Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Antioxidants (Basel) ; 13(8)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39199189

RESUMEN

Bromodomain and extra-terminal domain (BET) family proteins regulate transcription and recognize lysine residues in histones. Selective BET inhibitors targeting one domain have attracted attention because they maintain normal physiological activities, whereas pan (nonselective) BET inhibitors do not. Osteoarthritis (OA) is a joint disorder characterized by cartilage degeneration for which no treatment currently exists. Here, we investigated whether the selective inhibition of BET proteins is an appropriate therapeutic strategy for OA. We focused on the development and characterization of 2-(4-(2-(dimethylamino)ethoxy)-3,5-dimethylphenyl)-5,7-dimethoxyquinazolin-4(3H)-one (BBC0906), a novel bromodomain 2 (BD2)-specific inhibitor designed to suppress OA progression. Using a DNA-encoded chemical library (DEL) screening approach, BBC0906 was identified because of its high affinity with the BD2 domain of BET proteins. BBC0906 effectively reduced reactive oxygen species (ROS) production and suppressed catabolic factor expression in chondrocytes in vitro. Moreover, in an OA mouse model induced by the destabilization of the medial meniscus (DMM), BBC0906 intra-articular injection attenuated cartilage degradation and alleviated OA. Importantly, BBC0906 selectively inhibits the BD2 domain, thus minimizing its potential side effects. We highlighted the therapeutic potential of targeting BET proteins to modulate oxidative stress and suppress cartilage degradation in OA. BBC0906 is a promising candidate for OA treatment, offering improved safety and efficacy.

2.
Br J Pharmacol ; 181(15): 2528-2544, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38600628

RESUMEN

BACKGROUND AND PURPOSE: The discovery of new bromo- and extra-terminal inhibitors presents new drugs to treat osteoarthritis (OA). EXPERIMENTAL APPROACH: The new drug, BBC0403, was identified in the DNA-encoded library screening system by searching for compounds that target BRD (bromodomain-containing) proteins. The binding force with BRD proteins was evaluated using time-resolved fluorescence energy transfer (TR-FRET) and binding kinetics assays. Subsequently, in vitro and ex vivo analyses demonstrated the effects of the BRD2 inhibitor, BBC0403, on OA. For animal experiments, medial meniscus destabilization was performed to create a 12-week-old male C57BL/6 mouse model, and intra-articular (i.a.) injections were administered. Histological and immunohistochemical analyses were then performed. The underlying mechanism was confirmed by gene set enrichment analysis (GSEA) using RNA-seq. KEY RESULTS: TR-FRET and binding kinetics assays revealed that BBC0403 exhibited higher binding specificity for BRD2 compared to BRD3 and BRD4. The anti-OA effects of BBC0403 were tested at concentrations of 5, 10 and 20 µM (no cell toxicity in the range tested). The expression of catabolic factors, prostaglandin E2 (PGE2) production and extracellular matrix (ECM) degradation was reduced. Additionally, the i.a. injection of BBC0403 prevented OA cartilage degradation in mice. Finally, BBC0403 was demonstrated to suppress NF-κB and MAPK signalling pathways. CONCLUSION AND IMPLICATIONS: This study demonstrated that BBC0403 is a novel BRD2-specific inhibitor and a potential i.a.-injectable therapeutic agent to treat OA.


Asunto(s)
Osteoartritis , Factores de Transcripción , Animales , Masculino , Ratones , Proteínas que Contienen Bromodominio , Progresión de la Enfermedad , Ratones Endogámicos C57BL , Osteoartritis/tratamiento farmacológico , Osteoartritis/patología , Osteoartritis/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo
3.
Biomed Pharmacother ; 166: 115426, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37666177

RESUMEN

Osteoarthritis (OA) is induced by matrix degradation and inflammation mediated by bromo-domain-containing protein 4 (BRD4)-dependent catabolic factors. BRD4 acts as both a transcriptional regulator and an epigenetic reader. BBC0901 was identified as an inhibitor of BRD4 using a DNA-encoded library screening system. We aimed to demonstrate the effects of BBC0901 on OA pathogenesis by in vitro, ex vivo, and in vivo analyses. BBC0901 inhibited the expression of catabolic factors that degrade cartilage without significantly affecting the viability of mouse articular chondrocytes. Additionally, ex vivo experiments under conditions mimicking OA showed that BBC0901 suppressed extracellular matrix degradation. RNA sequencing analysis of gene expression patterns showed that BBC0901 inhibited the expression of catabolic factors, such as matrix metalloproteinases (MMPs) and cyclooxygenase (COX)2, along with reactive oxygen species (ROS) production. Furthermore, intra-articular (IA) injection of BBC0901 into the knee joint blocked osteoarthritic cartilage destruction by inhibition of MMP3, MMP13, COX2, interleukin (IL)6, and ROS production, thereby obstructing the nuclear factor kappa-light-chain-enhancer of activated B cell and mitogen activated protein kinase signaling. In conclusion, BBC0901-mediated BRD4 inhibition prevented OA development by attenuating catabolic signaling and hence, can be considered a promising IA therapeutic for OA.


Asunto(s)
Proteínas Nucleares , Osteoartritis , Animales , Ratones , Ciclooxigenasa 2 , Inflamación , Interleucina-6 , Osteoartritis/tratamiento farmacológico , Especies Reactivas de Oxígeno , Factores de Transcripción , Proteínas que Contienen Bromodominio/antagonistas & inhibidores
4.
Mol Ther Nucleic Acids ; 32: 637-649, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37207130

RESUMEN

Targeting aberrant epigenetic programs that drive tumorigenesis is a promising approach to cancer therapy. DNA-encoded library (DEL) screening is a core platform technology increasingly used to identify drugs that bind to protein targets. Here, we use DEL screening against bromodomain and extra-terminal motif (BET) proteins to identify inhibitors with new chemotypes, and successfully identified BBC1115 as a selective BET inhibitor. While BBC1115 does not structurally resemble OTX-015, a clinically active pan-BET inhibitor, our intensive biological characterization revealed that BBC1115 binds to BET proteins, including BRD4, and suppresses aberrant cell fate programs. Phenotypically, BBC1115-mediated BET inhibition impaired proliferation in acute myeloid leukemia, pancreatic, colorectal, and ovarian cancer cells in vitro. Moreover, intravenous administration of BBC1115 inhibited subcutaneous tumor xenograft growth with minimal toxicity and favorable pharmacokinetic properties in vivo. Since epigenetic regulations are ubiquitously distributed across normal and malignant cells, it will be critical to evaluate if BBC1115 affects normal cell function. Nonetheless, our study shows integrating DEL-based small-molecule compound screening and multi-step biological validation represents a reliable strategy to discover new chemotypes with selectivity, efficacy, and safety profiles for targeting proteins involved in epigenetic regulation in human malignancies.

5.
Clin Transl Sci ; 14(5): 1747-1755, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34085761

RESUMEN

DHP107 is a newly developed lipid-based oral formulation of paclitaxel. We evaluated the in vivo tissue pharmacokinetics (PKs) of DHP107 in mice and patients using positron emission tomography (PET). Radioisotope-labeled [3 H]DHP107 and [18 F]DHP107 for oral administration were formulated in the same manner as the manufacturing process of DHP107. In vivo tissue PK were assessed in healthy ICR mice and breast cancer xenografted SCID mice. Two patients with metastatic breast cancer were clinically evaluated for absorption at the target lesion after internal absorbed dose estimation. Whole-body PET/computed tomography data were acquired in healthy and xenografted mice and in patients up to 10-24 h after administration. Tissue [18 F]DHP107 signals were plotted against time and PK parameters were determined. The amounts of radioactivity in various organs and excreta were determined using a beta-counter and are expressed as the percentage of injected dose (ID). Oral [18 F]DHP107 was well-absorbed and reached the target lesion in mice and patients with breast cancer. Significant amounts of radioactivity were found in the stomach, intestine, and liver after oral administration of [3 H]- and [18 F]DHP107 in healthy mice. The [18 F]DHP107 reached a peak distribution of 0.7-0.8%ID in the tumor at 5.6-7.3 h in the xenograft model. The [18 F]DHP107 distribution in patients with metastatic breast cancer was the highest at 3-4 h postadministration. Systemic exposures after administration of a DHP107 therapeutic dose were comparable with those in previous studies. PET using radioisotope-labeled drug candidates is useful for drug development and can provide valuable information that can complement plasma PK data, particularly in early phase clinical trials.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Paclitaxel/farmacocinética , Administración Oral , Adulto , Animales , Neoplasias de la Mama/patología , Desarrollo de Medicamentos/métodos , Femenino , Radioisótopos de Flúor , Humanos , Ratones , Imagen Molecular/métodos , Paclitaxel/administración & dosificación , Paclitaxel/química , Tomografía de Emisión de Positrones , Radiofármacos , Ensayos Antitumor por Modelo de Xenoinjerto
6.
J Vet Med Sci ; 82(5): 527-530, 2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32249251

RESUMEN

An oral paclitaxel formulation that overcomes the hypersensitivity reaction of paclitaxel has been evaluated for safety and efficacy in humans, but not in dogs. We present the first case report on the use of oral paclitaxel in dogs. In this study, oral paclitaxel was well-tolerated in four dogs with either transitional cell carcinoma or prostate cancer; adverse effects were limited to mild neutropenia. Each of the dogs had progressive disease at the end, but clinical responses, including changes in mass size and improvement of clinical symptoms, were confirmed in some of the animals following oral paclitaxel chemotherapy. Although this study is somewhat limited by a small sample size, it suggests that oral paclitaxel may be a chemotherapeutic option for malignant tumors in dogs.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Enfermedades de los Perros/tratamiento farmacológico , Paclitaxel/uso terapéutico , Neoplasias de la Vejiga Urinaria/veterinaria , Animales , Perros , Femenino , Masculino , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico
7.
PLoS One ; 14(11): e0225095, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31743348

RESUMEN

OBJECTIVE: This study aimed to develop a new oral paclitaxel formulation (DHP23002) and to evaluate its absorption and antitumor effects in a pancreatic tumor mouse model. METHODS: To investigate the oral absorption of DHP23002, a newly developed lipid-based orally active paclitaxel formulation, a pharmacokinetic study of DHP23002, was conducted in mice (62.5 and 125 mg/kg). Moreover, to evaluate the antitumor effect of DHP23002 in pancreatic cancer treatment, the drug was administered to female athymic nude mice at 0 (vehicle), 25, 62.5, and 125 mg/kg on alternate days; the efficacy of the agent was compared with the efficacy of intravenous Taxol® injections at 10 mg/kg once per week. After 3 weeks of administration, tumor growth in mice belonging to each group was further monitored for 4 weeks after discontinuing medication. Moreover, to examine paclitaxel (DHP23002) accumulation in the tumor tissue, the amount of paclitaxel in tumor/blood was quantified using liquid chromatography with quadruple-TOF mass spectrometry. RESULTS: In the mouse pharmacokinetic study, oral Taxol® showed a negligible absorption, whereas DHP23002 showed a high absorption rate dependent on dosage, with a bioavailability of approximately 40% at a dose of 62.5 mg/kg. In efficacy-related studies, DHP23002 administration at a dose of 25, 62.5, or 125 mg/kg on alternate days for 3 weeks showed a superior tumor inhibitory effect of 80%, 92%, and 97% in a xenograft mouse model, respectively, after 7 weeks. Paclitaxel accumulation in tumors persisted for >24 h in mice, when orally administered once at doses of 25, 62.5, and 125 mg/kg DHP23002. CONCLUSION: Oral chemotherapy with DHP23002 showed excellent absorption in animals owing to a strong antitumor activity in a pancreatic cancer mouse model. This demonstrates that paclitaxel is largely distributed and persists for a prolonged period at the tumor site owing to oral DHP23002 administration.


Asunto(s)
Composición de Medicamentos , Paclitaxel/administración & dosificación , Paclitaxel/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Administración Oral , Animales , Línea Celular Tumoral , Femenino , Fluorescencia , Humanos , Ratones Desnudos , Paclitaxel/sangre , Paclitaxel/farmacocinética , Neoplasias Pancreáticas/patología , Tubulina (Proteína)/metabolismo
8.
Regul Toxicol Pharmacol ; 103: 196-204, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30738088

RESUMEN

DHP107, an oral formulation of paclitaxel, is effectively and systemically absorbed in intestinal endothelial cells. Although the in vivo efficacy of DHP107 has been reported, the potential toxicity of DHP107 has not been evaluated. Therefore, this study was conducted to evaluate the toxicity and toxicokinetics of DHP107 orally administered to ICR mice at 25, 50, and 100 mg/kg via once-weekly dosing for six weeks. DHP107-related clinical signs were observed in both sexes at 100 mg/kg. There were significant increases in the number of platelets and percentages of reticulocytes and basophils in male mice. Also in males, there was a significant decrease in the absolute and relative weights of testes, epididymides, kidneys, and heart. Relative spleen weights were significantly increased in males treated with doses ≥50 mg/kg which had histopathological correlates. These changes were reversible after a two-week recovery period with the exception of the findings in the reproductive organs. Systemic exposure to paclitaxel increased with DHP107 doses in single and multiple dosing with no marked differences between sexes. In conclusion, the target organs were determined to be the reproductive and hematopoietic organs in male mice, suggesting of sex difference and the NOAEL of DHP107 was established to be < 25 mg/kg for males and 50 mg/kg for females.


Asunto(s)
Antineoplásicos Fitogénicos/toxicidad , Paclitaxel/toxicidad , Administración Oral , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Ratones , Ratones Endogámicos ICR , Tamaño de los Órganos/efectos de los fármacos , Paclitaxel/administración & dosificación , Toxicocinética
9.
Theranostics ; 8(21): 6008-6024, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30613278

RESUMEN

Extra domain B of fibronectin (FN-EDB) is upregulated in the extracellular matrix during tissue remodeling and has been postulated as a potential biomarker for atherosclerosis, yet no systematic test for FN-EDB in plaques has been reported. We hypothesized that FN-EDB expression would intensify in advanced plaques. Furthermore, engineering of FN-EDB-targeted nanoparticles (NPs) could enable imaging/diagnosis and local delivery of payloads to plaques. Methods: The amount of FN-EDB in human atherosclerotic and normal arteries (ages: 40 to 85 years) was assessed by histological staining and quantification using an FN-EDB-specific aptide (APTFN-EDB). FN-EDB-specific NPs that could serve as MRI beacons were constructed by immobilizing APTFN-EDB on the NP surface containing DTPA[Gd]. MRI visualized APTFN-EDB-[Gd]NPs administered to atherosclerotic apolipoprotein E-deficient mice in the brachiocephalic arteries. Analysis of the ascending-to-descending thoracic aortas and the aortic roots of the mice permitted quantitation of Gd, FN-EDB, and APTFN-EDB-[Gd]NPs. Cyanine, a model small molecule drug, was used to study the biodistribution and pharmacokinetics of APTFN-EDB-NPs to evaluate their utility for drug delivery. Results: Atherosclerotic tissues had significantly greater FN-EDB-positive areas than normal arteries (P < 0.001). This signal pertained particularly to Type III (P < 0.01), IV (P < 0.01), and V lesions (P < 0.001) rather than Type I and II lesions (AHA classification). FN-EDB expression was positively correlated with macrophage accumulation and neoangiogenesis. Quantitative analysis of T1-weighted images of atherosclerotic mice revealed substantial APTFN-EDB-[Gd]NPs accumulation in plaques compared to control NPs, conventional MRI contrast agent (Gd-DTPA) or accumulation in wild-type C57BL/6J mice. Additionally, the APTFN-EDB-NPs significantly prolonged the blood-circulation time (t1/2: ~ 6 h) of a model drug and increased its accumulation in plaques (6.9-fold higher accumulation vs. free drug). Conclusions: Our findings demonstrate augmented FN-EDB expression in Type III, IV, and V atheromata and that APTFN-EDB-NPs could serve as a platform for identifying and/or delivering agents locally to a subset of atherosclerotic plaques.


Asunto(s)
Aterosclerosis/diagnóstico por imagen , Aterosclerosis/tratamiento farmacológico , Fibronectinas/metabolismo , Imagen Molecular/métodos , Terapia Molecular Dirigida/métodos , Nanopartículas/metabolismo , Placa Aterosclerótica/diagnóstico por imagen , Adulto , Anciano , Anciano de 80 o más Años , Animales , Aptámeros de Péptidos/administración & dosificación , Aptámeros de Péptidos/metabolismo , Modelos Animales de Enfermedad , Femenino , Fibronectinas/análisis , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Unión Proteica
10.
Adv Healthc Mater ; 6(20)2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28730752

RESUMEN

The pharmacological manipulation of liver X receptors (LXRs) has been an attractive therapeutic strategy for atherosclerosis treatment as they control reverse cholesterol transport and inflammatory response. This study presents the development and efficacy of nanoparticles (NPs) incorporating the synthetic LXR agonist GW3965 (GW) in targeting atherosclerotic lesions. Collagen IV (Col IV) targeting ligands are employed to functionalize the NPs to improve targeting to the atherosclerotic plaque, and formulation parameters such as the length of the polyethylene glycol (PEG) coating molecules are systematically optimized. In vitro studies indicate that the GW-encapsulated NPs upregulate the LXR target genes and downregulate proinflammatory mediator in macrophages. The Col IV-targeted NPs encapsulating GW (Col IV-GW-NPs) successfully reaches atherosclerotic lesions when administered for 5 weeks to mice with preexisting lesions, substantially reducing macrophage content (≈30%) compared to the PBS group, which is with greater efficacy versus nontargeting NPs encapsulating GW (GW-NPs) (≈18%). In addition, mice administered the Col IV-GW-NPs do not demonstrate increased hepatic lipid biosynthesis or hyperlipidemia during the treatment period, unlike mice injected with the free GW. These findings suggest a new form of LXR-based therapeutics capable of enhanced delivery of the LXR agonist to atherosclerotic lesions without altering hepatic lipid metabolism.


Asunto(s)
Benzoatos/farmacología , Bencilaminas/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Receptores X del Hígado/agonistas , Nanomedicina , Receptores de LDL/genética , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Aterosclerosis/patología , Benzoatos/química , Benzoatos/uso terapéutico , Bencilaminas/química , Bencilaminas/uso terapéutico , Células Cultivadas , Colesterol/sangre , Colágeno Tipo IV/química , Colágeno Tipo IV/metabolismo , Modelos Animales de Enfermedad , Portadores de Fármacos/química , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nanopartículas/química , Nanopartículas/metabolismo , Polietilenglicoles/química , Receptores de LDL/deficiencia , Triglicéridos/sangre
11.
Nano Lett ; 14(11): 6449-55, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25333768

RESUMEN

Protein therapeutics have gained attention recently for treatment of a myriad of human diseases due to their high potency and unique mechanisms of action. We present the development of a novel polymeric thermosponge nanoparticle for efficient delivery of labile proteins using a solvent-free polymer thermo-expansion mechanism with clinical potential, capable of effectively delivering a range of therapeutic proteins in a sustained manner with no loss of bioactivity, with improved biological half-lives and efficacy in vivo.


Asunto(s)
Antiinflamatorios/administración & dosificación , Preparaciones de Acción Retardada/química , Hipoglucemiantes/administración & dosificación , Insulina/administración & dosificación , Interleucina-10/administración & dosificación , Nanopartículas/química , Polímeros/química , Animales , Antiinflamatorios/farmacocinética , Antiinflamatorios/farmacología , Línea Celular , Sistemas de Liberación de Medicamentos , Humanos , Hipoglucemiantes/farmacocinética , Hipoglucemiantes/farmacología , Insulina/farmacocinética , Insulina/farmacología , Interleucina-10/farmacocinética , Interleucina-10/farmacología , Ratones , Nanopartículas/ultraestructura , Temperatura
12.
Cancer Res ; 74(8): 2144-51, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24576829

RESUMEN

STAT3 promotes the survival, proliferation, metastasis, immune escape, and drug resistance of cancer cells, making its targeting an appealing prospect. However, although multiple inhibitors of STAT3 and its regulatory or effector pathway elements have been developed, bioactive agents have been somewhat elusive. In this report, we report the identification of a specific STAT3-binding peptide (APTSTAT3) through phage display of a novel "aptide" library. APTSTAT3 bound STAT3 with high specificity and affinity (∼231 nmol/L). Addition of a cell-penetrating motif to the peptide to yield APTSTAT3-9R enabled uptake by murine B16F1 melanoma cells. Treatment of various types of cancer cells with APTSTAT3-9R blocked STAT3 phosphorylation and reduced expression of STAT targets, including cyclin D1, Bcl-xL, and survivin. As a result, APTSTAT3-9R suppressed the viability and proliferation of cancer cells. Furthermore, intratumoral injection of APTSTAT3-9R exerted potent antitumor activity in both xenograft and allograft tumor models. Our results offer a preclinical proof-of-concept for APTSTAT3 as a tractable agent for translation to target the broad array of cancers harboring constitutively activated STAT3.


Asunto(s)
Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Péptidos/farmacología , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/metabolismo , Animales , Línea Celular Tumoral , Supervivencia Celular , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Neoplasias/genética , Péptidos/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica , Transducción de Señal , Especificidad por Sustrato , Ensayos Antitumor por Modelo de Xenoinjerto
14.
J Control Release ; 178: 118-24, 2014 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-24462899

RESUMEN

Targeted delivery of anticancer drugs to tumors has attracted considerable research interest because of its potential to reduce adverse toxicity while improving therapeutic efficacy. In this study, we synthesized and evaluated the therapeutic efficacy of a conjugate of a high-affinity peptide (aptide) and the anticancer drug docetaxel (DTX). A fibronectin extra domain B (EDB)-specific aptide (APTEDB) was used as a cancer-specific targeting ligand. An APTEDB-DTX conjugate was synthesized from an alkyne-modified aptide and azide-modified DTX via click chemistry. A microscopy study revealed selective binding of dye-labeled APTEDB to EDB-overexpressing cancer cells. The cytotoxicity of the conjugate toward EDB-overexpressing murine lung carcinoma (LLC) and human glioblastoma (U87MG) was similar to that of free DTX. In a pharmacokinetic study, APTEDB-DTX formulated with PEG400/ethanol(5%) exhibited a circulation half-life similar to that of a Tween-80/ethanol formulation of parent DTX. Finally, an evaluation of intravenously injected APTEDB-DTX in mice bearing EDB-positive tumors showed that APTEDB-DTX inhibited the growth of both LLC allograft and U87MG xenograft tumors with an efficacy better than the parent-DTX formulation but with much lower toxicity, as evidenced by reduced body weight loss. Taken together, these results indicate that the aptide-drug conjugate system described here may hold potential as a targeted therapy regimen.


Asunto(s)
Antineoplásicos/administración & dosificación , Fibronectinas/química , Neoplasias/tratamiento farmacológico , Péptidos/administración & dosificación , Taxoides/administración & dosificación , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Docetaxel , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Neoplasias/metabolismo , Neoplasias/patología , Péptidos/química , Péptidos/farmacocinética , Estructura Terciaria de Proteína , Taxoides/química , Taxoides/farmacocinética , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
15.
J Control Release ; 170(2): 226-32, 2013 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-23747732

RESUMEN

Despite the therapeutic potential of exendin-4 as a glucagon-like peptide-1 (GLP-1) mimetic for the treatment of type 2 diabetes, its utility has so far been limited because of the low level of patient compliance due to the requirement for frequent injections. In this study, an orally available exendin-4 was produced by conjugating it to low molecular weight chitosan (LMWC). Conjugation between the LMWC and cysteinylated exendin-4 was carried out using a cleavable linker system in order to maximize the availability of the active peptide. The LMWC-exendin-4 conjugate formed a nanoparticle structure with a mean particle size of 101 ± 41 nm through complexation between the positively charged LMWC backbone and the negatively charged exendin-4 of individual conjugate molecules. The biological activity of the LMWC-exendin-4 conjugate was evaluated in an INS-1 cell line. The LMWC-exendin-4 conjugate stimulated insulin secretion in a dose dependent manner as similar as that of native exendin-4. From the pharmacokinetic study after oral administration of the conjugate, a C(max) value of 344 pg/mL and a T(max) of 6 h were observed, and the bioavailability, relative to the subcutaneous counterpart, was found to be 6.4%. Furthermore, the absorbed exendin-4 demonstrated a significantly enhanced hypoglycemic effect. These results suggest that the LMWC-exendin-4 conjugate could be used as a potential oral anti-diabetic agent for the treatment of type 2 diabetes.


Asunto(s)
Quitosano/administración & dosificación , Diabetes Mellitus/tratamiento farmacológico , Hipoglucemiantes/administración & dosificación , Péptidos/administración & dosificación , Ponzoñas/administración & dosificación , Administración Oral , Animales , Línea Celular Tumoral , Quitosano/química , Quitosano/farmacocinética , Diabetes Mellitus/metabolismo , Exenatida , Hipoglucemiantes/química , Hipoglucemiantes/farmacocinética , Insulina/metabolismo , Secreción de Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Peso Molecular , Péptidos/química , Péptidos/farmacocinética , Ratas , Ponzoñas/química , Ponzoñas/farmacocinética
16.
J Mater Chem B ; 1(37): 4723-4726, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-32261155

RESUMEN

Aptides, developed by our laboratory, are a novel class of high-affinity peptides. Here, we describe the conjugation of an aptide targeting extra-domain B (EDB) of tumor-associated fibronectin to drug-containing liposomes and explore the potential of these aptide-conjugated liposomes as a robust and efficient targeted drug-delivery system for glioma therapy.

17.
J Mater Chem B ; 1(36): 4576-4583, 2013 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32261200

RESUMEN

Here, we report a nanotheranostic system that enables simultaneous imaging and therapy of HER2-overexpressing tumors. We first screened an aptide-based phage library for HER2-specific peptide ligands, identifying a HER2-specific aptide (APTHER2) phage clone. Chemically synthesized APTHER2 showed high affinity for its target protein (Kd≈ 89 nM) and specifically bound HER2-overexpressing cells (NIH3T6.7) and tumor tissue slices. Next, we prepared HER2-specific-aptide-conjugated magneto-nanoclusters (APTHER2-MNCs) by a rehydration method using oleic acid-stabilized superparamagnetic iron oxide nanoparticles (SPIONs) and amphiphilic phospholipids, yielding nanoparticles with a hydrodynamic diameter of 47 ± 10 nm. The APTHER2-MNCs showed higher transverse (r2) relaxivity (∼180 mM-1 s-1) and greater drug-loading capacity compared to the equivalent isolated SPIONs (∼120 mM-1 s-1). When intravenously injected into HER2-overexpressing NIH3T6.7 tumor-bearing mice, APTHER2-MNCs substantially accumulated in tumor tissue, enhancing the relative signal by ∼45% at 3 h post-injection. This allowed us to detect the tumor using magnetic resonance imaging. Furthermore, after docetaxel loading, the drug-loaded APTHER2-MNCs remarkably inhibited the growth of HER2-overexpressing tumors (∼50% relative to controls) with little apparent toxicity, measured as changes in body weight. Together, these results indicate that APTHER2-MNCs show promise as an efficient nanotheranostic system that enables specific cancer imaging as well as targeted therapy.

18.
J Control Release ; 163(2): 111-8, 2012 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-22964395

RESUMEN

Fibronectin extra domain B (EDB) is specifically expressed in cancer-associated blood vessels and extracellular matrix, and thus is a promising cancer biomarker. Very recently, we developed a novel class of high-affinity (<100nM) peptides, termed 'aptides', that specifically bind a variety of protein targets. Here, we describe superparamagnetic iron oxide nanoparticles (SPIONs) conjugated with EDB-specific aptides for use in targeted magnetic resonance imaging (MRI) of cancer. An anti-EDB aptide (APT(EDB)) containing an additional cysteine residue reacted with maleimide-terminated, PEGylated phospholipid (Mal-PEG(2000)-DSPE) to give an aptide-conjugated PEGylated phospholipid (APT(EDB)-PEG(2000)-DSPE). A nanoemulsion method was then used to coat oleic acid-stabilized SPIONs with amphiphilic phospholipids, including APT(EDB)-PEG(2000)-DSPE, methoxy-PEG(2000)-DSPE, and rhodamine-DMPE. The resulting nanoparticles (APT(EDB)-SPIONs) had a hydrodynamic size of less than 50 nm and remained stable in an aqueous solution for at least 1week. In in vitro studies, APT(EDB)-SPIONs showed specific uptake by EDB-overexpressing cell lines. In an in vivo Lewis lung carcinoma model that expresses a high level of the target EDB protein, MRI clearly revealed that APT(EDB)-SPIONs injected via the tail vein specifically accumulated at the tumor site. Non-targeting SPIONs lacking the anti-EDB aptide showed much lower uptake in tumor tissues than did aptide-conjugated nanoparticles. Further, we confirmed that the distribution of nanoparticles within the tumor tissue was well correlated with the areas where EDB was expressed. Our APT(EDB)-SPIONs hold high potential as a specific imaging modality for the detection of EDB-overexpressing tumors.


Asunto(s)
Carcinoma Pulmonar de Lewis/metabolismo , Sistemas de Liberación de Medicamentos , Fibronectinas , Nanopartículas , Animales , Carcinoma Pulmonar de Lewis/diagnóstico , Femenino , Compuestos Férricos/química , Fibronectinas/química , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Péptidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA