Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
RSC Adv ; 14(21): 14582-14592, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38708107

RESUMEN

The utilization of gold nanoparticles (AuNPs) has garnered significant attention in recent times, particularly in the field of biomedical research. The utilization of AuNPs in chemical synthesis procedures raises apprehensions regarding their potential toxicity in living organisms, which is inconsistent with their purported eco-friendly and cost-effective aspects. In this investigation, AuNPs were synthesized via the green synthesis approach utilizing Jeju Hallabong peel extract (HPE), a typical fruit variety indigenous to South Korea. The visible-range absorption spectrum of gold nanoparticles from green synthesis (HAuNPs) that are red wine in color occurs at a wavelength of λ = 517 nm. The morphology and particle size distribution were analysed using transmission electron microscopy (TEM) and ImageJ software. The TEM images reveal that the HAuNPs exhibit a high degree of dispersion and uniformity in their spherical shape, with an average size of approximately 7 nm. Moreover, elevating the initial pH level of the mixed solution has an impact on the decrease in particle dimensions, as evidenced by the blue shift observed in the UV-visible spectroscopy absorbance peak. Elevating the reaction temperature may accelerate the synthesis duration. However, it does not exert a substantial impact on the particle dimensions. The outcomes of an avidin-biocytin colorimetric assay provide preliminary analyses of possible sensor tunability using HAuNPs. The cytotoxicity of HAuNPs was evaluated through in vitro studies using the MTT assay on RAW 264.7 cell lines. The results indicated that the HAuNPs exhibited lower cytotoxicity compared to both chemically reduced gold nanoparticles (CAuNPs).

2.
J Control Release ; 361: 350-360, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37536548

RESUMEN

We report copper(II) arsenite-encapsulated ferritin nanoparticles (CuAS-FNs) as oxidative stress-amplifying anticancer agents. The CuAS-FNs were fabricated through CuAS mineralization in the cavity of the FNs. The formation of crystalline CuAS complex minerals in the FNs was systematically identified using various analytical tools, including X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM)-associated energy-dispersive X-ray spectroscopy (TEM-EDS). The CuAS-FNs showed pH-dependent release behavior, in which the CuAS mineral was effectively retained at physiological pH, in contrast, at lysosomal pH, the CuAS complex was dissociated to release arsenite and Cu2+ ions. At lysosomal pH, the release rate of arsenite (HAsO32-) and Cu2+ ions from the CuAS-FNs more accelerated than at physiological pH. Upon transferrin receptor-1-mediated endocytosis, the CuAS-FNs simultaneously released arsenite and Cu2+ ions in cells. The released arsenite ions can increase the intracellular concentration of hydrogen peroxide (H2O2), with which the Cu2+ ions can elevate the level of hydroxyl radicals (·OH) via Fenton-like reaction. Thus, the CuAS-FNs could target cancer cell through the recognizing ability of FNs and kill cancer cells by amplifying the ·OH level through the synergistic activity of Cu2+ and arsenic ions. Importantly, MCF-7 tumors were effectively suppressed by CuAS-FNs without systemic in vivo toxicity. Therefore, the CuAS-FNs is a promising class of Fenton-like catalytic nanosystem for cancer treatment.


Asunto(s)
Arsenitos , Neoplasias , Humanos , Cobre/química , Ferritinas , Peróxido de Hidrógeno/química , Minerales , Estrés Oxidativo , Neoplasias/tratamiento farmacológico
3.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37047042

RESUMEN

Nitroreductase (NTR) has the ability to activate nitro group-containing prodrugs and decompose explosives; thus, the evaluation of NTR activity is specifically important in pharmaceutical and environmental areas. Numerous studies have verified effective fluorescent methods to detect and image NTR activity; however, near-infrared (NIR) fluorescence probes for biological applications are lacking. Thus, in this study, we synthesized novel NIR probes (NIR-HCy-NO2 1-3) by introducing a nitro group to the hemicyanine skeleton to obtain fluorescence images of NTR activity. Additionally, this study was also designed to propose a different water solubility and investigate the catalytic efficiency of NTR. NIR-HCy-NO2 inherently exhibited a low fluorescence background due to the interference of intramolecular charge transfer (ICT) by the nitro group. The conversion from the nitro to amine group by NTR induced a change in the absorbance spectra and lead to the intense enhancement of the fluorescence spectra. When assessing the catalytic efficiency and the limit of detection (LOD), including NTR activity imaging, it was demonstrated that NIR-HCy-NO2 1 was superior to the other two probes. Moreover, we found that NIR-HCy-NO2 1 reacted with type I mitochondrial NTR in live cell imaging. Conclusively, NIR-HCy-NO2 demonstrated a great potential for application in various NTR-related fields, including NTR activity for cell imaging in vivo.


Asunto(s)
Colorantes Fluorescentes , Dióxido de Nitrógeno , Colorantes Fluorescentes/farmacología , Microscopía Fluorescente/métodos , Imagen Óptica/métodos , Nitrorreductasas/metabolismo
4.
Acta Biomater ; 159: 382-393, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36669550

RESUMEN

Multifunctional bone substitute materials (BSM) have gained considerable attention with the exponential increase in aging populations. The development of hybrid materials for diagnosis and therapy of bone-related diseases and dysfunctions, especially, has been a significant challenge in the biological and the biomedical field, due to the shortage of agents with specificity and selectivity toward bone. In this study, a hybrid material, referred as Alen-CDs@CDHA, fabricated from alendronate-conjugated carbon dots (Alen-CDs) and calcium-deficient hydroxyapatite (CDHA, the mineral component of bones) scaffolds is offered as a novel multifunctional BSM for in vivo osteoclasts deactivation and fluorescence imaging. The fluorescent Alen-CDs were hydrothermally prepared using phytic acid as carbon source, followed by conjugating alendronate, for controlled alendronate release and fluorescent imaging under acidic conditions. As-prepared fluorescent Alen-CDs were consecutively immobilized on surfaces of CDHA scaffolds, exhibiting high affinity by bisphosphonate group, easily fabricated from α-tricalcium phosphate (α-TCP) paste using three-dimensional (3D) printing system. The resultant Alen-CDs@CDHA caused a significant decrease (> 50%) in viability of osteoclasts at 7 days after in vitro treatment. Furthermore, when Alen-CDs@CDHA was implanted in balb/c nude mice for in vivo evaluation, we found Alen-CDs@CDHA to be suitable for bone imaging through fluorescence signals, without necrosis or inflammatory symptoms in the epidermal tissues. Thus, these observations offer new opportunities for a novel and revolutionary use of Alen-CDs@CDHA as highly specific multifunctional BSM for bone diagnosis and imaging, and as bone-specific drug delivery materials, eventually providing anti-osteoclastogenic treatments solution for degenerative bone disorders. STATEMENT OF SIGNIFICANCE: Alen-CDs@CDHA significantly reduced the viability of osteoclasts and fluorescently imaged in vivo after transplantation, releasing drug via pH modulation. The development of fluorescence materials for bone imaging remains still a major challenge in the biomedical field owing to the shortage of selectivity and specificity. The results could lead to improvements in bone treatment strategies, as it could reduce the invasiveness of procedures and the associated negative outcomes, and increase the precision of strategies. Further, we believe that this study will be of interest to the readership of your journal as clearly focuses on the advancement of a biomaterial, where we have engineered a substance to substitute bone and integrate with a living system.


Asunto(s)
Sustitutos de Huesos , Durapatita , Ratones , Animales , Durapatita/química , Calcio/química , Alendronato/uso terapéutico , Carbono , Ratones Desnudos , Imagen Óptica , Impresión Tridimensional
5.
Theranostics ; 12(15): 6762-6778, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36185599

RESUMEN

Background: Single imaging modality is still insufficient to evaluate the biological and anatomical structures of tumors with high accuracy and reliability. Generation of non-specific contrast, leading to a low target-to-background signal ratio, results in low imaging resolution and accuracy. Tumor environment-specific activatable multifunctional contrast agents need to maximize the contrast signals, representing a dual imaging-guided photothermal therapy (PTT) at target tumor sites. Methods: Cellular uptake, cytotoxicity assay, and in vitro photothermal conversion efficiency of MnCO3-mineralized fluorescent polydopamine nanoparticles (MnCO3-FPNPs) were evaluated using 4T1 breast cancer cells. In vivo dual-modality imaging was performed using IVIS imaging and a 4.7 T animal MRI systems after injection into 4T1 tumor-bearing nude mice. The effects of photothermal therapeutic through PTT were measured after irradiation with an 808 nm laser (1.5 W/cm2) for 10 min, measuring the size of the tumors every 2 days. Results: At physiological pH (7.4), MnCO3-FPNP is efficiently quenched. Conversely, at acidic pH (5.4), the strong fluorescence (FL) is recovered due to the dissociation of Mn2+ from the FPNPs. At pH 7.4, MnCO3-FPNP activity is silenced to enhance water proton relaxation due to unionized MnCO3 maintenance; conversely, at acidic pH (5.4), MnCO3-FPNPs efficiently release Mn2+ ions, thereby resulting in T 1-weighted magnetic resonance (MR) contrast enhancement. MnCO3-FPNPs display a promising diagnostic ability for 4T1 breast cancer xenograft models, as well as exhibit a high photothermal conversion efficiency. A successful tumor treatment via their photothermal activity is accomplished within 14 days. Conclusions: Our studies exhibited unique "OFF-ON" activation abilities in FL/MR dual imaging and PTT functions. This approach suggests that the MnCO3-FPNPs may serve as a useful platform for various mineralization-based multimodal imaging-guided PTT models for many cancer theranostic applications.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Animales , Línea Celular Tumoral , Medios de Contraste/uso terapéutico , Humanos , Hipertermia Inducida/métodos , Indoles , Imagen por Resonancia Magnética/métodos , Ratones , Ratones Desnudos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Fototerapia/métodos , Terapia Fototérmica , Polímeros , Medicina de Precisión , Protones , Reproducibilidad de los Resultados , Nanomedicina Teranóstica/métodos , Agua
6.
Biomater Res ; 26(1): 40, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35986395

RESUMEN

Artificial olfactory sensors that recognize patterns transmitted by olfactory receptors are emerging as a technology for monitoring volatile organic compounds. Advances in statistical processing methods and data processing technology have made it possible to classify patterns in sensor arrays. Moreover, biomimetic olfactory recognition sensors in the form of pattern recognition have been developed. Deep learning and artificial intelligence technologies have enabled the classification of pattern data from more sensor arrays, and improved artificial olfactory sensor technology is being developed with the introduction of artificial neural networks. An example of an artificial olfactory sensor is the electronic nose. It is an array of various types of sensors, such as metal oxides, electrochemical sensors, surface acoustic waves, quartz crystal microbalances, organic dyes, colorimetric sensors, conductive polymers, and mass spectrometers. It can be tailored depending on the operating environment and the performance requirements of the artificial olfactory sensor. This review compiles artificial olfactory sensor technology based on olfactory mechanisms. We introduce the mechanisms of artificial olfactory sensors and examples used in food quality and stability assessment, environmental monitoring, and diagnostics. Although current artificial olfactory sensor technology has several limitations and there is limited commercialization owing to reliability and standardization issues, there is considerable potential for developing this technology. Artificial olfactory sensors are expected to be widely used in advanced pattern recognition and learning technologies, along with advanced sensor technology in the future.

7.
Nanomaterials (Basel) ; 12(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35055281

RESUMEN

Loop-mediated isothermal amplification (LAMP) is a molecular diagnosis technology with the advantages of rapid results, isothermal reaction conditions, and high sensitivity. However, this diagnostic system often produces false positive results due to a high rate of non-specific reactions caused by formation of hairpin structures, self-dimers, and mismatched hybridization. The non-specific signals can be due to primers used in the methods because the utilization of multiple LAMP primers increases the possibility of self-annealing of primers or mismatches between primers and templates. In this study, we report a nanomaterial-assisted LAMP method that uses a graphene oxide-gold nanoparticles (AuNPs@GO) nanocomposite to enable the detection of foot-and-mouth disease virus (FMDV) with high sensitivity and specificity. Foot-and-mouth disease (FMD) is a highly contagious and deadly disease in cloven-hoofed animals; hence, a rapid, sensitive, and specific detection method is necessary. The proposed approach exhibited high sensitivity and successful reduction of non-specific signals compared to the traditionally established LAMP assays. Additionally, a mechanism study revealed that these results arose from the adsorption of single-stranded DNA on AuNPs@GO nanocomposite. Thus, AuNPs@GO nanocomposite is demonstrated to be a promising additive in the LAMP system to achieve highly sensitive and specific detection of diverse diseases, including FMD.

8.
Biomolecules ; 11(6)2021 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-34198783

RESUMEN

Foot-and-mouth disease virus (FMDV) is a highly contagious disease that affects cloven-hoofed animals. The traditional diagnostic methods for FMDV have several drawbacks such as cross-reactivity, low sensitivity, and low selectivity. To overcome these drawbacks, we present an optical and electrochemical dual-modal approach for the specific detection of FMDV serotypes O and A by utilizing a magnetic nanoparticle labeling technique with resorufin ß-d-glucopyranoside (res-ß-glc) and ß-glucosidase (ß-glc), without the use of typical lateral flow assay or polymerase chain reaction. FMDV serotypes O and A were reacted with pan-FMDV antibodies that recognize all seven FMDV serotypes (O, A, C, Asia 1, SAT 1, SAT 2, and SAT 3). The antigen-antibody complex was then immobilized on magnetic nanoparticles and reacted with ß-glc-conjugated FMDV type O or type A antibodies. Subsequently, the addition of res-ß-glc resulted in the release of fluorescent resorufin and glucose owing to catalytic hydrolysis by ß-glc. The detection limit of fluorescent signals using a fluorescence spectrophotometer was estimated to be log(6.7) and log(5.9) copies/mL for FMDV type O and A, respectively, while that of electrochemical signals using a glucometer was estimated to be log(6.9) and log(6.1) copies/mL for FMDV type O and A, respectively. Compared with a commercially available lateral flow assay diagnostic kit for immunochromatographic detection of FMDV type O and A, this dual-modal detection platform offers approximately four-fold greater sensitivity. This highly sensitive and accurate dual-modal detection method can be used for effective disease diagnosis and treatment, and will find application in the early-stage diagnosis of viral diseases and next-generation diagnostic platforms.


Asunto(s)
Técnicas Electroquímicas/métodos , Virus de la Fiebre Aftosa/química , Virus de la Fiebre Aftosa/metabolismo , Serogrupo , Serotipificación/métodos , Animales , Anticuerpos Antivirales/análisis , Anticuerpos Antivirales/sangre , Virus de la Fiebre Aftosa/aislamiento & purificación , Humanos , Nanopartículas Magnéticas de Óxido de Hierro/análisis , Nanopartículas Magnéticas de Óxido de Hierro/química
9.
Int J Mol Sci ; 22(9)2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-34063731

RESUMEN

Bone homeostasis plays a major role in supporting and protecting various organs as well as a body structure by maintaining the balance of activities of the osteoblasts and osteoclasts. Unbalanced differentiation and functions of these cells result in various skeletal diseases, such as osteoporosis, osteopetrosis, and Paget's disease. Although various synthetic nanomaterials have been developed for bone imaging and therapy through the chemical conjugation, they are associated with serious drawbacks, including heterogeneity and random orientation, in turn resulting in low efficiency. Here, we report the synthesis of bone-targeting ferritin nanoparticles for bone imaging. Ferritin, which is a globular protein composed of 24 subunits, was employed as a carrier molecule. Bone-targeting peptides that have been reported to specifically bind to osteoblast and hydroxyapatite were genetically fused to the N-terminus of the heavy subunit of human ferritin in such a way that the peptides faced outwards. Ferritin nanoparticles with fused bone-targeting peptides were also conjugated with fluorescent dyes to assess their binding ability using osteoblast imaging and a hydroxyapatite binding assay; the results showed their specific binding with osteoblasts and hydroxyapatite. Using in vivo analysis, a specific fluorescent signal from the lower limb was observed, demonstrating a highly selective affinity of the modified nanoparticles for the bone tissue. These promising results indicate a specific binding ability of the nanoscale targeting system to the bone tissue, which might potentially be used for bone disease therapy in future clinical applications.


Asunto(s)
Ferritinas/genética , Nanopartículas del Metal/química , Osteoblastos/efectos de los fármacos , Péptidos/genética , Huesos/diagnóstico por imagen , Huesos/ultraestructura , Diferenciación Celular/efectos de los fármacos , Durapatita/química , Ferritinas/química , Ferritinas/farmacología , Humanos , Imagen Molecular , Osteoblastos/ultraestructura , Osteoclastos/efectos de los fármacos , Péptidos/química , Péptidos/farmacología
10.
Nanomaterials (Basel) ; 10(10)2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32993046

RESUMEN

The polymerase chain reaction (PCR) has become a powerful molecular diagnostic technique over the past few decades, but remains somewhat impaired due to low specificity, poor sensitivity, and false positive results. Metal and carbon nanomaterials, quantum dots, and metal oxides, can improve the quality and productivity of PCR assays. Here, we describe the ability of PCR assisted with nanomaterials (nano-PCR) comprising a nanocomposite of graphene oxide (GO) and gold nanoparticles (AuNPs) for sensitive detection of the foot-and-mouth disease virus (FMDV). Graphene oxide and AuNPs have been widely applied as biomedical materials for diagnosis, therapy, and drug delivery due to their unique chemical and physical properties. Foot-and-mouth disease (FMD) is highly contagious and fatal for cloven-hoofed animals including pigs, and it can thus seriously damage the swine industry. Therefore, a highly sensitive, specific, and practical method is needed to detect FMDV. The detection limit of real-time PCR improved by ~1000 fold when assisted by GO-AuNPs. We also designed a system of detecting serotypes in a single assay based on melting temperatures. Our sensitive and specific nano-PCR system can be applied to diagnose early FMDV infection, and thus may prove to be useful for clinical and biomedical applications.

11.
RSC Adv ; 9(5): 2708-2717, 2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35520477

RESUMEN

Novel fluorescent carbon dots (CDs) for bone imaging were fabricated via a facile hydrothermal method using alendronate in the absence of a nitrogen-doping precursor to enhance bone affinity. One-step synthesized alendronate-based CDs (Alen-CDs) had strong binding activity for calcium-deficient hydroxyapatite (CDHA, the mineral component of bones) scaffold, rat femur, and bone structures of live zebrafish. This was attributed to the bisphosphonate group present on the CD surface, even after carbonization. For comparison, the surface effects of nitrogen-doped CDs obtained using ethylenediamine (EDA), i.e., Alen-EDA-CDs, were also investigated, focusing on the targeting ability of distinct surface functional groups when compared with Alen-CDs. An in vivo study to assess the impact on bone affinity revealed that Alen-CDs effectively accumulated in the bone structures of live zebrafish larvae after microinjections, as well as in the bone tissues of femur extracted from rats. Moreover, Alen-CD-treated zebrafish larvae had superior toleration, retaining skeletal fluorescence for 7 days post-injection (dpi). The sustainable capability, surpassing that of Alizarin Red S, suggests that Alen-CDs have the potential for targeted drug delivery to damaged bone tissues and provides motivation for additional in vivo investigations. To our knowledge, this is the first in vitro, ex vivo, and in vivo demonstration of direct bone-targeted deliveries, supporting the use of fluorescent CDs in the treatment of various bone diseases such as osteoporosis, Paget's disease, and metastatic bone cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA