Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
ACS Nano ; 18(25): 16222-16235, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38865209

RESUMEN

High-performance production of green hydrogen gas is necessary to develop renewable energy generation technology and to safeguard the living environment. This study reports a controllable engineering approach to tailor the structure of nickel-layered double hydroxides via doped and absorbed platinum single atoms (PtSA) promoted by low electronegative transition metal (Mn, Fe) moieties (PtSA-Mn,Fe-Ni LDHs). We explore that the electron donation from neighboring transition metal moieties results in the well-adjusted d-band center with the low valence states of PtSA(doped) and PtSA(ads.), thus optimizing adsorption energy to effectively accelerate the H2 release. Meanwhile, a tailored local chemical environment on transition metal centers with unique charge redistribution and high valence states functions as the main center for H2O catalytic dissociation into oxygen. Therefore, the PtSA-Mn,Fe-Ni LDH material possesses a small overpotential of 42 and 288 mV to reach 10 mA·cm-2 for hydrogen and oxygen evolution, respectively, superior to most reported LDH-based catalysts. Additionally, the mass activity of PtSA-Mn,Fe-Ni LDHs proves to be 15.45 times higher than that of commercial Pt-C. The anion exchange membrane electrolyzer stack of PtSA-Mn,Fe-Ni LDHs(+,-) delivers a cell voltage of 1.79 V at 0.5 A·cm-2 and excellent durability over 600 h. This study presents a promising electrocatalyst for a practical water splitting process.

2.
Small ; : e2402074, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38794990

RESUMEN

The high theoretical energy density (2600 Wh kg-1) and low cost of lithium-sulfur batteries (LSBs) make them an ideal alternative for the next-generation energy storage system. Nevertheless, severe capacity degradation and low sulfur utilization resulting from shuttle effect hinder their commercialization. Herein, Single-atom Ru-doped 1T/2H MoS2 with enriched defects decorates V2C MXene (Ru-MoS2/MXene) produced by a new phase-engineering strategy employed as sulfur host to promote polysulfide adsorption and conversion reaction kinetics. The Ru single atom-doped adjusts the chemical environment of the MoS2/MXene to anchor polysulfide and acts as an efficient center to motivate the redox reaction. In addition, the rich defects of the MoS2 and ternary boundary among 1T/2H MoS2 and V2C accelerate the charge transfer and ion movements for the reaction. As expected, the Ru-MoS2/MXene/S cathode-based cell exhibits a high-rate capability of 684.3 mAh g-1 at 6 C. After 1000 cycles, the Ru-MoS2/MXene/S cell maintains an excellent cycling stability of 696 mAh g-1 at 2 C with a capacity degradation as low as 0.02% per cycle. Despite a high sulfur loading of 9.5 mg cm-2 and a lean electrolyte-to-sulfur ratio of 4.3, the cell achieves a high discharge capacity of 726 mAh g-1.

3.
Small ; : e2309122, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38377285

RESUMEN

This research designs a triphasic Ni2 P-Ni12 P5 -Ru heterostructure with amorphous interface engineering strongly coupled by a cobalt nano-surface (Co@Nim Pn -Ru) to form a hierarchical 3D interconnected architecture. The Co@Nim Pn -Ru material promotes unique reactivities toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline media. The material delivers an overpotential of 30 mV for HER at 10 mA cm-2 and 320 mV for OER at 50 mA cm-2 in freshwater. The electrolyzer cell derived from Co@Nim Pn -Ru(+,-) requires a small cell voltage of only 1.43 V in alkaline freshwater or 1.44 V in natural seawater to produce 10 mA cm-2 at a working temperature of 80 °C, along with high performance retention after 76 h. The solar energy-powered electrolyzer system also shows a prospective solar-to-hydrogen conversion efficiency and sufficient durability, confirming its good potential for economic and sustainable hydrogen production. The results are ascribed to the synergistic effects by an exclusive combination of multi-phasic crystalline Ni2 P, Ni12 P5 , and Ru clusters in presence of amorphous phosphate interface attached onto cobalt nano-surface, thereby producing rich exposed active sites with optimized free energy and multi open channels for rapid charge transfer and ion diffusion to promote the reaction kinetics.

4.
Small ; 20(8): e2305088, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37817353

RESUMEN

Futuristic wearable electronics desperately need power sources with similar flexibility and durability. In this regard, the authors, therefore, propose a scalable PAN-PMMA blend-derived electrospinning protocol to fabricate free-standing electrodes comprised of cobalt hexacyanoferrate nanocube cathode and tin metal organic framework-derived nanosphere anode, respectively, for flexible sodium-ion batteries. The resulting unique inter-networked nanofiber mesh offers several advantages such as robust structural stability towards repeated bending and twisting stresses along with appreciable electronic/ionic conductivity retention without any additional post-synthesis processing. The fabricated flexible sodium ion full cells deliver a high working voltage of 3.0 V, an energy density of 273 Wh·kg-1 , and a power density of 2.36 kW·kg-1 . The full cells retain up to 86.73% of the initial capacity after 1000 cycles at a 1.0 C rate. After intensive flexibility tests, the full cells also retain 78.26% and 90.78% of the initial capacity after 1000 bending and twisting cycles (5 mm radius bending and 40o axial twisting), respectively. This work proves that the proposed approach can also be employed to construct similar robust, free-standing nanofiber mesh-based electrodes for mass-producible, ultra-flexible, and durable sodium ion full cells with commercial viability.

5.
Small ; 20(7): e2305519, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37814382

RESUMEN

Two different nanostructures of two dissimilar highly-potent active electrocatalysts, P-dopped metallic-(1T)-Fe-VSe2 (P,Fe-1T-VSe2 ) nanosheet and P-dopped Fe-CoSe2 (P,Fe-CoSe2 ) nanorods are hybridized and integrated into a single heterostructure (P,Fe-(VCo)Se2 ) on Ni-foam for high-performance water splitting (WS). The catalytic efficiency of VSe2 nanosheets is first enhanced by enriching metallic (1T)-phase, then forming bimetallic Fe-V selenide, and finally by P-doping. Similarly, the catalytic efficiency of CoSe2 nanorods is boosted by first fabricating Fe-Co bimetallic selenide and then P-doping. To develop super-efficient electrocatalysts for WS, two individual electrocatalysts P,Fe-1T-VSe2 nanosheet and P,Fe-CoSe2 are hybridized and integrated to form a heterostructure (P,Fe-(VCo)Se2 ). Metallic (1T)-phase of transition metal dichalcogenides has much higher conductivity than the 2H-phase, while bimetallization and P-doping activate basal planes, develop various active components, and form heterostructures that develop a synergistic interfacial effect, all of which, significantly boost the catalytic efficacy of the P,Fe-(VCo)Se2 . P,Fe-(VCo)Se2 shows excellent performance requiring very low overpotential (ηHER = 50 mV@10 mAcm-2 and ηOER = 230 mV@20 mAcm-2 ). P,Fe-(VCo)Se2 (+, -) device requires a cell potential of 1.48 V to reach 10 mA cm-2 for overall WS.

6.
Small ; 20(18): e2307241, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38126908

RESUMEN

Rational design of highly efficient noble-metal-unbound electrodes for hydrogen and oxygen production at increased current density is crucial for robust water-splitting. A facile hydrothermal and room-temperature aging method is presented, followed by chemical vapor deposition (CVD), to create a self-sacrificed hybrid heterostructure electrocatalyst. This hybrid material, (Mn-(Co,Ni)2P/CoP/(N,S)-C), comprises manganese-doped cobalt nickel phosphide (Mn-(Co,Ni)2P) nanofeathers and cobalt phosphide (CoP) nanocubes embedded in a nitrogen and sulfur co-doped carbon matrix (N,S)-C on nickel foam. The catalyst exhibits excellent performance in both the hydrogen evolution reaction (HER; η10 = 61 mV) and oxygen evolution reaction (OER; η10 = 213 mV) due to abundant active sites, high porosity, and enhanced hetero-interface interaction between Mn-(Co2P-Ni2P) CoP, and (N,S)-C supported by significant synergistic effects observed among different phases through density functional theory (DFT) calculations. Impressively, (Mn-(Co,Ni)2P/CoP/(N,S)-C (+,-) shows an extra low cell voltage of 1.49 V@10 mA cm-2. Moreover, the catalyst exhibits remarkable stability at 100 and 300 mA cm-2 when operating as a single stack cell electrolyzer. The superior electrochemical activity is attributed to the enhanced electrode-electrolyte interface among the multiple phases of the hybrid structure.

7.
Disabil Rehabil Assist Technol ; : 1-11, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37477263

RESUMEN

PURPOSE: This study proposes a therblig-based evaluation technique as a new accessibility tool for physical products like home appliances that spinal cord injured users occasionally use. MATERIAL AND METHODS: This study recruited nine spinal cord injured users for the interview and observation regarding home appliance usage and analytically structured their usage behaviors using therbligs. The therblig notations eventually referred to actual and potential accessibility issues that spinal cord injured users would encounter when using the home appliances. RESULTS: The primary therblig operations causing accessibility issues for spinal cord injured users were 'reach,' 'move,' 'grasp,' 'position,' and 'use', corresponding to their disability characteristics. In addition, this study proposed a new effective therblig called "hook," which is suitable for better representation of user behavior and accessibility evaluation of spinal cord users. CONCLUSION: This study provided an interaction-based accessibility evaluation technique, which is easy to learn and apply, especially for physical products.


IMPLICATIONS FOR REHABILITATIONThe therblig-based accessibility evaluation method describes the user behavior on a micro-scale and localizes a problematic operation throughout the task process during home appliance usage.Reach, Move, Grasp, Position and Use were the primary problematic therblig operations regarding home appliance usage of spinal cord injured users, resulting in low accessibility.A new therblig 'hook' was developed to describe the user behavior of spinal cord injured users.Therblig evaluation offers a more standardized, easy-to-learn accessibility evaluation method that does not require expertise but provides the latent needs of users.

8.
J Colloid Interface Sci ; 641: 479-491, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36948103

RESUMEN

The pseudocapacitive metal oxide anchored nanocarbon-based three-dimensional (3D) materials are considered attractive electrode materials for high-performance supercapacitor applications. However, the complex multistep synthesis approaches raise production costs and act as a major barrier to the practical real-world field. To overcome this limitation, in this study, an easily scalable and effective fabrication approach for the development of iron oxide (Fe3O4) anchored highly porous carbon nanotube hybrid foam (f-Fe3O4/O-CNTF) with micro/mesoporous structure was suggested to improve the durability and energy storage performance. The surface morphology-tuned f-Fe3O4/O-CNTF (f-Fe3O4/O-CNTF(M)) was fabricated through electromagnetic interaction between the anchored magnetic Fe3O4 on the CNT surface and the applied magnetic field. The obtained results clearly demonstrated that the changed surface morphology of the f-Fe3O4/O-CNTF(M) strongly affected the meso- and micropore structure, electrochemical performance, and durability. Consequently, the f-Fe3O4/O-CNTF(M) showed an almost 120% enhanced specific surface area and nearly 1.9 times increased specific capacitance compared to that of the f-Fe3O4/O-CNTF. Furthermore, the changed surface morphology successfully prevented the re-aggregation of the initial structure and significantly improved durability. As a result, f-Fe3O4/O-CNTF(M) showed outstanding cycling stability, maintaining almost 100% capacitance retention after 14,000 cycles. Consequently, the assembled symmetric supercapacitor device delivered an energy density of 20.1 Wh·kg-1 at a power density of 0.37 kW·kg-1 with good cycling stability. These results suggest that the f-Fe3O4/O-CNTF(M) can potentially be used as an electrode for supercapacitors with good durability.

9.
Small ; 19(11): e2206726, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36599644

RESUMEN

The development of trifunctional electrocatalyst for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) with deeply understanding the mechanism to enhance the electrochemical performance is still a challenging task. In this work, the distorted metastable hybrid-phase induced 1T'/1T Co,PSnS2 nanosheets on carbon cloth (1T'/1T Co,PSnS2 @CC) is prepared and examined. The density functional theoretical (DFT) calculation suggests that the distorted 1T'/1T Co,PSnS2 can provide excellent conductivity and strong hydrogen adsorption ability. The electronic structure tuning and enhancement mechanism of electrochemical performance are investigated and discussed. The optimal 1T'/1T Co,PSnS2 @CC catalyst exhibits low overpotential of ≈94 and 219.7 mV at 10 mA cm-2 for HER and OER, respectively. Remarkably, the catalyst exhibits exceptional ORR activity with small onset potential value (≈0.94 V) and half-wave potential (≈0.87 V). Most significantly, the 1T'/1T Co,PSnS2 ||Co,PSnS2 electrolyzer required small cell voltages of ≈1.53, 1.70, and 1.82 V at 10, 100, and 400 mA cm-2 , respectively, which are better than those of state-of-the-art Pt-C||RuO2 (≈1.56 and 1.84 V at 10 and 100 mA cm-2 ). The present study suggests a new approach for the preparation of large-scalable, high performance hierarchical 3D next-generation trifunctional electrocatalysts.

10.
Small ; 19(10): e2206341, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36650925

RESUMEN

Rechargeable zinc-air batteries (ZABs) are promising energy storage systems due to their low-cost and safety. However, the working principle of ZABs is based on oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), which display sluggish kinetic and low stability. Herein, this work proposes a novel method to design a heterogeneous CoP/CoO electrocatalyst on mesopore nanobox carbon/carbon nanotube (CoP/CoO@MNC-CNT) that enriched active sites and synergistic effect. Moreover, the well-defined heterointerfaces could lower the energy barrier for intermediate species adsorption and promote OER and ORR electrochemical performances. The CoP/CoO@MNC-CNT electrocatalyst presents a high half-wave potential of 0.838 V for ORR and a small overpotential of 270 mV for OER. The ZABs-based CoP/CoO@MNC-CNT air-cathode shows an open-circuit voltage of 1.409 V, the long-term cycle life of 500 h with a small voltage difference change of 7.7%. Additionally, the flexible ZABs exhibit highly mechanical stability, demonstrating their application potential in wearable electronic devices.

11.
Nanomaterials (Basel) ; 12(19)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36234469

RESUMEN

Regardless of its good electron-transfer ability and chemical stability, pure Zn2SnO4 (ZSO) still has intrinsic deficiencies of a narrow spectral response region, poor absorption ability, and high photo-activated carrier recombination rate. Aiming to overcome the deficiencies above-mentioned, we designed a facile hydrothermal route for etching ZSO nanoparticles in a dilute acetic acid solution, through which efficient oxygen vacancy defect engineering was accomplished and SnO2-x nanocrystals were obtained with an ultrafine particle size. In comparison with the untreated ZSO nanoparticles, the specific surface area of SnO2-x nanocrystals was substantially enlarged, subsequently leading to the notable augmentation of active sites for the photo-degradation reaction. Aside from the above, it is worth noting that SnO2-x nanocrystals were endowed with a broad spectral response, enhancing light absorption capacity and the photo-activated carrier transfer rate with the aid of oxygen vacancy defect engineering. Accordingly, SnO2-x nanocrystals exhibited significantly enhanced photoactivity toward the degradation of the organic dye rhodamine B (RhB), which could be imputed to the synergistic effect of increasing active sites, intensified visible-light harvesting, and the separation rate of the photo-activated charge carrier caused by the oxygen vacancy defect engineering. In addition, these findings will inspire us to open up a novel pathway to design and prepare oxide compound photocatalysts modified by oxygen vacancy defects in pursuing excellent visible-light photoactivity.

12.
ACS Appl Mater Interfaces ; 14(10): 12523-12537, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35230083

RESUMEN

Transition-metal-based layered triple hydroxides (LTHs) are evolving as potential positrode candidates for high-performance supercapacitors; however, their phase stabilization is still critical. Alongside, the availability of limited negatrodes pushes research toward exploring novel alternatives in order to minimize performance limitation issues in the fabricated supercapacitors. Herein, a facile strategy for stabilizing freestanding MnCuCo-LTH-based positrode possessing intermingled nanodisk-needle-like morphology is reported. Alongside, novel high-surface-area negatrodes based on Mn1Fe2S2 exhibiting porous microthorn-like morphology are also optimized. MnCuCo_LTH and Mn1Fe2S2 exhibit remarkably high specific capacities of ∼494 mAh g-1 (∼2540 F g-1) and ∼429 mAh g-1 (∼1546 F g-1), respectively, at 1 A g-1. The fabricated quasi-solid-state supercapacitor equipped with a poly(vinyl alcohol) (PVA)-KOH gel electrolyte displays a high specific capacity of ∼144 mAh g-1 and a specific capacitance of ∼325 F g-1 at 1 A g-1. The ultrahigh energy cum power traits of ∼105 Wh kg-1 (1 A g-1) and ∼8370 W kg-1 (at 10 A g-1) establish an asymmetric supercapacitor as a high-performance energy storage device. This device shows an appreciably high cycling life with a capacitance retention of ∼93% after 10 000 consecutive cycles, at 10 A g-1. This approach provides a neoteric foresight for developing high-performance advanced energy storage devices equipped with cheaper and eco-friendly components.

13.
ACS Appl Mater Interfaces ; 14(12): 14492-14503, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35302340

RESUMEN

Metallic (1T) molybdenum disulfide (MoS2) is a much better electrocatalyst than the semiconducting (2H) MoS2 because of its superior conductivity, presence of active basal planes, and bulky interlayers. However, the lack of thermodynamic stability has hindered its practical uses. The insertion of transition metals and nonmetals in the interlayers and the crystal is known to improve both the thermodynamic stability and the catalytic efficacy of 1T-MoS2. In this study, for the first time we have developed an electrocatalyst for water splitting based on metallic copper molybdenum sulfide (1T-CMS). The present catalyst, P-doped and intercalated 1T-CMS ultrathin 2D nanosheets on carbon cloth (P-1T-CMS@CC), demonstrates excellent catalytic efficacy for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). It required an overpotential of 95 mV for HER and of 284 mV for OER at a current density of 10 mA cm-2. The P-1T-CMS@CC(+ -) device also shows excellent performance, requiring a cell voltage of only 1.51 V at a current density of 10 mA cm-2.

14.
J Colloid Interface Sci ; 612: 121-131, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-34992013

RESUMEN

Water splitting via the use of an efficient catalyst is a clean and cost-effective approach to produce green hydrogen. In this study, we successfully developed a novel hybrid coming from thin NiO-NiSe2 nanosheet-based heterostructure shelled high-conductive titanium nitride nanoarrays (TiN@NiO-NiSe2) supported on carbon cloth (CC) via an optimized in-situ synthesis strategy. The hybrid possesses unique physicochemical properties due to the combination of merits from individual components and their synergistic effects, thereby boosting number and type of electroactive sites, reasonably adjusting Gibbs free adsorption energy, and promoting charge/mass transfers. As a potential bifunctional electrocatalyst, the hybrid requires low overpotentials of 115 and 240 mV to reach a current response of 10 mA cm-2 towards hydrogen evolution reaction and oxygen evolution reaction in 1.0 M KOH, respectively. Therefore, an electrolyzer of the TiN@NiO-NiSe2 on CC exhibits a low operation voltage of 1.57 V at 10 mA cm-2 together with a prospective durability, which exceed behaviors of Pt/C//RuO2 as well as recently reported bifunctional electrocatalysts. The results suggest a promising approach for developing cost-effective catalyst towards green hydrogen production via water splitting.

15.
Small ; 18(5): e2104462, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34845810

RESUMEN

The flexible electrochromic Zn-ion battery (FE-ZiB), a newly born energy-storage technology having both electrochromic characteristics and energy-storage capability in a single device, will be a promising technology for the future transparent wearable electronics. However, the current technology limits the fabrication of FE-ZIB because the zinc (Zn) anode material is opaque and rigid. The development of a flexible and transparent Zn anode is the key factor to overcoming the current limitation. Here, for the first time, a flexible, transparent zinc-nanofiber network anode electrode (Zn@Ni@AgNFs) is reported for an FE-ZiB device that yields a remarkable electrochemical performance of a high areal capacity of 174.82 mA h m2 at 0.013 mA cm-2 applied current density, high optical contrast (50%), and excellent mechanical flexibility. The fabricated FE-ZiB device also exhibits a high volumetric energy density of 378.8 W h m-3 at a power density of 562.7 W m-3 . Besides, the FE-ZiB demonstrates excellent electrochromic capability with a reversible color transition from a transparent in a discharged state (0.3 V) to a dark bluish-violet in a charged state (1.6 V). These results highlight a new pathway for the development of transparent batteries for smart wearable electronic devices.


Asunto(s)
Nanofibras , Dispositivos Electrónicos Vestibles , Suministros de Energía Eléctrica , Electrodos , Zinc
16.
Small ; 17(50): e2103826, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34623752

RESUMEN

Atomic metal-modulated heterostructures have been evidenced as an exciting solution to develop high-performance multifunctional electrocatalyst toward water splitting. In this research, a catalyst of continuous cobalt-cobalt oxide (Co-CoO) lateral heterostructures implanted with well-dispersed rhodium (Rh) atoms and shelled over conductive porous 1D copper (Cu) nano-supports for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in both freshwater and seawater under alkaline condition is proposed. It is found that synergistic effects coming from uniform Rh atoms at doping level and Co-CoO heterostructures afford rich multi-integrated active sites and excellent charge transfer, thereby effectively promoting both HER and OER activities. The material requires overpotentials of 107.3 and 137.7 mV for HER and 277.7 and 260 mV for OER to reach an output of 10 mA cm-1 in freshwater and mimic seawater, respectively, surpassing earlier reported catalysts. Compared to a benchmark a Pt/C//RuO2 -based two-electrode electrolyzer, a device derived from the 1D-Cu@Co-CoO/Rh on copper foam delivers comparable cell voltages of 1.62, 1.60, and 1.70 V at 10 mA cm-2 in freshwater, mimic seawater, and natural seawater, respectively, together with robust stability. These results evidence that 1D-Cu@Co-CoO/Rh is a promising catalyst for green hydrogen generation via freshwater and seawater electrolysis applications.

17.
ACS Appl Mater Interfaces ; 13(36): 42944-42956, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34473465

RESUMEN

A novel sulfur-doped vanadium-molybdenum oxide nanolayer shelling over two-dimensional cobalt nanosheets (2D Co@S-VMoOx NSs) was synthesized via a facile approach. The formation of such a unique 2D core@shell structure together with unusual sulfur doping effect increased the electrochemically active surface area and provided excellent electric conductivity, thereby boosting the activities for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). As a result, only low overpotentials of 73 and 274 mV were required to achieve a current response of 10 mA cm-2 toward HER and OER, respectively. Using the 2D Co@S-VMoOx NSs on nickel foam as both cathode and anode electrode, the fabricated electrolyzer showed superior performance with a small cell voltage of 1.55 V at 10 mA cm-2 and excellent stability. These results suggested that the 2D Co@S-VMoOx NSs material might be a potential bifunctional catalyst for green hydrogen production via electrochemical water splitting.

18.
Small ; 17(29): e2101312, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34145762

RESUMEN

Introducing defects and in situ topotactic transformation of the electrocatalysts generating heterostructures of mixed-metal oxides(hydroxides) that are highly active for oxygen evolution reaction (OER) in tandem with metals of low hydrogen adsorption barrier for efficient hydrogen evolution reaction (HER) is urgently demanded for boosting the sluggish OER and HER kinetics in alkaline media. Ascertaining that, metal-organic-framework-derived freestanding, defect-rich, and in situ oxidized Fe-Co-O/Co metal@N-doped carbon (Co@NC) mesoporous nanosheet (mNS) heterostructure on Ni foam (Fe-Co-O/Co@NC-mNS/NF) is developed from the in situ oxidation of micropillar-like heterostructured Fe-Co-O/Co@NC/NF precatalyst. The in situ oxidized Fe-Co-O/Co@NC-mNS/NF exhibits excellent bifunctional properties by demanding only low overpotentials of 257 and 112 mV, respectively, for OER and HER at the current density of 10 mA cm-2 , with long-term durability, attributed to the existence of oxygen vacancies, higher specific surface area, increased electrochemical active surface area, and in situ generated new metal (oxyhydr)oxide phases. Further, Fe-Co-O/Co@NC-mNS/NF (+/-) electrolyzer requires only a low cell potential of 1.58 V to derive a current density of 10 mA cm-2 . Thus, the present work opens a new window for boosting the overall alkaline water splitting.

19.
J Colloid Interface Sci ; 600: 299-309, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34022726

RESUMEN

In this study, we prepared a three-dimensional self-supported electrocatalyst based on a thin layer of cerium oxide nanocrystals doped with cobalt heteroatoms (CeO2-Co) and then uniformly shelled over one-dimensional tin oxide (SnO2) nanorods supported by carbon cloth substrate. The material was used as a binder-free sensor that could nonenzymatically detect xanthine (XA) with an excellent sensitivity of 3.56 µA µM-1, wide linear range of 25 nM to 55 µM, low detection limit of 58 nM, and good selectivity. A screen-printed electrode based on the material accurately detected XA in food samples as well. The achievements were resulted from synergistic effects coming from the unique core@shell formation and Co-doping strategy, which efficiently modified electronic structure of the material to expose more electroactive site numbers/types and fast charge transfer, thereby producing intrinsic catalytic properties for XA oxidation. These results suggested that the SnO2@CeO2-Co is potential for developing efficient sensor to detect XA with good sensitivity and accuracy in food-quality monitoring.


Asunto(s)
Cerio , Nanopartículas , Cobalto , Técnicas Electroquímicas , Xantina
20.
J Colloid Interface Sci ; 583: 425-434, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33011411

RESUMEN

The development of a rapid, selective, and sensitive sensor to precisely monitor nitrite oxidation is of growing importance, given the strong interest in the protection of drinking water quality, treatment of wastewater, food production, and control of remediation processes. In this research, we successfully fabricated a hybrid originated from worm-like gold nanowires (Au WNWs) assembled on a high-quality carbon nanofibers-graphene (CNFs-Gr) hybrid network through a facile synthesis method. The hybrid as a binder-free sensor exhibited excellent activity towards nitrite detection in phosphate buffer solution (pH of 7.4) with a wide linear detection range of (1.98 µM - 3.77 mM), excellent sensitivity of 836 µA cm-2 mM-1, low detection limit of 1.24 µM, and long-term durability. The results were attributed to a special synergistic effect originating from unique hybridization of Au WNWs with large-area CNFs-Gr network to produce more electroactive sites and excellent conductivity, favorably boosting catalytic performance of the sensor. The successful fabrication of Au WNWs/CNFs-Gr suggested an interesting candidate for practically determining low-level nitrite in analytical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA