Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sci Rep ; 14(1): 11439, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769416

RESUMEN

Although mice are social, multiple animals' neural activities are rarely explored. To characterise the neural activities during multi-brain interaction, we simultaneously recorded local field potentials (LFP) in the prefrontal cortex of four mice. The social context and locomotive states predominately modulated the entire LFP structure. The power of lower frequency bands-delta to alpha-were correlated with each other and anti-correlated with gamma power. The high-to-low-power ratio (HLR) provided a useful measure to understand LFP changes along the change of behavioural and locomotive states. The HLR during huddled conditions was lower than that during non-huddled conditions, dividing the social context into two. Multi-brain analyses of HLR indicated that the mice in the group displayed high cross-correlation. The mice in the group often showed unilateral precedence of HLR by Granger causality analysis, possibly comprising a hierarchical social structure. Overall, this study shows the importance of the social environment in brain dynamics and emphasises the simultaneous multi-brain recordings in social neuroscience.


Asunto(s)
Conducta Social , Animales , Ratones , Masculino , Corteza Prefrontal/fisiología , Encéfalo/fisiología , Conducta Animal/fisiología , Ratones Endogámicos C57BL
2.
Sensors (Basel) ; 23(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37571572

RESUMEN

Wireless sensing systems are required for continuous health monitoring and data collection. It allows for patient data collection in real time rather than through time-consuming and expensive hospital or lab visits. This technology employs wearable sensors, signal processing, and wireless data transfer to remotely monitor patients' health. The research offers a novel approach to providing primary diagnostics remotely with a digital health system for monitoring pulmonary health status using a multimodal wireless sensor device. The technology uses a compact wearable with new integration of acoustics and biopotentials sensors to monitor cardiovascular and respiratory activity to provide comprehensive and fast health status monitoring. Furthermore, the small wearable sensor size may stick to human skin and record heart and lung activities to monitor respiratory health. This paper proposes a sensor data fusion method of lung sounds and cardiograms for potential real-time respiration pattern diagnostics, including respiratory episodes like low tidal volume and coughing. With a p-value of 0.003 for sound signals and 0.004 for electrocardiogram (ECG), preliminary tests demonstrated that it was possible to detect shallow breathing and coughing at a meaningful level.


Asunto(s)
Procesamiento de Señales Asistido por Computador , Dispositivos Electrónicos Vestibles , Humanos , Monitoreo Fisiológico , Electrocardiografía , Frecuencia Respiratoria , Tecnología Inalámbrica
3.
Sensors (Basel) ; 21(4)2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33671202

RESUMEN

Respiratory activity is an important vital sign of life that can indicate health status. Diseases such as bronchitis, emphysema, pneumonia and coronavirus cause respiratory disorders that affect the respiratory systems. Typically, the diagnosis of these diseases is facilitated by pulmonary auscultation using a stethoscope. We present a new attempt to develop a lightweight, comprehensive wearable sensor system to monitor respiration using a multi-sensor approach. We employed new wearable sensor technology using a novel integration of acoustics and biopotentials to monitor various vital signs on two volunteers. In this study, a new method to monitor lung function, such as respiration rate and tidal volume, is presented using the multi-sensor approach. Using the new sensor, we obtained lung sound, electrocardiogram (ECG), and electromyogram (EMG) measurements at the external intercostal muscles (EIM) and at the diaphragm during breathing cycles with 500 mL, 625 mL, 750 mL, 875 mL, and 1000 mL tidal volume. The tidal volumes were controlled with a spirometer. The duration of each breathing cycle was 8 s and was timed using a metronome. For each of the different tidal volumes, the EMG data was plotted against time and the area under the curve (AUC) was calculated. The AUC calculated from EMG data obtained at the diaphragm and EIM represent the expansion of the diaphragm and EIM respectively. AUC obtained from EMG data collected at the diaphragm had a lower variance between samples per tidal volume compared to those monitored at the EIM. Using cubic spline interpolation, we built a model for computing tidal volume from EMG data at the diaphragm. Our findings show that the new sensor can be used to measure respiration rate and variations thereof and holds potential to estimate tidal lung volume from EMG measurements obtained from the diaphragm.


Asunto(s)
Diafragma , Respiración , Volumen de Ventilación Pulmonar , Dispositivos Electrónicos Vestibles , Acústica , Electrocardiografía , Humanos , Ruidos Respiratorios
4.
Sci Adv ; 6(49)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33268372

RESUMEN

Social cognition requires neural processing, yet a unifying method linking particular brain activities and social behaviors is lacking. Here, we embedded mobile edge computing (MEC) and light emitting diodes (LEDs) on a neurotelemetry headstage, such that a particular neural event of interest is processed by the MEC and subsequently an LED is illuminated, allowing simultaneous temporospatial visualization of that neural event in multiple, socially interacting mice. As a proof of concept, we configured our system to illuminate an LED in response to gamma oscillations in the basolateral amygdala (BLA gamma) in freely moving mice. We identified (i) BLA gamma responses to a spider robot, (ii) affect-related BLA gamma during conflict, and (iii) formation of defensive aggregation under a threat by the robot, and reduction of BLA gamma responses in the inner-located mice. Our system can provide an intuitive framework for examining brain-behavior connections in various ecological situations and population structures.

5.
Sensors (Basel) ; 19(22)2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31752136

RESUMEN

Gait signifies the walking pattern of an individual. It may be normal or abnormal, depending on the health condition of the individual. This paper considers the development of a gait sensor network system that uses a pair of wireless inertial measurement unit (IMU) sensors to monitor the gait cycle of a user. The sensor information is used for determining the normality of movement of the leg. The sensor system places the IMU sensors on one of the legs to extract the three-dimensional angular motions of the hip and knee joints while walking. The wearable sensor is custom-made at San Diego State University with wireless data transmission capability. The system enables the user to collect gait data at any site, including in a non-laboratory environment. The paper also presents the mathematical calculations to decompose movements experienced by a pair of IMUs into individual and relative three directional hip and knee joint motions. Further, a new approach of gait pattern classification based on the phase difference angles between hip and knee joints is presented. The experimental results show a potential application of the classification method in the areas of smart detection of abnormal gait patterns.

6.
Sensors (Basel) ; 17(12)2017 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-29258214

RESUMEN

Respiratory activity is an essential vital sign of life that can indicate changes in typical breathing patterns and irregular body functions such as asthma and panic attacks. Many times, there is a need to monitor breathing activity while performing day-to-day functions such as standing, bending, trunk stretching or during yoga exercises. A single IMU (inertial measurement unit) can be used in measuring respiratory motion; however, breathing motion data may be influenced by a body trunk movement that occurs while recording respiratory activity. This research employs a pair of wireless, wearable IMU sensors custom-made by the Department of Electrical Engineering at San Diego State University. After appropriate sensor placement for data collection, this research applies principles of robotics, using the Denavit-Hartenberg convention, to extract relative angular motion between the two sensors. One of the obtained relative joint angles in the "Sagittal" plane predominantly yields respiratory activity. An improvised version of the proposed method and wearable, wireless sensors can be suitable to extract respiratory information while performing sports or exercises, as they do not restrict body motion or the choice of location to gather data.


Asunto(s)
Movimiento (Física) , Fenómenos Biomecánicos , Humanos , Movimiento , Torso , Dispositivos Electrónicos Vestibles
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 990-993, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29060040

RESUMEN

Over the years of research, Electroencephalogram (EEG) signal study has grown to give promising outcomes. A lot of research has been done on implementing brain-computer-interfaces, and the brain-computer interface (BCI) algorithm as well as the study of the effects of different stimuli on brain signals. This paper intends to make progress toward that goal by developing a responsive real-time EEG-based brain-to-machine communication system by generating distinct EEG signals at will and identification of the explicit pattern that they reflect for the presented self-induced internal visual and auditory stimuli. The brain-to-machine communication system delivers the real-time capture, analysis, and visualization of the brain signal patterns that can be used for smart medical applications such as rehabilitation robotic control, smart wheelchair, etc.


Asunto(s)
Ondas Encefálicas , Encéfalo , Interfaces Cerebro-Computador , Electroencefalografía , Interfaz Usuario-Computador
8.
Sensors (Basel) ; 16(10)2016 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-27669264

RESUMEN

All neural information systems (NIS) rely on sensing neural activity to supply commands and control signals for computers, machines and a variety of prosthetic devices. Invasive systems achieve a high signal-to-noise ratio (SNR) by eliminating the volume conduction problems caused by tissue and bone. An implantable brain machine interface (BMI) using intracortical electrodes provides excellent detection of a broad range of frequency oscillatory activities through the placement of a sensor in direct contact with cortex. This paper introduces a compact-sized implantable wireless 32-channel bidirectional brain machine interface (BBMI) to be used with freely-moving primates. The system is designed to monitor brain sensorimotor rhythms and present current stimuli with a configurable duration, frequency and amplitude in real time to the brain based on the brain activity report. The battery is charged via a novel ultrasonic wireless power delivery module developed for efficient delivery of power into a deeply-implanted system. The system was successfully tested through bench tests and in vivo tests on a behaving primate to record the local field potential (LFP) oscillation and stimulate the target area at the same time.


Asunto(s)
Técnicas Biosensibles/métodos , Tecnología Inalámbrica , Interfaces Cerebro-Computador , Humanos , Procesamiento de Señales Asistido por Computador , Relación Señal-Ruido
9.
J Acoust Soc Am ; 128(1): 121-31, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20649207

RESUMEN

There has recently been an increasing interest in the generation of a sound field that is audible in one spatial region and inaudible in an adjacent region. The method proposed here ensures the control of the amplitude and phase of multiple acoustic sources in order to maximize the acoustic energy difference between two adjacent regions while also ensuring that evenly distributed source strengths are used. The performance of the method proposed is evaluated by computer simulations and experiments with real loudspeaker arrays in the shape of a circle and a sphere. The proposed method gives an improvement in the efficiency of radiation into the space in which the sound should be audible, while maintaining the acoustic pressure difference between two acoustic spaces. This is shown to give an improvement of performance compared to the contrast control method previously proposed.


Asunto(s)
Acústica , Sonido , Acústica/instrumentación , Amplificadores Electrónicos , Simulación por Computador , Modelos Teóricos , Movimiento (Física) , Presión , Espectrografía del Sonido
10.
Ultramicroscopy ; 108(10): 1319-24, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18579307

RESUMEN

We have developed a low cost and a highly compact bio-chip detection technology by modifying a commercially available optical pick-up head for CD/DVD. The highly parallel and miniaturized hybridization assays are addressed by the fluorescence emitted by the DNA-chip using the optical pick-up head. The gap between the objective lens and the bio-chip is regulated by the focus servo during the detection of the fluorescence signal. High-resolution and high-speed scanning is effectively realized by this simple scanning system instead of utilizing high-precision mechanism. Regardless of achievement of effective detection mechanism, the technique of fluorescence detection can prove to be disadvantageous because of the low stability of the dyes with low S/N ratio and an expensive setup such as a PMT detector is always required for fluorescence detection. We propose, for the first time, a novel scanning scheme based on metal nanoparticles in combination with a bio-chip substrate having a phase change recording layer. We found that the phase change process is highly affected by the existence of the densely condensed metal nanoparticles on the phase change layer during the writing process of the pick-up head.


Asunto(s)
Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Análisis de Secuencia por Matrices de Oligonucleótidos/estadística & datos numéricos , Colorantes Fluorescentes , Oro , Procesamiento de Imagen Asistido por Computador , Nanopartículas del Metal , Nanotecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA