP-ribosylation factor (Arf)-like 4A (Arl4A), an Arf small GTPase, functions in cell morphology, cell migration, and actin cytoskeleton remodeling; however, the molecular mechanisms of Arl4A in cell migration are unclear. Here, we report that the binding of Arl4A to Robo1 modulates cell migration by promoting Cdc42 activation. We found that Arl4A interacts with Robo1 in a GTP-dependent manner and that the Robo1 amino acid residues 1394-1398 are required for this interaction. The Arl4A-Robo1 interaction is essential for Arl4A-induced cell migration and Cdc42 activation but not for the plasma membrane localization of Robo1. In addition, we show that the binding of Arl4A to Robo1 decreases the association of Robo1 with the Cdc42 GTPase-activating protein srGAP1. Furthermore, Slit2/Robo1 binding down-regulates the Arl4A-Robo1 interaction in vivo, thus attenuating Cdc42-mediated cell migration. Therefore, our study reveals a novel mechanism by which Arl4A participates in Slit2/Robo1 signaling to modulate cell motility by regulating Cdc42 activity.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Movimiento Celular , Proteínas del Tejido Nervioso/metabolismo , Receptores Inmunológicos/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Activación Enzimática , Proteínas Activadoras de GTPasa/metabolismo , Guanosina Trifosfato/metabolismo , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Modelos Biológicos , Proteínas del Tejido Nervioso/química , Unión Proteica , Transporte de Proteínas , Receptores Inmunológicos/química , Proteínas Roundabout
11.
Mol Biol Cell ; 28(22): 3013-3028, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28855378

RESUMEN

Changes in cell morphology and the physical forces that occur during migration are generated by a dynamic filamentous actin cytoskeleton. The ADP-ribosylation factor-like 4C (Arl4C) small GTPase acts as a molecular switch to regulate morphological changes and cell migration, although the mechanism by which this occurs remains unclear. Here we report that Arl4C functions with the actin regulator filamin-A (FLNa) to modulate filopodium formation and cell migration. We found that Arl4C interacted with FLNa in a GTP-dependent manner and that FLNa IgG repeat 22 is both required and sufficient for this interaction. We also show that interaction between FLNa and Arl4C is essential for Arl4C-induced filopodium formation and increases the association of FLNa with Cdc42-GEF FGD6, promoting cell division cycle 42 (Cdc42) GTPase activation. Thus our study revealed a novel mechanism, whereby filopodium formation and cell migration are regulated through the Arl4C-FLNa-mediated activation of Cdc42.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Filaminas/metabolismo , Seudópodos/metabolismo , ADP-Ribosilación , Factores de Ribosilacion-ADP/fisiología , Citoesqueleto de Actina/metabolismo , Actinas , Animales , Movimiento Celular/fisiología , Filaminas/fisiología , Células HeLa , Humanos , Proteínas de Microfilamentos/metabolismo , Metástasis de la Neoplasia/fisiopatología , Neoplasias/metabolismo , Proteína de Unión al GTP cdc42/metabolismo
12.
J Cell Sci ; 130(10): 1691-1699, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28468990

RESUMEN

ADP-ribosylation factors (Arfs) and ADP-ribosylation factor-like proteins (Arls) are highly conserved small GTPases that function as main regulators of vesicular trafficking and cytoskeletal reorganization. Arl1, the first identified member of the large Arl family, is an important regulator of Golgi complex structure and function in organisms ranging from yeast to mammals. Together with its effectors, Arl1 has been shown to be involved in several cellular processes, including endosomal trans-Golgi network and secretory trafficking, lipid droplet and salivary granule formation, innate immunity and neuronal development, stress tolerance, as well as the response of the unfolded protein. In this Commentary, we provide a comprehensive summary of the Arl1-dependent cellular functions and a detailed characterization of several Arl1 effectors. We propose that involvement of Arl1 in these diverse cellular functions reflects the fact that Arl1 is activated at several late-Golgi sites, corresponding to specific molecular complexes that respond to and integrate multiple signals. We also provide insight into how the GTP-GDP cycle of Arl1 is regulated, and highlight a newly discovered mechanism that controls the sophisticated regulation of Arl1 activity at the Golgi complex.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Red trans-Golgi/metabolismo , Animales , Membrana Celular/metabolismo , Humanos , Transporte de Proteínas , Vesículas Transportadoras/metabolismo
13.
Proc Natl Acad Sci U S A ; 113(12): E1683-90, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26966233

RESUMEN

ADP ribosylation factor (Arf) GTPases are key regulators of membrane traffic at the Golgi complex. In yeast, Arf guanine nucleotide-exchange factor (GEF) Syt1p activates Arf-like protein Arl1p, which was accompanied by accumulation of golgin Imh1p at late Golgi, but whether and how this function of Syt1p is regulated remains unclear. Here, we report that the inositol-requiring kinase 1 (Ire1p)-mediated unfolded protein response (UPR) modulated Arl1p activation at late Golgi. Arl1p activation was dependent on both kinase and endo-RNase activities of Ire1p. Moreover, constitutively active transcription factor Hac1p restored the Golgi localization of Arl1p and Imh1p inIRE1-deleted cells. Elucidating the mechanism of Ire1p-Hac1p axis actions, we found that it regulated phosphorylation of Syt1p, which enhances Arl1p activation, recruitment of Imh1p to the Golgi, and Syt1p interaction with Arl1p. Consistent with these findings, the induction of UPR by tunicamycin treatment increases phosphorylation of Syt1p, resulting in Arl1p activation. Thus, these findings clarify how the UPR influences the roles of Syt1p, Arl1p, and Imh1p in Golgi transport.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Aparato de Golgi/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Respuesta de Proteína Desplegada/fisiología , Proteínas de Transporte Vesicular/metabolismo , Estrés del Retículo Endoplásmico , Genes Reporteros , Fosforilación , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo
14.
Nat Commun ; 6: 7840, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26198097

RESUMEN

Active GTP-bound Arf GTPases promote eukaryotic cell membrane trafficking and cytoskeletal remodelling. Arf activation is accelerated by guanine nucleotide-exchange factors (GEFs) using the critical catalytic glutamate in all known Sec7 domain sequences. Yeast Arf3p, a homologue of mammalian Arf6, is required for yeast invasive responses to glucose depletion. Here we identify Snf1p as a GEF that activates Arf3p when energy is limited. SNF1 is the yeast homologue of AMP-activated protein kinase (AMPK), which is a key regulator of cellular energy homeostasis. As activation of Arf3p does not depend on the Snf1p kinase domain, assay of regulatory domain fragments yield evidence that the C-terminal hydrophobic α-helix core of Snf1p is a non-canonical GEF for Arf3p activation. Thus, our study reveals a novel mechanism for regulating cellular responses to energy deprivation, in particular invasive cell growth, through direct Arf activation by Snf1/AMPK.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Metabolismo Energético , Escherichia coli , Glucosa/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Glicoproteínas de Membrana/metabolismo , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/crecimiento & desarrollo
15.
J Cell Sci ; 127(Pt 12): 2615-20, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24706946

RESUMEN

Small GTPase ADP-ribosylation factors (ARFs) are key regulators of membrane trafficking and their activities are determined by guanine-nucleotide-binding status. In Saccharomyces cerevisiae, Arl1p, an ARF-like protein, is responsible for multiple trafficking pathways at the Golgi. The GTP-hydrolysis activity of Arl1p is stimulated by its GTPase-activating protein Gcs1p, and binding with its effector Imh1p protects Arl1p from premature inactivation. However, the mechanism involved in the timing of Arl1p inactivation is unclear. Here, we demonstrate that another Arl1p effector, the lipid flippase Drs2p, is required for Gcs1p-stimulated inactivation of Arl1p. Drs2p is known to be activated by Arl1p and is involved in vesicle formation through its ability to create membrane asymmetry. We found that the flippase activity of Drs2p is required for proper membrane targeting of Gcs1p in vivo. Through modification of the membrane environment, Drs2p promotes the affinity of Gcs1p for the Golgi, where it binds to active Arl1p. Together, Imh1p and Drs2p modulate the activity of Gcs1p by timing its interaction with Arl1p, hence providing feedback regulation of Arl1p activity.


Asunto(s)
ATPasas Transportadoras de Calcio/fisiología , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/enzimología , Proteínas de Transporte Vesicular/metabolismo , Membrana Celular , Proteínas de Unión al ADN/metabolismo , Activación Enzimática , Retroalimentación Fisiológica , Proteínas Activadoras de GTPasa/metabolismo , Guanosina Trifosfato , Hidrólisis , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas
16.
PLoS One ; 8(9): e74715, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24019977

RESUMEN

Vps74p is a member of the PtdIns(4)P-binding protein family. Vps74p interacts with Golgi-resident glycosyltransferases and the coat protein COPI complex to modulate Golgi retention of glycosyltransferases and with the PtdIns(4)P phosphatase Sac1p to modulate PtdIns(4)P homeostasis at the Golgi. Genetic analysis has shown that Vps74p is required for the formation of abnormal elongated buds in cdc34-2 cells. The C-terminal region of Vps74p is required for Vps74p multimerization, Golgi localization, and glycosyltransferase interactions; however, the functional significance of the N-terminal region and three putative phosphorylation sites of Vps74p have not been well characterized. In this study, we demonstrate that Vps74p executes multiple cellular functions using different domains. We found that the N-terminal 66 amino acids of Vps74p are dispensable for its Golgi localization and modulation of cell wall integrity but are required for glycosyltransferase retention and glycoprotein processing. Deletion of the N-terminal 90 amino acids, but not the 66 amino acids, of Vps74p impaired its ability to restore the elongated bud phenotype in cdc34-2/vps74Δ cells. Deletion of Sac1p and Arf1p also specifically reduced the abnormal elongated bud phenotype in cdc34-2 cells. Furthermore, we found that three N-terminal phosphorylation sites contribute to rapamycin hypersensitivity, although these phosphorylation residues are not involved in Vps74p localization, ability to modulate glycosyltransferase retention, or elongated bud formation in cdc34-2 cells. Thus, we propose that Vps74p may use different domains to interact with specific effectors thereby differentially modulating a variety of cellular functions.


Asunto(s)
Proteínas Portadoras/fisiología , Glicosiltransferasas/metabolismo , Aparato de Golgi/enzimología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Fosforilación , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirolimus/farmacología
17.
Mol Biol Cell ; 24(15): 2328-39, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23783029

RESUMEN

The regulation and signaling pathways involved in the invasive growth of yeast have been studied extensively because of their general applicability to fungal pathogenesis. Bud2p, which functions as a GTPase-activating protein (GAP) for Bud1p/Rsr1p, is required for appropriate budding patterns and filamentous growth. The regulatory mechanisms leading to Bud2p activation, however, are poorly understood. In this study, we report that ADP-ribosylation factor 3p (Arf3p) acts as a regulator of Bud2p activation during invasive growth. Arf3p binds directly to the N-terminal region of Bud2p and promotes its GAP activity both in vitro and in vivo. Genetic analysis shows that deletion of BUD1 suppresses the defect of invasive growth in arf3Δ or bud2Δ cells. Lack of Arf3p, like that of Bud2p, causes the intracellular accumulation of Bud1p-GTP. The Arf3p-Bud2p interaction is important for invasive growth and facilitates the Bud2p-Bud1p association in vivo. Finally, we show that under glucose depletion-induced invasion conditions in yeast, more Arf3p is activated to the GTP-bound state, and the activation is independent of Arf3p guanine nucleotide-exchange factor Yel1p. Thus we demonstrate that a novel spatial activation of Arf3p plays a role in regulating Bud2p activation during glucose depletion-induced invasive growth.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Polaridad Celular , Activación Enzimática , Glucosa/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólisis , Glicoproteínas de Membrana/metabolismo , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Saccharomyces cerevisiae/crecimiento & desarrollo , Técnicas del Sistema de Dos Híbridos , Proteínas de Unión al GTP rab/metabolismo
18.
Proc Natl Acad Sci U S A ; 110(8): E668-77, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23345439

RESUMEN

ADP ribosylation factors (Arfs) are the central regulators of vesicle trafficking from the Golgi complex. Activated Arfs facilitate vesicle formation through stimulating coat assembly, activating lipid-modifying enzymes and recruiting tethers and other effectors. Lipid translocases (flippases) have been implicated in vesicle formation through the generation of membrane curvature. Although there is no evidence that Arfs directly regulate flippase activity, an Arf-guanine-nucleotide-exchange factor (GEF) Gea2p has been shown to bind to and stimulate the activity of the flippase Drs2p. Here, we provide evidence for the interaction and activation of Drs2p by Arf-like protein Arl1p in yeast. We observed that Arl1p, Drs2p and Gea2p form a complex through direct interaction with each other, and each interaction is necessary for the stability of the complex and is indispensable for flippase activity. Furthermore, we show that this Arl1p-Drs2p-Gea2p complex is specifically required for recruiting golgin Imh1p to the Golgi. Our results demonstrate that activated Arl1p can promote the spatial modulation of membrane organization at the trans-Golgi network through interacting with the effectors Gea2p and Drs2p.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , ATPasas Transportadoras de Calcio/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de la Membrana/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Red trans-Golgi/metabolismo , Factores de Ribosilacion-ADP/fisiología , Membrana Celular/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Fosfatidilserinas/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Técnicas del Sistema de Dos Híbridos
19.
PLoS One ; 7(8): e43552, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22927989

RESUMEN

ARL4D, ARL4A, and ARL4C are closely related members of the ADP-ribosylation factor/ARF-like protein (ARF/ARL) family of GTPases. All three ARL4 proteins contain nuclear localization signals (NLSs) at their C-termini and are primarily found at the plasma membrane, but they are also present in the nucleus and cytoplasm. ARF function and localization depends on their controlled binding and hydrolysis of GTP. Here we show that GTP-binding-defective ARL4D is targeted to the mitochondria, where it affects mitochondrial morphology and function. We found that a portion of endogenous ARL4D and the GTP-binding-defective ARL4D mutant ARL4D(T35N) reside in the mitochondria. The N-terminal myristoylation of ARL4D(T35N) was required for its localization to mitochondria. The localization of ARL4D(T35N) to the mitochondria reduced the mitochondrial membrane potential (ΔΨm) and caused mitochondrial fragmentation. Furthermore, the C-terminal NLS region of ARL4D(T35N) was required for its effect on the mitochondria. This study is the first to demonstrate that the dysfunctional GTP-binding-defective ARL4D is targeted to mitochondria, where it subsequently alters mitochondrial morphology and membrane potential.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Guanosina Trifosfato/metabolismo , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Factores de Ribosilacion-ADP/química , Factores de Ribosilacion-ADP/genética , Animales , Apoptosis , Células COS , Proliferación Celular , Supervivencia Celular , Chlorocebus aethiops , Células HeLa , Humanos , Mutación , Señales de Localización Nuclear , Procesamiento Proteico-Postraduccional , Transporte de Proteínas
20.
J Cell Sci ; 125(Pt 19): 4586-96, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22767516

RESUMEN

Golgins play diverse roles in regulating the structure and function of the Golgi. The yeast golgin Imh1p is targeted to the trans-Golgi network (TGN) through interaction of its GRIP domain with GTP-bound Arl1p. Recycling of Arl1p and Imh1p to the cytosol requires the hydrolysis of GTP bound to Arl1p; however, the point at which GTP hydrolysis occurs remains unknown. Here, we report that self-interaction of Imh1p plays a role in modulating spatial inactivation of Arl1p. Deletion of IMH1 in yeast decreases the amount of the GTP-bound Arl1p and results in less Arl1p residing on the TGN. Biochemically, purified Imh1p competes with Gcs1p, an Arl1p GTPase-activating protein (GAP), for binding to Arl1p, thus interfering with the GAP activity of Gcs1p toward Arl1p. Furthermore, we demonstrate that the self-interaction of Imh1p attenuates the Gcs1p-dependent GTP hydrolysis of Arl1p. Thus, we propose that the golgin Imh1p serves as a feedback regulator to modulate the GTP hydrolysis of Arl1p.


Asunto(s)
Unión Competitiva , Proteínas de Unión al ADN/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Aparato de Golgi/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Proteínas de Transporte Vesicular/metabolismo , Activación Enzimática , Eliminación de Gen , Técnicas de Inactivación de Genes , Guanosina Trifosfato/metabolismo , Hidrólisis , Modelos Biológicos , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/metabolismo , Unión Proteica , Multimerización de Proteína , Estabilidad Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Relación Estructura-Actividad , Proteínas de Transporte Vesicular/química , Red trans-Golgi/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA