Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Int J Med Sci ; 21(9): 1689-1700, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006847

RESUMEN

Introduction: There is evidence that aging and obesity are associated with increased oxidative stress and chronic inflammation. High-intensity interval training (HIIT) may be superior to moderate-intensity continuous training (MICT) in anti-inflammatory and anti-obesity benefits. Therefore, the objective of this study is to determine which HIIT prescriptions will be more effective in reducing fat accumulation, inflammation, and improving metabolic adaptation and exercise performance in middle-aged and older overweight adults. Methods: Thirty-six middle-aged with overweight adults were divided into one of three groups: 1. L-HIIT group: the long-interval HIIT group (4 × 4 min Exercise/4 min Rest), 2. M-HIIT group: the medium-interval HIIT group (8 × 2 min Exercise/2 min Rest), 3. Control group: no exercise training intervention. All groups underwent the training stage for eight weeks (three sessions per week), followed by a detraining stage of four weeks in order to investigate the effects induced by different HIIT interventions on inflammation, metabolic adaptation, anti-fatigue and exercise performance, and fat loss Results: There was a significant physiological response in the change rate of heart rate (HR) after an acute L-HIIT session compared with an acute M-HIIT session (ΔHR: ↑49.66±16.09% vs ↑33.22±14.37%, p=0.02); furthermore, systolic blood pressure (SBP) and diastolic blood pressure (DBP) decreased significantly following a single L-HIIT session. After an eight-week training stage, the L-HIIT and M-HIIT groups exhibited a significant increase in aerobic capacity (ΔVO2peak), with values of +27.93±16.79% (p<0.001) and +18.39±8.12% (p<0.001), respectively, in comparison to the control group. Furthermore, in the L-HIIT group, the anaerobic power of relative mean power (RMP) exhibited a significant increase (p=0.019). However, following a four-week detraining stage, the adiponectin concentration remained 1.78 times higher in the L-HIIT group than in the control group (p=0.033). The results of blood sugar, blood lipids, body composition, and inflammatory markers did not indicate any improved it did not indicate any improvements from the two different HIIT protocols. Conclusions: The results indicate that an eight-week L-HIIT or M-HIIT intervention (three sessions per week, 32 minutes per session) may be an effective approach for improving aerobic capacity. It can be posited that L-HIIT may be a more advantageous mode than M-HIIT for enhancing anaerobic power, adipokine levels, and improving blood pressure in an aged and overweight population due to the induced physiological responses.


Asunto(s)
Adaptación Fisiológica , Entrenamiento de Intervalos de Alta Intensidad , Sobrepeso , Humanos , Entrenamiento de Intervalos de Alta Intensidad/métodos , Persona de Mediana Edad , Masculino , Femenino , Sobrepeso/terapia , Sobrepeso/fisiopatología , Sobrepeso/metabolismo , Anciano , Frecuencia Cardíaca/fisiología , Ejercicio Físico/fisiología , Inflamación
2.
Nutrients ; 16(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38931275

RESUMEN

Probiotics are posited to enhance exercise performance by influencing muscle protein synthesis, augmenting glycogen storage, and reducing inflammation. This double-blind study randomized 88 participants to receive a six-week intervention with either a placebo, Lactococcus lactis subsp. lactis LY-66, Lactobacillus plantarum PL-02, or a combination of both strains, combined with a structured exercise training program. We assessed changes in maximal oxygen consumption (VO2max), exercise performance, and gut microbiota composition before and after the intervention. Further analyses were conducted to evaluate the impact of probiotics on exercise-induced muscle damage (EIMD), muscle integrity, and inflammatory markers in the blood, 24 and 48 h post-intervention. The results demonstrated that all probiotic groups exhibited significant enhancements in exercise performance and attenuation of muscle strength decline post-exercise exhaustion (p < 0.05). Notably, PL-02 intake significantly increased muscle mass, whereas LY-66 and the combination therapy significantly reduced body fat percentage (p < 0.05). Analysis of intestinal microbiota revealed an increase in beneficial bacteria, especially a significant rise in Akkermansia muciniphila following supplementation with PL-02 and LY-66 (p < 0.05). Overall, the combination of exercise training and supplementation with PL-02, LY-66, and their combination improved muscle strength, explosiveness, and endurance performance, and had beneficial effects on body composition and gastrointestinal health, as evidenced by data obtained from non-athlete participants.


Asunto(s)
Microbioma Gastrointestinal , Lactobacillus plantarum , Lactococcus lactis , Fuerza Muscular , Resistencia Física , Probióticos , Humanos , Probióticos/administración & dosificación , Método Doble Ciego , Masculino , Resistencia Física/fisiología , Femenino , Adulto , Adulto Joven , Consumo de Oxígeno , Músculo Esquelético/fisiología , Ejercicio Físico/fisiología
3.
Food Funct ; 15(12): 6523-6535, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38805370

RESUMEN

Muscle damage can occur due to excessive, high-intensity, or inappropriate exercise. It is crucial for athletes and sports enthusiasts to have access to ways that expedite their recovery and alleviate discomfort. Our previous clinical trial demonstrated the anti-inflammatory and muscle damage-ameliorating properties of Lacticaseibacillus paracasei PS23 (PS23), prompting us to further explore the role of this probiotic in muscle damage recovery. This post-hoc analysis of a randomized controlled study investigated potential mediators between the intake of PS23 and the prevention of strength loss after muscle damage. We recruited 105 students from a sports university who had participated in the previously published clinical trial. These participants were randomly allocated to three groups, receiving capsuled live PS23 (L-PS23), heat-treated PS23 (HT-PS23), or a placebo over a period of six weeks. Baseline and endpoint measurements were taken for the levels of circulating ghrelin and other blood markers, stress, mood, quality of life, and the fecal microbiota. A significant increase in ghrelin levels was recorded in the L-PS23 group compared to the other groups. Additionally, both L-PS23 and HT-PS23 interventions led to positive shifts in the gut microbiota composition, particularly in elevated Lacticaseibacillus, Blautia, and Lactobacillus populations. The abundance of these bacteria was positively correlated with exercise performance and inversely correlated with inflammatory markers. In conclusion, dietary supplementation with PS23 may enhance exercise performance and influence muscle damage by increasing ghrelin levels and modulating the gut microbiota composition. Further clarification of the possible mechanisms and clinical implications is required.


Asunto(s)
Microbioma Gastrointestinal , Ghrelina , Lacticaseibacillus paracasei , Probióticos , Humanos , Ghrelina/sangre , Ghrelina/metabolismo , Masculino , Adulto Joven , Femenino , Adulto , Heces/microbiología , Método Doble Ciego
4.
Foods ; 13(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38611334

RESUMEN

In addition to maintaining good exercise and dietary habits, recent studies have shown that probiotics may have potential benefits for muscle mass and strength. It is worth noting that the effects may vary depending on the specific strains used. To date, no studies have analyzed the effects of Lactiplantibacillus brevis in this context. Here, we combine the L. brevis strain GKEX with resistance training to further understand its effects on muscle mass, thickness, performance, and fat loss. In a six-week intervention for a double-blind randomized trial, 52 healthy subjects were divided into two groups (10 male and 16 female participants in each group): a placebo group (two capsules/day, containing 0 CFU of GKEX per capsule) and a GKEX group (two capsules/day, containing 1 × 1010 CFU of GKEX per capsule). Before the intervention, no differences were observed between the two groups in any of the tests (body composition, muscle thickness, exercise performance, and blood parameters). However, supplementation with GKEX significantly improved muscle mass and thickness, as well as grip strength, muscle strength, and explosive performance, when compared to the associated parameters before the intervention. Additionally, GKEX supplementation promoted a reduction in the body fat percentage (p < 0.05). Through analysis of the change amount, we observed that GKEX supplementation yielded significantly improved benefits when compared to the placebo group (p < 0.05). In summary, our findings support the notion that a six-week resistance exercise training program combined with L. brevis GKEX supplementation has superior additive effects that enhance muscle mass and strength performance, while also reducing body fat percentage. This intervention can promote muscle gain and fat loss.

5.
Nutrients ; 16(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38674852

RESUMEN

Probiotics may protect against asthma. We want to investigate whether probiotics can reverse the adverse effects of phthalate exposure on asthma. We selected the female offspring of BALB/c mice, born from pregnant female mice fed with diethylhexyl phthalate (DEHP). They were continuously administrated DEHP and Lactobacillus salivarius ssp. salicinius SA-03 when they were 5 weeks old, and ovalbumin (OVA) for asthma induction started at 6 weeks for 32 days. The mice were divided into four groups (n = 6/group): 1. control group (C), 2. OVA/DEHP group (OD), 3. OVA/DEHP/probiotics low-dose group (ODP-1X), and OVA/DEHP/probiotics high-dose group (ODP-5X). We found that the administration of probiotics significantly reduced the asthma severity of the mice, as well as serum IgE and IL-5. In the ODP-5X group, the proportion of CD4+ cells in the lung was reduced, whereas IL-10 in serum and CD8+ cells in BALF were increased. In histopathology, the ODP group showed reduced infiltration of inflammatory cells, bronchial epithelial cell hyperplasia, and tracheal mucus secretion. These results might indicate that high-dose probiotics may affect anti-inflammatory cytokines and reduce asthma-relative indicators. The above results may provide evidence that high-dose probiotics supplementation might play a modulating role in DEHP causes of allergic asthma in the pediatric animal model.


Asunto(s)
Asma , Ratones Endogámicos BALB C , Probióticos , Animales , Asma/inducido químicamente , Probióticos/farmacología , Femenino , Ratones , Ovalbúmina , Ligilactobacillus salivarius , Dietilhexil Ftalato/toxicidad , Modelos Animales de Enfermedad , Embarazo , Pulmón/patología , Pulmón/efectos de los fármacos , Suplementos Dietéticos , Inmunoglobulina E/sangre , Líquido del Lavado Bronquioalveolar
6.
PeerJ ; 11: e16303, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37868059

RESUMEN

In recent years, electrical muscle stimulation (EMS) devices have been developed as a complementary training technique that is novel, attractive, and time-saving for physical fitness and rehabilitation. While it is known that EMS training can improve muscle mass and strength, most studies have focused on the elderly or specific patient populations. The aim of this study was to investigate the effects of frequency-specific EMS combined with resistance exercise training for 8 weeks on muscle mass, strength, power, body composition, and parameters related to exercise fatigue. Additionally, we aimed to evaluate the feasibility and safety of EMS as an exercise aid to improve body composition. We recruited 14 male and 14 female subjects who were randomly assigned to two groups with gender parity (seven male and seven female/group): (1) no EMS group (age: 21.6 ± 1.7; height: 168.8 ± 11.8 cm; weight: 64.2 ± 14.4 kg) and (2) daily EMS group (age: 21.8 ± 2.0; height: 167.8 ± 9.9 cm; weight: 68.5 ± 15.5 kg). The two groups of subjects were very similar with no significant difference. Blood biochemical routine analysis was performed every 4 weeks from pre-intervention to post-intervention, and body composition, muscle strength, and explosive power were evaluated 8 weeks before and after the intervention. We also performed an exercise challenge analysis of fatigue biochemical indicators after 8 weeks of intervention. Our results showed that resistance exercise training combined with daily EMS significantly improved muscle mass (p = 0.002) and strength (left, p = 0.007; right, p = 0.002) and significantly reduced body fat (p < 0.001) than the no EMS group. However, there was no significant advantage for biochemical parameters of fatigue and lower body power. In summary, our study demonstrates that 8 weeks of continuous resistance training combined with daily upper body, lower body, and abdominal EMS training can significantly improve muscle mass and upper body muscle strength performance, as well as significantly reduce body fat percentage in healthy subjects.


Asunto(s)
Entrenamiento de Fuerza , Humanos , Masculino , Femenino , Anciano , Adulto Joven , Adulto , Estudios de Factibilidad , Músculo Esquelético/fisiología , Ejercicio Físico , Composición Corporal/fisiología
7.
Int J Med Sci ; 20(10): 1272-1281, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37786445

RESUMEN

B vitamins play a crucial role in maintaining fundamental cellular functions and various essential metabolic pathways in the body. Although they do not directly provide energy, each B vitamin acts as a cofactor in energy metabolism processes. Based on the evidence presented above, we hypothesized that a 28-day supplementation of vitamin B would enhance physical performance and reduce physical fatigue. The objective of this study was to evaluate the anti-fatigue effect of vitamin B supplementation, specifically vitamin B1, B2, B6, and B12, and its potential to improve exercise performance. We employed a randomized double-blind crossover design with a 28-day supplementation period. Sixteen male and sixteen female subjects, aged 20-30 years, were divided into two groups: the placebo group (n=16, equal gender distribution) and the Ex PLUS® group (n=16, equal gender distribution). The participants received either placebo or Ex PLUS® (one tablet per day) for 28 consecutive days. Following the intervention, there was a 14-day wash-out period during which the subjects did not receive any further interventions. After supplementation with Ex PLUS®, we found a significant increase in the running time by 1.26-fold (p < 0.05) to exhaustion compared to that before supplementation and that in the placebo group. In addition, the Ex PLUS® supplementation group presented significantly reduced blood lactate and blood ammonia concentrations during exercise and at rest after exercise compared with placebo (p < 0.05). In conclusion, 28 consecutive days of vitamin B complex (Ex PLUS®) supplementation significantly improved exercise endurance performance and reduced exercise fatigue biochemical metabolites in not athletes. In addition, it does not cause adverse effects in humans when taken at appropriate doses.


Asunto(s)
Complejo Vitamínico B , Humanos , Masculino , Femenino , Complejo Vitamínico B/uso terapéutico , Suplementos Dietéticos , Ácido Fólico , Estado de Salud , Fatiga/tratamiento farmacológico , Método Doble Ciego
8.
Physiol Rep ; 11(19): e15835, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37816697

RESUMEN

Consumption of Lactiplantibacillus plantarum TWK10 (TWK10) has beneficial probiotic effects, improves exercise endurance performance, regulates body composition, and mitigates aging-related problems in mice and humans. Here, we investigated the effects of heat-killed TWK10 on exercise endurance performance, muscle weight and strength, fatigue, and body composition in a double-blind, placebo-controlled clinical trial. Thirty healthy males aged 20-40 years were assigned to the Control group or heat-killed TWK10 group (TWK10-HK) in a balanced order according to each individual's initial maximal oxygen uptake. After 6-week administration, the exercise endurance time in the TWK10-HK was significantly increased (p = 0.0028) compared with that in the Control group. The grip strength on the right and left hands of the subjects was significantly increased (p = 0.0002 and p = 0.0140, respectively) in the TWK10-HK compared with that in the Control group. Administration of heat-killed TWK10 resulted in a significant increase (p = 0.0275) in muscle weight. After 6-week administration, serum lactate, and ammonia levels were significantly lower in the TWK10-HK group than in the Control group during the exercise and recovery periods. These findings demonstrate that heat-killed TWK10 has significant potential to be used as a postbiotic for humans.


Asunto(s)
Fatiga , Probióticos , Adulto , Humanos , Masculino , Adulto Joven , Calor , Fatiga Muscular , Músculos
9.
Microorganisms ; 10(11)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36363775

RESUMEN

Lactiplantibacillus plantarum TWK10, a probiotic strain, has been demonstrated to improve exercise performance, regulate body composition, and ameliorate age-related declines. Here, we performed a comparative analysis of viable and heat-killed TWK10 in the regulation of exercise performance, body composition, and gut microbiota in humans. Healthy adults (n = 53) were randomly divided into three groups: Control, TWK10 (viable TWK10, 3 × 1011 colony forming units/day), and TWK10-hk (heat-killed TWK10, 3 × 1011 cells/day) groups. After six-week administration, both the TWK10 and TWK10-hk groups had significantly improved exercise performance and fatigue-associated features and reduced exercise-induced inflammation, compared with controls. Viable TWK10 significantly promoted improved body composition, by increasing muscle mass proportion and reducing fat mass. Gut microbiota analysis demonstrated significantly increasing trends in the relative abundances of Akkermansiaceae and Prevotellaceae in subjects receiving viable TWK10. Predictive metagenomic profiling revealed that heat-killed TWK10 administration significantly enhanced the signaling pathways involved in amino acid metabolisms, while glutathione metabolism, and ubiquinone and other terpenoid-quinone biosynthesis pathways were enriched by viable TWK10. In conclusion, viable and heat-killed TWK10 had similar effects in improving exercise performance and attenuating exercise-induced inflammatory responses as probiotics and postbiotics, respectively. Viable TWK10 was also highly effective in regulating body composition. The differences in efficacy between viable and heat-killed TWK10 may be due to differential impacts in shaping gut microbiota.

10.
Nutrients ; 14(21)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36364825

RESUMEN

Excessive, high-intensity or inappropriate exercise may cause muscle damage. How to speed up recovery and reduce exercise discomfort are currently very important issues for athletes and sports people. Past research has shown that probiotics can improve inflammation and oxidative stress, as well as improve exercise performance and antifatigue. However, further research is needed to confirm the recovery benefits for muscle damage. In this double-blind design study, all subjects were randomly assigned to placebo, a live Lactobacillus paracasei group (L-PS23, 2 × 1010 colony forming unit (CFU)/day), or a heat-killed L. paracasei group (HK-PS23, 2 × 1010 cells/day), and supplemented for six consecutive weeks. Afterwards, subjects completed 100 maximal vertical jumps to bring about exercise-induced muscle damage (EIMD). Countermovement jump (CMJ), isometric mid-thigh pull (IMTP), and Wingate anaerobic test (WAnT), as well as blood tests for markers of muscle damage and inflammation were made pre-exercise and 3, 24, 48 h post exercise. The results show that both L-PS23 and HK-PS23 supplementation significantly slowed the loss of muscle strength after muscle injury, and they significantly reduced the production of markers of muscle damage and inflammation (p < 0.05). In addition, L-PS23 and HK-PS23 had the benefits of accelerating the recovery and improvement of muscle strength, the blood markers of muscle injury and inflammation, and slowing the decline in testosterone concentrations (p < 0.05). Especially in the HK-PS23 supplemented group, there was a better trend. In conclusion, we found that L-PS23 or HK-PS23 supplementation for six weeks prevented strength loss after muscle damage and improved blood muscle damage and inflammatory markers, with protective, accelerated recovery and anti-fatigue benefits.


Asunto(s)
Lacticaseibacillus paracasei , Probióticos , Humanos , Lacticaseibacillus paracasei/fisiología , Calor , Fuerza Muscular , Biomarcadores , Inflamación , Músculos , Músculo Esquelético/fisiología , Método Doble Ciego
11.
Nutrients ; 14(18)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36145123

RESUMEN

Women during pregnancy and postpartum show high rates of obesity and metabolic diseases, especially women with excessive caloric intake. In the past, it was proved that individuals with high intrinsic aerobic exercise capacities showed higher lipid metabolism and lower fat production than those with low intrinsic aerobic exercise capacities. The purpose of this study was to determine whether mice with the low-fitness phenotype (LAEC) were more likely to develop metabolic abnormalities and obesity under dietary induction after delivery, and if mice with a high-fitness phenotype (HAEC) had a protective mechanism. After parturition and weaning, postpartum Institute of Cancer Research (ICR) mice received dietary induction for 12 weeks and were divided into four groups (n = 8 per group): high-exercise capacity postpartum mice with a normal chow diet (HAEC-ND); high-exercise capacity postpartum mice with a high-fat diet (HAEC-HFD); low-exercise capacity postpartum mice with a normal chow diet (LAEC-ND); and low-exercise capacity postpartum mice with a high-fat diet (LAEC-HFD). Obesity caused by a high-fat diet led to decreased exercise performance (p < 0.05). Although there were significant differences in body posture under congenital conditions, the LAEC mice gained more weight and body fat after high-fat-diet intake (p < 0.05). Compared with HAEC-HFD, LAEC-HFD significantly increased blood lipids, such as total cholesterol (TC), triacylglycerol (TG), low-density lipoprotein (LDL) and other parameters (p < 0.05), and the content of TG in the liver, as well as inducing poor glucose tolerance (p < 0.05). In addition, after HFD intake, excessive energy significantly increased glycogen storage (p < 0.05), but the LAEC mice showed significantly lower muscle glycogen storage (p < 0.05). In conclusion, although we observed significant differences in intrinsic exercise capacity, and body posture and metabolic ability were also different, high-fat-diet intake caused weight gain and a risk of metabolic disorders, especially in postpartum low-fitness mice. However, HAEC mice still showed better lipid metabolism and protection mechanisms. Conversely, LAEC mice might accumulate more fat and develop metabolic diseases compared with their normal rodent chow diet (ND) control counterparts.


Asunto(s)
Dieta Alta en Grasa , Tolerancia al Ejercicio , Animales , Colesterol , Femenino , Glucosa , Glucógeno , Humanos , Lipoproteínas LDL , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Periodo Posparto , Embarazo , Triglicéridos
12.
Nutrients ; 14(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36014816

RESUMEN

Exercise causes changes in the gut microbiota, and in turn, the composition of the gut microbiota affects exercise performance. In addition, the supplementation of probiotics is one of the most direct ways to change the gut microbiota. In recent years, the development and application of human-origin probiotics has gradually attracted attention. Therefore, we obtained intestinal Lactiplantibacillus plantarum "Tana" from a gold-medal-winning weightlifter, who has taken part in various international competitions such as the World Championships and the Olympic Games, to investigate the benefits of Tana supplementation for improving exercise performance and promoting antifatigue effects in mice. A total of 40 male Institute of Cancer Research (ICR) mice were divided into four groups (10 mice/group): (1) vehicle (0 CFU/mice/day), (2) Tana-1× (6.15 × 107 CFU/mice/day), (3) Tana-2× (1.23 × 108 CFU /mice/day), and (4) Tana-5× (3.09 × 108 CFU/mice/day). After four weeks of Tana supplementation, we found that the grip strength, endurance exercise performance, and glycogen storage in the liver and muscle were significantly improved compared to those in the vehicle group (p < 0.05). In addition, supplementation with Tana had significant effects on fatigue-related biochemical markers; lactate, ammonia, and blood urea nitrogen (BUN) levels and creatine kinase (CK) activity were significantly lowered (p < 0.05). We also found that the improved exercise performance and antifatigue benefits were significantly dose-dependent on increasing doses of Tana supplementation (p < 0.05), which increased the abundance and ratio of beneficial bacteria in the gut. Taken together, Tana supplementation for four weeks was effective in improving the gut microbiota, thereby enhancing exercise performance, and had antifatigue effects. Furthermore, supplementation did not cause any physiological or histopathological damage.


Asunto(s)
Condicionamiento Físico Animal , Probióticos , Animales , Fatiga , Glucógeno , Humanos , Masculino , Ratones , Ratones Endogámicos ICR , Fatiga Muscular , Condicionamiento Físico Animal/fisiología , Probióticos/farmacología , Natación
13.
Metabolites ; 12(6)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35736463

RESUMEN

Sea bass (Lates calcarifer) is rich in protein, amino acids, and long-chain omega 3 (omega-3), which have many health benefits. In East Asian food culture, soup is often eaten as a nutritional supplement. The purpose of this study was to investigate the benefits of Hi-Q sea bass essence (SBE) supplementation for improved exercise performance and anti-fatigue. Fifty male Institute of Cancer Research (ICR) mice were divided to five groups (10 mice/group) and administered different doses of SBE (EC): (1) vehicle (water); (2) isocaloric (0.94 g casein/kg/mice/day); (3) SBE-1X (1.04 g/kg/mice/day); (4) SBE-2X (2.08 g/kg/mice/day); and (5) SBE-4X (4.16 g/kg/mice/day). We found that SBE supplementation significantly improved more than 1.96-fold endurance exercise performance (p < 0.05) and more than 1.13-fold glycogen storage in the liver and muscles (p < 0.05), and had dose-dependent by SBE dose (p < 0.05). In addition, supplementation with SBE at different doses had significant effects on the fatigue-related biochemical markers, i.e., lactate, ammonia, and blood urea nitrogen (BUN) levels were reduced significantly (p < 0.05), and were also dose-dependent. In conclusion, supplementation with SBE for 4 weeks was able to effectively improve exercise performance and had an anti-fatigue effect. In addition, it did not cause any physiological or histopathological damage.

14.
Front Physiol ; 13: 893352, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721547

RESUMEN

Background/Purpose: In recent years, the aging population has gradually increased, and the aging process is accompanied by health-associated problems, such as loss of muscle mass and weakness. Therefore, it is important to explore alternative strategies for improving the health status and physical fitness of the aged population. In this study, we investigated the effect of soy protein supplementation combined with resistance training on changes in the muscle mass, muscle strength, and functional activity performance of aging mice. Methods: Female Institute of Cancer Research (ICR) mice were divided into four groups (n = 8 per group): sedentary control (SC), isolated soy protein (ISP) supplementation, resistance training (RT), and a combination of ISP and RT (ISP + RT). The mice in designated groups received oral ISP supplementation (0.123 g/kg/day), RT (5 days/week for a period of 4 weeks), or a combination of both ISP plus RT for 4 weeks. Afterward, we assessed muscle strength, endurance, and anaerobic endurance performance and analyzed blood biochemical and pathological tissue sections to investigate whether there were adverse effects or not in mice. Results: ISP supplementation effectively improved the muscle mass, muscle endurance, and endurance performance of aging female mice. The RT group not only showed similar results with ISP but also increased muscle strength and glycogen content. Nevertheless, the combination of ISP supplementation and RT had greater beneficial effects on muscle strength, physical performance, and glycogen levels (p < 0.05). In addition, the combination of ISP supplementation and RT had significantly increased type II muscle percentage and cross-sectional area (p < 0.05). Conclusion: Although ISP or RT alone improved muscle mass and performance, the combination of ISP with RT showed greater beneficial effects in aging mice. Our findings suggest that regular exercise along with protein supplementation could be an effective strategy to improve overall health and physical fitness among the elderly.

15.
Front Nutr ; 9: 896503, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571912

RESUMEN

Increasing numbers of researchers are investigating the benefits of probiotics in enhancing exercise performance and verifying the role of the gut-muscle axis. In our previous study, Lactobacillus plantarum PL-02 improved exercise performance and muscle mass. Therefore, the purpose of this study was to investigate whether supplementation with PL-02 combined with resistance training has a synergistic effect on exercise performance and muscle mass. All the animals were assigned into four groups (n = 8/group): a sedentary control with normal distilled water group (vehicle, n = 8); PL-02 supplementation group (PL-02, 2.05 × 109 CFU, n = 8); resistance training group (RT, n = 8); PL-02 supplementation combined with resistance training group (PL-02 + RT, 2.05 × 109 CFU, n = 8). Supplementation with PL-02 for four consecutive weeks combined with resistance exercise training significantly improved the grip strength and the maximum number of crawls; increased the time of exhaustive exercise; significantly reduced the time required for a single climb; and reduced the lactate, blood ammonia, creatine kinase, and blood urea nitrogen produced after exercise (p < 0.05). In addition, it produced substantial benefits for increasing muscle mass without causing any physical damage. In summary, our findings confirmed that PL-02 or RT supplementation alone is effective in improving muscle mass and exercise performance and in reducing exercise fatigue, but the combination of the two can achieve increased benefits.

16.
Nutrients ; 14(6)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35334927

RESUMEN

Obesity is a worldwide health problem. Calorie-restricted diets constitute a common intervention for treating obesity. However, an improper calorie-restricted diet can lead to malnutrition, fatigue, poor concretion, muscle loss, and reduced exercise performance. Probiotics have been introduced as an alternative treatment for obesity. In the present study, we tested the weight loss and exercise performance enhancement effectiveness of probiotic strains of different origins, including four isolated from an Olympic weightlifting gold medalist (Bifidobacterium longum subsp. longum OLP-01, Lactobacillus plantarum PL-02, Lactobacillus salivarius subsp. salicinius SA-03, and Lactococcus lactis subsp. lactis LY-66). A high-fat diet (HFD) was used to induce obesity in 16 groups of mice (n = 8/group). The mice were administered probiotic supplements at a dosage of 4.1 × 109 CFU/kg/day for 10 weeks. All probiotic supplementation groups showed a significant reduction in body weight and fat mass compared with the HFD group. TYCA06, CS-773, BLI-02, PL-02, bv-77, and OLP-01 were the most effective in facilitating weight loss and fat reduction, which may be due to fatty-acid absorbing activity. PL-02, LY-66, TYCA06, CS-773, and OLP-01 elevated the animals' grip strength and exhaustive running duration. PL-02, LY-66, and OLP-01 increased tissue glycogen (liver and muscle) levels and muscle capillary density and reduced blood lactate production levels after exercise. In conclusion, OLP-01, PL-02, LY-66, TYCA06, and CS-773 were highly effective in enhancing weight loss and exercise performance. This study should be repeated on humans in the future to further confirm the findings.


Asunto(s)
Lactobacillus plantarum , Probióticos , Animales , Oro , Humanos , Lactobacillus plantarum/fisiología , Ratones , Levantamiento de Peso , Pérdida de Peso
17.
Artículo en Inglés | MEDLINE | ID: mdl-35162178

RESUMEN

Silver perch (Bidyanus bidyanus) has many nutrition and health benefits, being a rich source of macro and micronutrients, phospholipids, polyunsaturated fatty acids, and a variety of essential minerals while having a high protein content. In addition to direct consumption, it is often made into a soup as an important nutritional supplement for strengthening the body and delaying fatigue. By extracting the essence, its quality can be controlled, and it is convenient to supplement. This study aimed to evaluate the effect of supplementation with Santé premium silver perch essence (SPSPE) on improving exercise performance and anti-fatigue. Fifty male institute of cancer research (ICR) mice were divided into five groups (n = 10/group): (1) vehicle (vehicle control or water only), (2) isocaloric (0.93 g casein/kg/mice/day), (3) SPSPE-1X (0.99 g/kg/mice/day), (4) SPSPE-2X (1.98 g/kg/mice/day), and (5) SPSPE-5X (4.95 g/kg/mice/day). A sample or an equal volume of liquid was fed orally for four consecutive weeks. Grip strength and swimming exhaustion tests were used as exercise performance assessments. After 10 and 90 min of unloaded swimming, biochemical parameters of fatigue were evaluated. We found that supplementation with SPSPE for four consecutive weeks could significantly improve mice's grip strength, exercise endurance performance, and glycogen content (p < 0.05), and significantly reduced post-exercise fatigue biochemical parameters, such as lactate, blood ammonia (NH3), blood urea nitrogen (BUN) concentration, and muscle damage index creatine kinase (CK) activity (p < 0.05). In summary, supplementation with SPSPE for 4 weeks could effectively improve exercise performance, reduce sports fatigue, and accelerate fatigue recovery. In addition, it did not cause any physiological or histopathological damage.


Asunto(s)
Percas , Condicionamiento Físico Animal , Animales , Suplementos Dietéticos , Fatiga/tratamiento farmacológico , Fatiga/prevención & control , Ácido Láctico , Masculino , Ratones , Ratones Endogámicos ICR , Músculo Esquelético/metabolismo , Natación
18.
Nutrients ; 13(12)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34960099

RESUMEN

It is well known that supplementation with high protein after exercise can effectively promote muscle synthesis and repair, while green tea is rich in catechins that have antioxidant effects. We aimed to explore the effects of green tea combined with isolated soy protein on increase muscle mass in resistance-trained mice. A total of 32 male ICR mice (8-weeks old) were divided into four groups (n = 8/group), sedentary control group (SC), isolated soy protein with green tea group (ISPG), resistance training group (RT), isolated soy protein and green tea combine with resistance training group (ISPG + RT). All mice received control or ISPG by oral gavage for four consecutive weeks. Forelimb grip and exhaustive swimming time were used for exercise performance evaluation. In biochemical profile, we analyzed lactate, ammonia, blood urea nitrogen (BUN), and glucose and muscle damage index creatine kinase (CK) after exercise as biochemical parameters of exercise fatigue. The grip strength, muscular endurance, and exhaustive swimming time of the ISPG + RT group were significantly increased than other groups (p < 0.05), and also significantly decreased in serum lactate and ammonia levels (p < 0.05, respectively). The ISP + RT group was not only increased in quadriceps weight, (p < 0.05) but also decreased EFP (p < 0.05). We recommend using a 4-week supplementation with ISPG, combined with RT, to increase muscle mass, exercise performance, glycogen storage, and reduce fatigue biochemical parameters after exercise. The benefits of long-term supplementation or application to human supplementation can be further explored in the future.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales/fisiología , Suplementos Dietéticos , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/fisiología , Entrenamiento de Fuerza , Proteínas de Soja , Natación/fisiología , , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Animales , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Catequina/administración & dosificación , Catequina/farmacocinética , Fatiga/prevención & control , Glucógeno/metabolismo , Fuerza de la Mano , Ácido Láctico/metabolismo , Masculino , Ratones Endogámicos ICR , Fuerza Muscular/efectos de los fármacos , Proteínas de Soja/administración & dosificación , Proteínas de Soja/farmacología
19.
Artículo en Inglés | MEDLINE | ID: mdl-34831554

RESUMEN

Today, women are concerned with health promotion but also with improvements in body weight and shape. The purpose of this study was to investigate the effects of aerobic exercise training (AET) combined with isolated soy protein (ISP) supplementation on the body composition, anthropometric characteristics, and cardiopulmonary endurance of women. The qualified subjects were randomly assigned to AET or AET + ISP groups. Women in the AET + ISP group were given an ISP-rich supplement (40 g/day) 5 days a week for 8 weeks; those in the AET group were given the same amount of water in an identical manner. All women received 60 min of AET twice a week for 8 weeks at an intensity of 40-65% heart rate reserve (HRR) and their body composition, anthropometric characteristics, and physical fitness were measured one week before and after the 8-week AET class. A total of 16 subjects (age: 36.13 ± 5.76 years) completed the study and were included in the dataset. The results of this study show that the AET + ISP group obtained greater reductions in body weight (effect size = 0.99), body mass index (BMI, effect size = 1.04), percentage body fat (PBF, effect size = 1.18), circumferences (waist and hip, all effect sizes > 0.8), and greater gains in the percentage lean body mass (PLBM, effect size = 0.89), compared with the AET group, without significant differences in 20 m multi-stage shuttle run test (20 m MST). We conclude that there is a trend for the consumption of ISP following AET to improve the body composition and anthropometric characteristics in women, compared with those who received the same AET without ISP supplementation.


Asunto(s)
Composición Corporal , Proteínas de Soja , Adulto , Suplementos Dietéticos , Ejercicio Físico , Femenino , Humanos , Proyectos Piloto
20.
Front Nutr ; 8: 708096, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34722603

RESUMEN

In humans, aging is characterized by the progressive decline in biological, physiological, and psychological functions, and is a major risk factor in the development of chronic diseases. Therefore, the development of strategies aimed at attenuating aging-related disorders and promoting healthy aging is critical. In a previous study, we have demonstrated that Lactobacillus plantarum TWK10 (TWK10), a probiotic strain isolated from Taiwanese pickled cabbage, improved muscle strength, exercise endurance, and overall body composition in healthy humans. In this study, the effect of TWK10 on the progression of age-related impairments was investigated in mice. We found that TWK10 not only enhanced muscle strength in young mice, but also prevented the aging-related loss of muscle strength in aged mice, which was accompanied by elevated muscle glycogen levels. Furthermore, TWK10 attenuated the aging-associated decline in learning and memory abilities, as well as bone mass. Further analyses of gut microbiota using next-generation sequencing (NGS) of the 16S rRNA gene showed that the pattern of gut microbial composition was clearly altered following 8 weeks of TWK10 administration. TWK10-treated mice also experienced an increase in short-chain fatty acid (SCFA)-producing bacteria and higher overall levels of gut SCFA. Furthermore, TWK10 administration to some extent reversed the aging-associated accumulation of pathogenic bacterial taxa. In conclusion, TWK10 could be viewed as a potential therapeutic agent that attenuates aging-related disorders and provides health benefits by modulating the imbalance of gut microbiota.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA