Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Front Physiol ; 13: 947958, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277196

RESUMEN

Understanding Na+ uptake mechanisms in vertebrates has been a research priority since vertebrate ancestors were thought to originate from hyperosmotic marine habitats to the hypoosmotic freshwater system. Given the evolutionary success of osmoregulator teleosts, these freshwater conquerors from the marine habitats are reasonably considered to develop the traits of absorbing Na+ from the Na+-poor circumstances for ionic homeostasis. However, in teleosts, the loss of epithelial Na+ channel (ENaC) has long been a mystery and an issue under debate in the evolution of vertebrates. In this study, we evaluate the idea that energetic efficiency in teleosts may have been improved by selection for ENaC loss and an evolved energy-saving alternative, the Na+/H+ exchangers (NHE3)-mediated Na+ uptake/NH4 + excretion machinery. The present study approaches this question from the lamprey, a pioneer invader of freshwater habitats, initially developed ENaC-mediated Na+ uptake driven by energy-consuming apical H+-ATPase (VHA) in the gills, similar to amphibian skin and external gills. Later, teleosts may have intensified ammonotelism to generate larger NH4 + outward gradients that facilitate NHE3-mediated Na+ uptake against an unfavorable Na+ gradient in freshwater without consuming additional ATP. Therefore, this study provides a fresh starting point for expanding our understanding of vertebrate ion regulation and environmental adaptation within the framework of the energy constraint concept.

2.
Sci Total Environ ; 806(Pt 2): 150672, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34597556

RESUMEN

Relatively warm environments caused by global warming enhance the productivity of aquaculture activities in tropical/subtropical regions; however, the intermittent cold stress (ICS) caused by negative Arctic Oscillation can still result in major economic losses. In contrast to endotherms, ectothermic fishes experience ambient temperature as an abiotic factor that is central to performance and survival. Therefore, the occurrence of extreme temperatures caused by climate change has ignited a surge of scientific interest from ecologists, economists and physiologists. In this study, we test the transgenerational effects of rearing cold-experienced (CE) and cold-naïve (CN) strains of tropical tilapia. Our results show that compared to CN tilapia, the CE strain preferentially converts carbohydrates into lipids in liver at a regular temperature of 27 °C. Besides, at a low temperature of 22 °C, the CE strain exhibits a broader aerobic scope than CN fish, and their metabolite profile suggests a metabolic shift towards the utilization of glutamate derivatives. Therefore, in response to thermal perturbations, this transgenerational metabolic adjustment provides evidence into the adaptive trade-off mechanisms in tropical fish. Nevertheless, global warming may result in less thermal variation each year, and the stabilized ambient temperature may cause tropical tilapia to gradually exhibit lower energy deposits in liver. In addition to those habitants in cold and temperate regions, a lack of cold exposure to multiple generations of fish may decrease the native cold-tolerance traits of subtropical/tropical organisms; this notion has not been previously explored in terms of the biological effects under anthropogenic climate change.


Asunto(s)
Tilapia , Animales , Cambio Climático , Frío , Calentamiento Global , Temperatura
3.
Sci Rep ; 8(1): 16855, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30442908

RESUMEN

The neuroplastic mechanisms in the fish brain that underlie sex reversal remain unknown. Gonadotropin-releasing hormone 3 (GnRH3) neurons control male reproductive behaviours in Mozambique tilapia and show sexual dimorphism, with males having a greater number of GnRH3 neurons. Treatment with androgens such as 11-ketotestosterone (KT), but not 17ß-estradiol, increases the number of GnRH3 neurons in mature females to a level similar to that observed in mature males. Compared with oestrogen, the effect of androgen on neurogenesis remains less clear. The present study examined the effects of 11-KT, a non-aromatizable androgen, on cellular proliferation, neurogenesis, generation of GnRH3 neurons and expression of cell cycle-related genes in mature females. The number of proliferating cell nuclear antigen-positive cells was increased by 11-KT. Simultaneous injection of bromodeoxyuridine and 11-KT significantly increased the number of newly-generated (newly-proliferated) neurons, but did not affect radial glial cells, and also resulted in newly-generated GnRH3 neurons. Transcriptome analysis showed that 11-KT modulates the expression of genes related to the cell cycle process. These findings suggest that tilapia could serve as a good animal model to elucidate the effects of androgen on adult neurogenesis and the mechanisms for sex reversal in the fish brain.


Asunto(s)
Andrógenos/farmacología , Encéfalo/citología , Encéfalo/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Neurogénesis/efectos de los fármacos , Neuronas/metabolismo , Tilapia/metabolismo , Animales , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Proliferación Celular/efectos de los fármacos , Ventrículos Cerebrales/citología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Procesamiento de Imagen Asistido por Computador , Neuroglía/citología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuronas/efectos de los fármacos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Testosterona/análogos & derivados , Testosterona/farmacología
4.
Front Physiol ; 9: 1224, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30233401

RESUMEN

The body temperatures of teleost species fluctuate following changes in the aquatic environment. As such, decreased water temperature lowers the rates of biochemical reactions and affects many physiological processes, including active transport-dependent ion absorption. Previous studies have focused on the impacts of low temperature on the plasma ion concentrations or membrane transporters in fishes. However, very few in vivo or organism-level studies have been performed to more thoroughly elucidate the process of acclimation to low temperatures. In the present study, we compared the strategies for cold acclimation between stenothermic tilapia and eurythermic goldfish. Whole-body calcium content was more prominently diminished in tilapia than in goldfish after long-term cold exposure. This difference can be attributed to alterations in the transportation parameters for Ca2+ influx, i.e., maximum velocity (Vmax ) and binding affinity (1/Km ). There was also a significant difference in the regulation of Ca2+ efflux between the two fishes. Transcript levels for Ca2+ related transporters, including the Na+/Ca2+ exchanger and epithelial Ca2+ channel, were similarly regulated in both fishes. However, upregulation of plasma membrane Ca2+ATPase expression was more pronounced in goldfish than in tilapia. In addition, enhanced Na+/K+-ATPase abundance, which provides the major driving force for ion absorption, was only detected in tilapia, while upregulated Na+/K+-ATPase activity was only detected in goldfish. Based on the results of the present study, we have found that goldfish and tilapia differentially regulate gill epithelial plasma membrane Ca2+-ATPase (PMCA) expression and Na+/K+-ATPase activity in response to cold environments. These regulatory differences are potentially linked to more effective regulation of Ca2+ influx kinetics and better maintenance of whole body calcium content in goldfish than in tilapia.

5.
Proc Biol Sci ; 284(1864)2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-29021181

RESUMEN

The unusual rate and extent of environmental changes due to human activities may exceed the capacity of marine organisms to deal with this phenomenon. The identification of physiological systems that set the tolerance limits and their potential for phenotypic buffering in the most vulnerable ontogenetic stages become increasingly important to make large-scale projections. Here, we demonstrate that the differential sensitivity of non-calcifying Ambulacraria (echinoderms and hemichordates) larvae towards simulated ocean acidification is dictated by the physiology of their digestive systems. Gastric pH regulation upon experimental ocean acidification was compared in six species of the superphylum Ambulacraria. We observed a strong correlation between sensitivity to ocean acidification and the ability to regulate gut pH. Surprisingly, species with tightly regulated gastric pH were more sensitive to ocean acidification. This study provides evidence that strict maintenance of highly alkaline conditions in the larval gut of Ambulacraria early life stages may dictate their sensitivity to decreases in seawater pH. These findings highlight the importance of identifying and understanding pH regulatory systems in marine larval stages that may contribute to substantial energetic challenges under near-future ocean acidification scenarios.


Asunto(s)
Tracto Gastrointestinal/fisiología , Invertebrados/fisiología , Agua de Mar/química , Animales , Dióxido de Carbono/análisis , Equinodermos/crecimiento & desarrollo , Equinodermos/fisiología , Homeostasis , Concentración de Iones de Hidrógeno , Invertebrados/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/fisiología , Especificidad de la Especie
6.
Front Physiol ; 8: 162, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28373845

RESUMEN

In contrast to terrestrial animals most aquatic species can be characterized by relatively higher blood [Formula: see text] concentrations despite its potential toxicity to the central nervous system. Although many aquatic species excrete [Formula: see text] via specialized epithelia little information is available regarding the mechanistic basis for NH3/[Formula: see text] homeostasis in molluscs. Using perfused gills of Octopus vulgaris we studied acid-base regulation and ammonia excretion pathways in this cephalopod species. The octopus gill is capable of regulating ammonia (NH3/[Formula: see text]) homeostasis by the accumulation of ammonia at low blood levels (<260 µM) and secretion at blood ammonia concentrations exceeding in vivo levels of 300 µM. [Formula: see text] transport is sensitive to the adenylyl cyclase inhibitor KH7 indicating that this process is mediated through cAMP-dependent pathways. The perfused octopus gill has substantial pH regulatory abilities during an acidosis, accompanied by an increased secretion of [Formula: see text]. Immunohistochemical and qPCR analyses revealed tissue specific expression and localization of Na+/K+-ATPase, V-type H+-ATPase, Na+/H+-exchanger 3, and Rhesus protein in the gill. Using the octopus gill as a molluscan model, our results highlight the coupling of acid-base regulation and nitrogen excretion, which may represent a conserved pH regulatory mechanism across many marine taxa.

7.
Front Physiol ; 7: 14, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26869933

RESUMEN

Hydrothermal vent organisms have evolved physiological adaptations to cope with extreme abiotic conditions including temperature and pH. To date, acid-base regulatory abilities of vent organisms are poorly investigated, although this physiological feature is essential for survival in low pH environments. We report the acid-base regulatory mechanisms of a hydrothermal vent crab, Xenograpsus testudinatus, endemic to highly acidic shallow-water vent habitats with average environment pH-values ranging between 5.4 and 6.6. Within a few hours, X. testudinatus restores extracellular pH (pHe) in response to environmental acidification of pH 6.5 (1.78 kPa pCO2) accompanied by an increase in blood [Formula: see text] levels from 8.8 ± 0.3 to 31 ± 6 mM. Branchial Na(+)/K(+)-ATPase (NKA) and V-type H(+)-ATPase (VHA), the major ion pumps involved in branchial acid-base regulation, showed dynamic increases in response to acidified conditions on the mRNA, protein and activity level. Immunohistochemical analyses demonstrate the presence of NKA in basolateral membranes, whereas the VHA is predominantly localized in cytoplasmic vesicles of branchial epithelial- and pillar-cells. X. testudinatus is closely related to other strong osmo-regulating brachyurans, which is also reflected in the phylogeny of the NKA. Accordingly, our results suggest that the evolution of strong ion regulatory abilities in brachyuran crabs that allowed the occupation of ecological niches in euryhaline, freshwater, and terrestrial habitats are probably also linked to substantial acid-base regulatory abilities. This physiological trait allowed X. testudinatus to successfully inhabit one of the world's most acidic marine environments.

8.
Front Zool ; 10(1): 51, 2013 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-23988184

RESUMEN

BACKGROUND: Regulation of pH homeostasis is a central feature of all animals to cope with acid-base disturbances caused by respiratory CO2. Although a large body of knowledge is available for vertebrate and mammalian pH regulatory systems, the mechanisms of pH regulation in marine invertebrates remain largely unexplored. RESULTS: We used squid (Sepioteuthis lessoniana), which are known as powerful acid-base regulators to investigate the pH regulatory machinery with a special focus on proton secretion pathways during environmental hypercapnia. We cloned a Rhesus protein (slRhP), V-type H+-ATPase (slVHA) and the Na+/H+ exchanger 3 (slNHE3) from S. lessoniana, which are hypothesized to represent key players in proton secretion pathways among different animal taxa. Specifically designed antibodies for S. lessoniana demonstrated the sub-cellular localization of NKA, VHA (basolateral) and NHE3 (apical) in epidermal ionocytes of early life stages. Gene expression analyses demonstrated that slNHE3, slVHA and slRhP are up regulated in response to environmental hypercapnia (pH 7.31; 0.46 kPa pCO2) in body and yolk tissues compared to control conditions (pH 8.1; 0.045 kPa pCO2). This observation is supported by H+ selective electrode measurements, which detected increased proton gradients in CO2 treated embryos. This compensatory proton secretion is EIPA sensitive and thus confirms the central role of NHE based proton secretion in cephalopods. CONCLUSION: The present work shows that in convergence to teleosts and mammalian pH regulatory systems, cephalopod early life stages have evolved a unique acid-base regulatory machinery located in epidermal ionocytes. Using cephalopod molluscs as an invertebrate model this work provides important insights regarding the unifying evolutionary principles of pH regulation in different animal taxa that enables them to cope with CO2 induced acid-base disturbances.

9.
Am J Physiol Regul Integr Comp Physiol ; 300(2): R321-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21123760

RESUMEN

The hexose supply and subsequent metabolism are crucial for the operations of the iono- and osmoregulatory mechanisms in fish, but how hexose is transported and supplied to cells of the ionoregulatory epithelia is unknown. Three zebrafish glucose transporters (zGLUTs), zGLUT1a, -13.1, and -6, were previously found to respectively be expressed by ionocytes (Na(+)-K(+)-ATPase-rich, Na(+)-Cl(-) cotransporter-expressing, and H(+)-ATPase-rich cells) and adjacent energy-depositing cells [glycogen-rich (GR) cells] in zebrafish skin and gills (32). The present study aimed to test if the transport kinetics of these three zGLUTs differ, and if the transport functional differences are of physiological relevance to the respective functions of epithelial cells. The three zGLUTs expressed by Xenopus laevis oocytes revealed different d-glucose transport kinetics; zGLUT13.1 showed the lowest Michaelis constant (K(m)), whereas zGLUT6 had the highest K(m) and maximal velocity. In morpholino injection experiments, translational knockdown of zGLUT1a and -13.1, respectively, impaired Cl(-)/Ca(2+) and Na(+)/Ca(2+) uptake, but loss-of-function of zGLUT6 did not cause a significant effect on ion uptake functions in zebrafish. Based on these results, zGLUT1a and -13.1 appear to be superior to zGLUT6 in competing for glucose under a situation of low blood glucose due to extensive energy consumption, whereas, in a high blood glucose situation, zGLUT6 is able to absorb the excess glucose for energy deposition. The timely and sufficient supply of energy to ionocytes so that they can carry out ion regulation is definitely a more important event than storing energy in GR cells, particularly when acute environmental change disturbs the ion balance in zebrafish.


Asunto(s)
Células Epiteliales/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Transporte Biológico/fisiología , Calcio/metabolismo , Cloruros/metabolismo , Citocalasina B/farmacología , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Células Epiteliales/efectos de los fármacos , Glucosa/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/antagonistas & inhibidores , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Cinética , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Sodio/metabolismo , Xenopus laevis , Pez Cebra/genética , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética
10.
J Biol Chem ; 285(30): 23115-25, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20495007

RESUMEN

It has been known for more than three decades that outward Kir currents (I(K1)) increase with increasing extracellular K(+) concentration ([K(+)](o)). Although this increase in I(K1) can have significant impacts under pathophysiological cardiac conditions, where [K(+)](o) can be as high as 18 mm and thus predispose the heart to re-entrant ventricular arrhythmias, the underlying mechanism has remained unclear. Here, we show that the steep [K(+)](o) dependence of Kir2.1-mediated outward I(K1) was due to [K(+)](o)-dependent inhibition of outward I(K1) by extracellular Na(+) and Ca(2+). This could be accounted for by Na(+)/Ca(2+) inhibition of I(K1) through screening of local negative surface charges. Consistent with this, extracellular Na(+) and Ca(2+) reduced the outward single-channel current and did not increase open-state noise or decrease the mean open time. In addition, neutralizing negative surface charges with a carboxylate esterifying agent inhibited outward I(K1) in a similar [K(+)](o)-dependent manner as Na(+)/Ca(2+). Site-directed mutagenesis studies identified Asp(114) and Glu(153) as the source of surface charges. Reducing K(+) activation and surface electrostatic effects in an R148Y mutant mimicked the action of extracellular Na(+) and Ca(2+), suggesting that in addition to exerting a surface electrostatic effect, Na(+) and Ca(2+) might inhibit outward I(K1) by inhibiting K(+) activation. This study identified interactions of K(+) with Na(+) and Ca(2+) that are important for the [K(+)](o) dependence of Kir2.1-mediated outward I(K1).


Asunto(s)
Calcio/metabolismo , Conductividad Eléctrica , Espacio Extracelular/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Potasio/metabolismo , Sodio/metabolismo , Animales , Espacio Intracelular/metabolismo , Modelos Moleculares , Canales de Potasio de Rectificación Interna/química , Conformación Proteica , Electricidad Estática
11.
J Biol Chem ; 284(34): 22672-9, 2009 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-19556236

RESUMEN

Heme oxygenase-1 (HO-1), a stress-inducible enzyme anchored in the endoplasmic reticulum (ER) by a single transmembrane segment (TMS) located at the C terminus, interacts with NADPH cytochrome P450 reductase and biliverdin reductase to catalyze heme degradation to biliverdin and its metabolite, bilirubin. Previous studies suggested that HO-1 functions as a monomer. Using chemical cross-linking, co-immunoprecipitation, and fluorescence resonance energy transfer (FRET) experiments, here we showed that HO-1 forms dimers/oligomers in the ER. However, oligomerization was not observed with a truncated HO-1 lacking the C-terminal TMS (amino acids 266-285), which exhibited cytosolic and nuclear localization, indicating that the TMS is essential for the self-assembly of HO-1 in the ER. To identify the interface involved in the TMS-TMS interaction, residue Trp-270, predicted by molecular modeling as a potential interfacial residue of TMS alpha-helices, was mutated, and the effects on protein subcellular localization and activity assessed. The results showed that the W270A mutant was present exclusively in the ER and formed oligomers with similar activity to those of the wild type HO-1. Interestingly, the W270N mutant was localized not only in the ER, but also in the cytosol and nucleus, suggesting it is susceptible to proteolytic cleavage. Moreover, the microsomal HO activity of the W270N mutant was significantly lower than that of the wild type. The W270N mutation appears to interfere with the oligomeric state, as revealed by a lower FRET efficiency. Collectively, these data suggest that oligomerization, driven by TMS-TMS interactions, is crucial for the stabilization and function of HO-1 in the ER.


Asunto(s)
Retículo Endoplásmico/enzimología , Hemo-Oxigenasa 1/química , Hemo-Oxigenasa 1/metabolismo , Multimerización de Proteína , Secuencia de Aminoácidos , Línea Celular , Dicroismo Circular , Transferencia Resonante de Energía de Fluorescencia , Hemo-Oxigenasa 1/genética , Humanos , Inmunoprecipitación , Microscopía Confocal , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Homología de Secuencia de Aminoácido
12.
Am J Physiol Regul Integr Comp Physiol ; 297(2): R275-90, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19458281

RESUMEN

Glucose, a carbohydrate metabolite, plays a major role in the energy supply for fish iono- and osmoregulation, and the way that glucose is transported in ionocytes is a critical process related to the functional operations of ionocytes. Eighteen members of glucose transporters (GLUTs, SLC2A) were cloned and identified from zebrafish. Previously, Na(+),K(+)-ATPase-rich (NaR), Na(+)-Cl(-) cotransporter-expressing (NCC), H(+)-ATPase-rich (HR), and glycogen-rich (GR) cells have been identified to be responsible for Ca(2+) uptake, Cl(-) uptake, Na(+) uptake, and the energy deposition, respectively, in zebrafish skin/gills. The purpose of the present study was to test the hypothesis of whether GLUT isoforms are specifically expressed and function in ionocytes to supply energy for ion regulatory mechanisms. On the basis of translational knockdown of foxi3a/3b (2 transcriptional factors related to the ionocytes' differentiation) and triple in situ hybridization/immunocytochemistry, 3 GLUT isoforms, zglut1a, -6, and -13.1, were specifically localized in NaR/NCC cells, GR cells, and HR cells, respectively. mRNA expression of zglut1a in embryos and adult gills were stimulated by the low Ca(2+) or low Cl(-) freshwater, which has been previously reported to upregulate the functions (monitored by epithelial Ca(2+) channel, NCC mRNA) of NaR/NCC cells, respectively while that of zglut13.1 was stimulated only by low Na(+), a situation to upregulate the function (monitored by carbonic anhydrase 15a mRNA) of HR cells. On the other hand, ambient ion compositions did not affect the zglut6 mRNA expression. Taken together, zGLUT1a, -6, and 13.1, the specific transporters in NaR/NCC cells, GR cells, and HR cells, may absorb glucose into the respective cells to fulfill different physiological demands.


Asunto(s)
Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Branquias/citología , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Aclimatación/genética , Secuencia de Aminoácidos , Estructuras Animales/metabolismo , Animales , Calcio/farmacología , Cloruros/farmacología , Clonación Molecular , ADN Complementario/genética , Factores de Transcripción Forkhead/genética , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Orden Génico/genética , Branquias/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/química , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Larva/metabolismo , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Oligonucleótidos Antisentido/genética , Filogenia , Isoformas de Proteínas/genética , Estructura Terciaria de Proteína/genética , Homología de Secuencia de Aminoácido , Piel/metabolismo , Sodio/farmacología , Pez Cebra/genética , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética
13.
J Biomed Sci ; 16: 29, 2009 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-19272129

RESUMEN

Kir1.1 channels are important in maintaining K+ homeostasis in the kidney. Intracellular acidification reversibly closes the Kir1.1 channel and thus decreases K+ secretion. In this study, we used Foster resonance energy transfer (FRET) to determine whether the conformation of the cytoplasmic pore changes in response to intracellular pH (pHi)-gating in Kir1.1 channels fused with enhanced cyan fluorescent protein (ECFP) and enhanced yellow fluorescent protein (EYFP) (ECFP-Kir1.1-EYFP). Because the fluorescence intensities of ECFP and EYFP were affected at pHi < 7.4 where pHi-gating occurs in the ECFP-Kir1.1-EYFP construct, we examined the FRET efficiencies of an ECFP-S219R-EYFP mutant, which is completed closed at pHi 7.4 and open at pHi 10.0. FRET efficiency was increased from 25% to 40% when the pHi was decreased from 10.0 to 7.4. These results suggest that the conformation of the cytoplasmic pore in the Kir1.1 channel changes in response to pHi gating such that the N- and C-termini move apart from each other at pHi 7.4, when the channel is open.


Asunto(s)
Activación del Canal Iónico , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/metabolismo , Conformación Proteica , Animales , Membrana Celular/metabolismo , Células Cultivadas , Transferencia Resonante de Energía de Fluorescencia , Homeostasis , Humanos , Concentración de Iones de Hidrógeno , Oocitos/citología , Oocitos/fisiología , Potasio/metabolismo , Canales de Potasio de Rectificación Interna/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA