RESUMEN
Due to their worldwide distribution and persistence, mercury (Hg), and nano- and microplastics (NMPs) pose major threats to global ocean ecosystems. Hg and NMPs co-exist in the ocean and can interact with each other. However, information on the toxicity of this interaction to marine biota remains limited. Thus, we investigated the toxicological interaction between HgCl2 (Hg) and NMPs by studying the influence of different sizes of polystyrene beads (0.05-, 0.5-, and 6-µm) on Hg accumulation in the brackish water flea Diaphanosoma celebensis. The Hg adsorption capacity of NPs (0.05-µm) was higher than that of MPs (0.5- and 6-µm). Only the group co-exposed to both Hg and NPs showed increased Hg content in D. celebensis. Multixenobiotic resistance (MXR) activity and transcriptional modulation of transporter genes (ABCBs and ABCCs) were decreased by NMP exposure, particularly by NPs, suggesting MXR disruption by NPs. However, only the activity of multidrug resistance-associated proteins (MRPs; ABCCs) increased with Hg exposure and decreased upon NP+Hg co-exposure, indicating an important role of ABCC in Hg efflux. Furthermore, in vivo toxicity tests showed a synergistic toxic interaction between Hg and NPs on the reproduction of D. celebensis. Our findings suggest that NPs have the potential to enhance the toxicity of Hg, increasing Hg accumulation not only by serving Hg as a carrier but also by disrupting MXR.
RESUMEN
In marine environments, exposure to microplastics threaten various organisms. A large portion of MPs may be bioavailable to copepods, and ingesting MPs has been reported to induce various adverse effects, including increased mortality, developmental retardation, and decreased reproduction. Adverse effects of MPs on these important processes of copepods may be induced by the obstructive effects of the ingested MPs on energy acquisition. However, few studies have explored the biological effects of MPs on copepods in terms of energy budgets. Therefore, we analyzed ATP (adenosine triphosphate) levels, enzyme activities, swimming distances, and excretion rates in marine copepods (Tigriopus koreanus) that have ingested polystyrene microplastics. Our results indicate that the ingestion of MPs may prevent adequate acquisition of nourishment and lead the copepods into a vicious circle in the respect to energetic burden. Our study provides biochemical evidence for a reduction in the energy budget of copepods due to MPs ingestion. Further, this study increases our understanding of the risks of microplastics, by providing advanced evidences of their effects on marine primary consumer.
Asunto(s)
Copépodos , Metabolismo Energético , Microplásticos , Contaminantes Químicos del Agua , Animales , Copépodos/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Metabolismo Energético/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Natación , Ingestión de Alimentos/efectos de los fármacosRESUMEN
Parabens, a group of alkyl esters of p-hydroxybenzoic acid, have been found in aquatic systems in particular, leading to concerns about their potential impact on ecosystems. This study investigated the effects of three commonly used parabens, methylparaben (MeP), ethylparaben (EtP), and propylparaben (PrP), on the brackish water flea Diaphanosoma celebensis. The results showed that PrP had the most adverse impact on survival rates, followed by EtP and MeP, while MeP and EtP induced significant adverse effects on reproductive performance. A transcriptome analysis revealed significant differential gene expression patterns in response to paraben exposure, with MeP associated with the most significant effects. MeP and EtP exposure produced greater disruption in the microbiota of D. celebensis than did PrP compared with control groups, and we identified eight key microbiota, including Ruegeria and Roseovarius. Correlation analysis between transcriptome and microbiome data revealed key interactions between specific microbiota and host gene expression. Certain microbial taxa were associated with specific genes (e.g. cuticle related genes) and toxicological pathways, shedding light on the complex molecular response and in vivo toxicity effects of parabens. These findings contribute to a deeper understanding of the molecular mechanisms underlying paraben toxicity and highlight the importance of considering the ecological impact of chemical contaminants in aquatic ecosystems.
Asunto(s)
Cladóceros , Parabenos , Animales , Parabenos/análisis , Transcriptoma , Ecosistema , Aguas SalinasRESUMEN
Aggregation between microalgae and microplastics (MPs) significantly influences the MPs distribution in marine environment. We investigated the effects of two diatoms, the planktonic Pseudo-nitzschia pungens and the periphytic Navicula sp., on the formation and sinking of aggregates when they were cultured with four different types of MPs: small and large polyethylene terephthalate (PET) fibers, and low-density and high-density polyethylene (PE) spheres. Navicula sp. formed aggregates with all MPs within one week, but P. pungens only formed aggregates with PE spheres after 9 weeks. The PE-Navicula sp. aggregates settled about 100 times faster than the PE-P. pungens aggregates (12.2 vs. 0.1 mm s-1), and this difference was most likely due to aggregate shape rather than size. Our findings indicate that the periphytic Navicula sp. had a greater effect on the settling of MPs than the planktonic P. pungens. These findings have implications for understanding the behavior of MPs in marine environments.
Asunto(s)
Diatomeas , Microalgas , Contaminantes Químicos del Agua , Microplásticos , Plásticos/farmacología , Plancton , Polietileno , Contaminantes Químicos del Agua/análisisRESUMEN
Brine shrimp (Artemia spp.) is a significant factor in determining aquaculture production. Since the microbiota of Artemia can colonize the gut in larvae, various microorganisms transmitted from Artemia can affect host larval health. Although the microbiota composition of Artemia would be essential in determining aquaculture productivity, our understanding on microbiome of Artemia is still insufficient. Through our study, we identified the species of Artemia cysts supplied by three different manufacturers (P1, P2, and P3) with investigation of size and hatching efficiency. The species of Artemia from P1 was identified as A. tibetiana, and P2 and P3 was A. franciscana. A. tibetiana hatched from the P1 cysts had the largest body size with the lowest hatching rate. Furthermore, we conducted a comprehensive analysis of the microbiome present in the rearing water and the nauplius whole body from each product. We observed specific microbiota compositions, both beneficial and harmful, depending on the product types and the sample types. Additionally, we found that the microbiota composition in the rearing water was associated with the manufacturing environment, while the compositions in the nauplius whole body were species-specific. Notably, we discovered that an extract containing microbiota from the nauplius sample of P3 increased the hatching rate of A. tibetiana, indicating a positive role in Artemia culture. These findings demonstrate that the microbial communities present in Artemia vary according to the product and/or species, underscoring their significance in aquaculture production.
Asunto(s)
Quistes , Microbiota , Animales , Artemia , Larva , AguaRESUMEN
Energy metabolism is crucial for normal biological processes, such as growth, development, and reproduction. Microplastics disrupt energy homeostasis by modulating the digestive capacity and contents of energy reserves to overcome stress. This study investigated the modulation of digestive enzyme activity and energy reserves in the brackish water flea Diaphanosoma celebensis exposed to polystyrene (PS) beads (0.05-, 0.5-, 6-µm) for 48 h, and examined transcriptional changes in digestive enzyme-coding genes and AMP-activated protein kinase (AMPK) signaling pathway genes. PS particle size differentially modulated digestive enzyme activity, energy molecule content (glycogen, protein, and lipids), and metabolism-related gene expression. In particular, the 0.5-µm PS had the most significant effect on digestive enzyme activity. In contrast, the 0.05-µm PS caused significant metabolic disorder following a decrease in total energy budget (Ea). These findings suggest that PS beads can modulate energy metabolism through different modes depending on the bead size.
Asunto(s)
Cladóceros , Siphonaptera , Contaminantes Químicos del Agua , Animales , Microplásticos , Plásticos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Poliestirenos , Aguas Salinas , Metabolismo EnergéticoRESUMEN
Unmanaged disposal of wastewater produced by underwater hull cleaning equipment (WHCE) is suspected to induce toxic effects to marine organisms because wastewater contains several anti-fouling compounds. To investigate the effects of WHCE on marine copepod, we examined the toxicity on life parameters (e.g. mortality, development, and fecundity) and gene expression changes of Tigriopus japonicus as model organism. Significant mortality and developmental time changes were observed in response to wastewater. No significant differences in fecundity were observed. Transcriptional profiling with differentially expressed genes from WHCE exposed T. japonicus showed WHCE may induce genotoxicity associated genes and pathways. In addition, potentially neurotoxic effects were evident following exposure to WHCE. The findings suggest that wastewater released during hull cleaning should be managed to reduce physiological and molecular deleterious effects in marine organisms.
Asunto(s)
Copépodos , Contaminantes Químicos del Agua , Animales , Aguas Residuales/toxicidad , Fertilidad , Contaminantes Químicos del Agua/metabolismoRESUMEN
Plastics are considered as a major threat to marine environments owing their high usage, persistence, and negative effects on aquatic organisms. Although they often exist as mixtures in combination with other pollutants (e.g., mercury (Hg)) in aquatic ecosystems, the combined effects of plastics and ambient pollutants remain unclear. Therefore, in the present study, we investigated the toxicological interactions between Hg and plastics using two Hg species (HgCl2 and MeHgCl) and different-sized polystyrene (PS) beads (diameter: 0.05, 0.5, and 6-µm) in the brackish water flea Diaphanosoma celebensis. The single and combined effects of Hg and PS beads on mortality were investigated, and changes in the antioxidant system and lipid peroxidation were further analyzed. After 48-h exposure to single Hg, HgCl2 induced a higher mortality rate than MeHgCl. The combined exposure test showed that 0.05-µm PS beads can enhance the toxicity of both the Hg species. The expression of GST-mu, glutathione S-transferease (GST) activity and malondialdehyde (MDA) content increased significantly after exposure to Hg alone (HgCl2 or MeHgCl) exposure. Combined exposure with PS beads modulated the effects of Hg on the antioxidant system depending on bead size and the Hg species. In particular, the 0.05-µm beads significantly increased the expression level of GST-mu, GST activity and MDA content, regardless of Hg species. These findings suggest that toxicological interactions between Hg and PS beads depend on the type of Hg species and the size of PS beads; nano-sized 0.05-µm PS beads can induce synergistic toxicity with Hg.
Asunto(s)
Cladóceros , Mercurio , Siphonaptera , Contaminantes Químicos del Agua , Animales , Plásticos/toxicidad , Poliestirenos/toxicidad , Poliestirenos/análisis , Mercurio/toxicidad , Antioxidantes , Ecosistema , Contaminantes Químicos del Agua/toxicidad , Organismos Acuáticos , Glutatión , MalondialdehídoRESUMEN
Saxitoxin (STX) is a highly toxic marine neurotoxin produced by phytoplankton and a growing threat to ecosystems worldwide due to the spread of toxic algae. Although STX is an established sodium channel blocker, the overall profile of transcriptional levels in STX-exposed organisms has yet to be described. Here, we describe a toxicity assay and transcriptome analysis of the copepod Tigriopus japonicus exposed to STX. The half-maximal lethal concentration of STX was 12.35 µM, and a rapid mortality slope was evident at concentrations between 12 and 13 µM. STX induced changes in swimming behavior among the copepods after 10 min of exposure. In transcriptome analysis, gene ontology revealed that the genes involved in nervous system and gene expression were highly enriched. In addition, the congenital neurological disorder and nuclear factor erythroid 2-related factor 2-mediated oxidative stress pathways were identified to be the most significant in network analysis and toxicity pathway analysis, respectively. This study provides valuable information about the effects of STX and related transcriptional responses in T. japonicus.
Asunto(s)
Copépodos , Saxitoxina , Animales , Saxitoxina/toxicidad , Copépodos/genética , Ecosistema , Neurotoxinas/farmacología , Bloqueadores de los Canales de Sodio/farmacologíaRESUMEN
To understand the effects of the toxic marine dinoflagellate, Gymnodinium catenatum, on the brine shrimp, Artemia franciscana, we examined the acute toxicity and swimming behavior parameters such as swimming speed, swimming distance, and swimming path trajectory with transcriptional regulation of heat shock protein (hsp) genes in response to G. catenatum exposure. Mortality was not observed in response to G. catenatum. In the case of swimming behavior parameters, swimming speed and swimming distance were significantly decreased (P < 0.05) for 5 min at three concentrations (240, 360, and 600 cells/mL) of G. catenatum, whereas no significant change in swimming path trajectory was observed, suggesting that G. catenatum has potential adverse effects on the swimming behavior of A. franciscana. Additionally, the four A. franciscana-hsp genes (hsp26, hsp40, hsp70, and hsp90) were upregulated in response to G. catenatum. In particular, A. franciscana-hsp40 was significantly upregulated in response to 600 cells/mL G. catenatum, suggesting that A. franciscana-hsp genes are highly associated with cellular defense mechanisms and that A. franciscana-hsp40 is a potential biomarker for G. catenatum exposure. Overall, this study improves our understanding of the effects of G. catenatum on the swimming behavior and cellular defense mechanisms of A. franciscana.
Asunto(s)
Artemia , Dinoflagelados , Animales , Dinoflagelados/genética , Dinoflagelados/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/farmacología , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/farmacología , NataciónRESUMEN
To better understand the outbreaks of paralytic shellfish poisoning and bloom dynamics caused by Alexandrium species in Jinhae-Masan Bay, Korea, the germination and distributions of ellipsoidal Alexandrium cysts were investigated, and paralytic shellfish toxins (PSTs) profiles and contents were determined using strains established from germling cells. The phylogeny and morphological observations revealed that the germinated vegetative cells from ellipsoidal cysts collected from the surface sediments in Jinhae-Masan Bay belong to Alexandrium catenella (Group I) and A. pacificum (Group IV) nested within A. tamarense species complex. Cyst germinations of A. catenella (Group I) were observed at only 10 °C, whereas cysts of A. pacificum (Group IV) could germinate at temperature ranges of 10 to 25 °C. Maximum germination success (85%) for isolated cysts occurred at 15 °C, and the germling cells were A. pacificum (Group IV). The results indicate that the variation in water temperature in Jinhae-Masan Bay can control the seasonal variations in germination of cysts of A. catenella (Group I) and A. pacificum (Group IV). The germination rates of ellipsoidal Alexandrium cysts were different among sampling sites in Jinhae-Masan Bay, probably because of differences in distribution and abundance of A. catenella (Group I) and A. pacificum (Group IV) in the sediments. The ellipsoidal Alexandrium cyst concentrations were much higher in February than in August, however the distributions were similar. Gonyautoxins 3 and 4 (GTX-3 and GTX-4) contributed a large proportion (>90%) of the toxins produced by strains A. catenella (Group I) and A. pacificum (Group IV) established from germling cells, and the total cellular contents were higher in A. catenella (Group I) than in A. pacificum (Group IV).
Asunto(s)
Quistes , Dinoflagelados , Intoxicación por Mariscos , Bahías , GerminaciónRESUMEN
To clarify an unspecified toxic Gambierdiscus-like species isolated from seawaters off Jeju Island, Korea, its morphology and molecular phylogeny based on the small subunit (SSU) and partial large subunit (LSU) rRNA gene sequences were examined. Cells were narrow in ventral view and broad in lateral view with a smooth surface. The round thecal pores were evenly distributed, with an average diameter of 0.41 µm. Cell depth, width and height were 51.7 ± 4.5 µm, 43.0 ± 4.2 µm and 55.0 ± 4.7 µm, respectively, and depth-to-width (D/W) and height-to-width (H/W) ratios were 1.1 ± 0.2 µm and 1.3 ± 0.02 µm, respectively. The nucleus was located in the hypotheca. Scanning electron microscope observations revealed that the cells displayed a plate formula of Po, 4', 6'', 6c, 6s, 5''' and 2''', and transmission electron microscope observation demonstrated that the cells contained crystal-like particles. Morphological features indicated that the unspecified Korean isolate belonged to the genus Fukuyoa, and based on the H/W and D/W ratios, the apical pore H/W ratio and thecal pore size, it could be differentiated from other Fukuyoa species. The phylogenetic analyses based on the SSU and LSU rRNA sequences revealed that the Korean isolate was nested within the genus Fukuyoa with high support, and it grouped with F. cf. yasumotoi isolated from Japan. Based on the morpho-molecular data, a new species, Fukuyoa koreansis sp. nov. is proposed. The maximum growth rate (0.254 d-1) of F. koreansis was observed at 25°C and a salinity of 25. The required levels of temperature and salinity for growth distinguished Fukuyoa koreansis from Gambierdiscus species.
Asunto(s)
Dinoflagelados , Filogenia , Salinidad , Agua de Mar , TemperaturaRESUMEN
BACKGROUND: Two deep-sea eels collected from the Western Pacific Ocean are described in this study. Based on their morphological characteristics, the two deep-sea eel specimens were assumed to belong to the cusk-eel family Ophidiidae and the cutthroat eel family Synaphobranchidae. METHODS AND RESULTS: To accurately identify the species of the deep-sea eel specimens, we sequenced the mitochondrial genes (cytochrome c oxidase subunit I [COI] and 16S ribosomal RNA [16S rRNA]). Through molecular phylogenetic analysis based on mtDNA COI and 16S rRNA gene sequences, these species clustered with the genera Bassozetus and Synaphobranchus, suggesting that the deep-sea eel specimens collected are two species from the genera Bassozetus and Synaphobranchus in the Western Pacific Ocean, respectively. CONCLUSIONS: This is the first study to report new records of the genera Bassozetus and Synaphobranchus from the Western Pacific Ocean based on COI and 16S rRNA genes.
Asunto(s)
Anguilas/clasificación , Anguilas/genética , Complejo IV de Transporte de Electrones/genética , ARN Ribosómico 16S/genética , Animales , Geografía , Secuenciación de Nucleótidos de Alto Rendimiento , Océano Pacífico , Fenotipo , FilogeniaRESUMEN
The cytochrome P450 (CYP) enzyme family is extensive; these enzymes participate in phase I enzyme metabolism and are involved in xenobiotic detoxification in all living organisms. Despite their significance in xenobiotic detoxification, little is known about the species-specific comparison of CYPs and their molecular responses in aquatic invertebrates. We identified 31 CYPs in the brackish water flea Diaphanosoma celebensis via thorough exploration of transcriptomic databases and measured the transcript profiles of 9 CYPs (within full sequences) in response to benzo[α]pyrene (B[α]P) and two heavy metals (cadmium [Cd] and copper [Cu]). Through phylogenetic analysis, the CYPs were separated and clustered into four clans: mitochondrial, CYP2, CYP3, and CYP4. The expression of 9 CYPs were differentially modulated (up- and/or downregulated) in response to B[α]P, Cd, and Cu. In particular, CYP370A15 was significantly upregulated in response to B[α]P, Cd, and Cu, suggesting that the identified CYPs are involved in xenobiotic detoxification and are useful as biomarkers in response to B[α]P, Cd, and Cu. This study aimed to comprehensively annotate cladoceran CYPs; our results will add to the existing knowledge on the potential roles of CYPs in xenobiotic detoxification in cladocerans.
Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Metales Pesados/toxicidad , Aguas Salinas/química , Siphonaptera/efectos de los fármacos , Animales , Benzo(a)pireno/toxicidad , Cadmio/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Siphonaptera/genética , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Contaminantes Químicos del Agua/toxicidad , XenobióticosRESUMEN
The combined effect of toxic inducers has emerged as a challenging topic, particularly due to their inconsistent impacts on the environment. Using toxic unit (TU) based on LC50 value, we investigated the 48 h acute toxicities of the following combinations: Cd + As, Cd + Pb, As + Pb, and Cd + As + Pb, and binary and ternary combined effects were interpreted using concentration addition (CA) and independent action (IA) model. The molecular effects of these combinations were further examined on the basis of gene expression (four GST and two SOD isoforms) and antioxidant enzymes activity (SOD and GST). The CA-predicted LC50 was similar to the observed results, indicating that the CA model is more applicable for evaluating the combined effects of the metal mixtures. Synergistic effects (ΣTULC50 < 0.8) were observed for the mixtures As + Pb and Cd + Pb, while additive effects (0.8 < ΣTULC50 < 1.2) were observed for the mixtures Cd + As + Pb and Cd + As. No antagonistic effects were observed in this study. Molecular biomarkers for oxidative stress caused by metals, as well as traditional endpoints such as lethality, have shown a clear response in assessing the toxicity of binary and ternary mixtures. This study opens up a new avenue for the use of biomarkers to assess the combined effects of metals in aquatic environments.
Asunto(s)
Arsénico/toxicidad , Cadmio/toxicidad , Cladóceros/efectos de los fármacos , Plomo/toxicidad , Aguas Salinas/química , Contaminantes Químicos del Agua/toxicidad , Animales , Biomarcadores/metabolismo , Cladóceros/metabolismo , Monitoreo del Ambiente/métodos , Estrés Oxidativo , Contaminación Química del AguaRESUMEN
Characterizing ecological relationships between viruses, bacteria and phytoplankton in the ocean is critical to understanding the ecosystem; however, these relationships are infrequently investigated together. To understand the dynamics of microbial communities and environmental factors in harmful algal blooms (HABs), we examined the environmental factors and microbial communities during Akashiwo sanguinea HABs in the Jangmok coastal waters of South Korea by metagenomics. Specific bacterial species showed complex synergistic and antagonistic relationships with the A. sanguinea bloom. The endoparasitic dinoflagellate Amoebophrya sp. 1 controlled the bloom dynamics and correlated with HAB decline. Among nucleocytoplasmic large DNA viruses (NCLDVs), two Pandoraviruses and six Phycodnaviruses were strongly and positively correlated with the HABs. Operational taxonomic units of microbial communities and environmental factors associated with A. sanguinea were visualized by network analysis: A. sanguinea-Amoebophrya sp. 1 (r = .59, time lag: 2 days) and A. sanguinea-Ectocarpus siliculosus virus 1 in Phycodnaviridae (0.50, 4 days) relationships showed close associations. The relationship between A. sanguinea and dissolved inorganic phosphorus relationship also showed a very close correlation (0.74, 0 day). Microbial communities and the environment changed dynamically during the A. sanguinea bloom, and the rapid turnover of microorganisms responded to ecological interactions. A. sanguinea bloom dramatically changes the environments by exuding dissolved carbohydrates via autotrophic processes, followed by changes in microbial communities involving host-specific viruses, bacteria and parasitoids. Thus, the microbial communities in HAB are composed of various organisms that interact in a complex manner.
Asunto(s)
Dinoflagelados , Microbiota , Dinoflagelados/genética , Floraciones de Algas Nocivas , Microbiota/genética , Fitoplancton/genética , República de CoreaRESUMEN
To understand how the marine copepod Tigriopus japonicus responds to the toxic marine dinoflagellate Gymnodinium catenatum, we assessed acute toxicity and investigated swimming behavior parameters (e.g., swimming speed, swimming path trajectory, and swimming distance) in response to G. catenatum exposure. In addition, the mRNA expression levels of detoxification-related genes (e.g., phase I cytochrome P450 [CYP] and phase II glutathione-S transferase [GST]) were measured in G. catenatum-exposed copepods. No significant change in survival was observed in response to G. catenatum, but swimming speed was significantly decreased (P < 0.05) at a high concentration of G. catenatum (600 cells/mL). Furthermore, the swimming distance was significantly decreased (P < 0.05) compared to that of the control at 600 cells/mL G. catenatum, while no significant change in swimming path trajectory was observed, suggesting that G. catenatum potentially has adverse effects on the swimming behavior of T. japonicus. In addition, the transcriptional regulation of T. japonicus CYPs and -GSTs were significantly upregulated and downregulated (P < 0.05), respectively, in response to G. catenatum. In particular, certain genes (e.g., CYPs [CYP307E1, CYP3041A1, and CYP3024A2] and GSTs [GST-kappa, GST-mu5, and GST-omega]) were significantly induced (P < 0.05) by G. catenatum, suggesting that these genes likely play a critical role in detoxification mechanisms and might be useful as potential molecular biomarkers in response to G. catenatum exposure. Overall, these results elucidate the potential impacts of the dinoflagellate G. catenatum on the swimming behavior and detoxification system of the marine copepod T. japonicus.
Asunto(s)
Copépodos , Dinoflagelados , Intoxicación por Mariscos , Animales , Copépodos/metabolismo , Dinoflagelados/metabolismo , Inactivación Metabólica , SaxitoxinaRESUMEN
Centrodinium punctatum is a fusiform dinoflagellate with a global marine distribution. Due to a close phylogenetic relationship of one C. punctatum strain to Alexandrium species, toxin production of this C. punctatum strain was assessed using liquid chromatography coupled to tandem mass spectrometry. The paralytic shellfish toxin (PST) profile of C. punctatum was dominated by six analogs, i.e. STX (30%), GTX-1 (20%) and neoSTX (24%), followed by GTX-2 (9%), GTX-4 (9%) and GTX-3 (8%); deoxy-STX was also putatively identified while no gymnodimines, spirolides or goniodomins were detected. This is the first record of C. punctatum producing saxitoxins. The estimated cellular toxicity was rather elevated, between 91 and 212 pg cell-1 (or 259 and 601 fmol cell-1). When considering the toxicity equivalent factors, results suggest that this species can produce high cellular toxicity compared to other STX-producing dinoflagellates. Morphological details of the sulcal area and the hypotheca of Centrodinium punctatum were re-examined by scanning electron microscopy (SEM); this revealed that in the sulcal area, the left posterior sulcal plate (Ssp) is larger and longer than the left posterior sulcal plate and extended into the hypotheca. Based on the morphological observation, a revised interpretation of the sulcus and hypotheca is proposed.
Asunto(s)
Dinoflagelados , Saxitoxina , Cromatografía Liquida , Filogenia , Espectrometría de Masas en TándemRESUMEN
Salinity stress influences energy balance, induction of stress proteins, and reproductive success, which are important to life parameters of aquatic organisms. However, physiological and molecular responses of salinity stress have not been studied in the rotifer. To understand the effects of salinity changes on the rotifer, we examined the marine monogonont rotifer Brachionus plicatilis (B. plicatilis) for salinity stress-induced changes in population growth, reactive oxygen species (ROS) levels, and antioxidant enzymatic activities (e.g., glutathione S-transferase [GST], superoxide dismutase [SOD] and catalase [CAT]). In addition, antioxidant-related transcripts (GSTs [GSTs-1-1 and GSTs-1-2], MnSOD1 and CAT2) were investigated in different salinity-exposed rotifers. A significant decrease (P < 0.05) in population growth was observed in response to high salinity (35 psu) in B. plicatilis. Moreover, the rotifers exposed to high salinity (35 psu) exhibited increased ROS levels with enhanced SOD and CAT enzymatic activities, compared to those in controls (15 psu). Additionally, significant change (P < 0.05) of antioxidant-related genes (GSTs [GSTs-1-1 and GSTs-1-2], MnSOD1 and CAT2) was observed in response to different salinities. Overall, these findings indicate that high salinity induce ROS-mediated oxidative stress, leading to growth retardation and modulation of the antioxidant defense system in B. plicatilis. These findings provide a better understanding on the adverse effects of salinity changes on lifecycle parameters and oxidative stress defense mechanism in rotifers.
Asunto(s)
Antioxidantes/metabolismo , Estrés Oxidativo , Rotíferos/metabolismo , Salinidad , Animales , Dinámica Poblacional , Rotíferos/genéticaRESUMEN
Global warming is a big concern for all organisms and many efforts have been made to reveal the potential effects of temperature elevation on aquatic organisms. However, limited studies on molecular mechanistic approaches on physiological effects due to temperature changes are available. Here, we investigated the effects of temperature changes on life parameters (e.g., population growth [total number of rotifers], and lifespan), oxidative stress levels and antioxidant activities (e.g., glutathione S-transferase [GST], catalase [CAT], superoxide dismutase [SOD]) with expression levels in the monogonont marine rotifer Brachionus plicatilis. The changes in temperatures led to significant reduction (Pâ¯<â¯0.05) in lifespan, possibly due to significant decrease (Pâ¯<â¯0.05) in antioxidant activities, reducing the potential to cope with significant elevation in the temperature-induced oxidative stress in B. plicatilis. To further assess the actual induction and clearance of reactive oxygen species (ROS), N-acetyl-L-cysteine was used to examine whether the temperature-induced oxidative stress could be successfully scavenged. Furthermore, expression patterns of the antioxidant-related genes (GSTs, SODs, and CATs) were down- or upregulated (Pâ¯<â¯0.05) in response to different temperatures in B. plicatilis. Overall, these findings indicate that ROS-mediated oxidative stress led to cellular damage and antioxidant defense system, resulting in deleterious effects on life parameters in rotifer.