Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Chemistry ; 30(40): e202401826, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38747420

RESUMEN

Reaction of a rare and well-characterized MnIII-superoxo species, Mn(BDPBrP)(O2⋅) (1, H2BDPBrP=2,6-bis((2-(S)-di(4-bromo)phenylhydroxylmethyl-1-pyrrolidinyl)methyl)pyridine), with 4-dimethylaminophenol at -80 °C proceeds via concerted proton electron transfer (CPET) to produce a MnIII-hydroperoxo complex, Mn(BDPBrP)(OOH) (2), alongside 4-dimethylaminophenoxy radical; whereas, upon treatment with 4-nitrophenol, complex 1 undergoes a proton transfer process to afford a MnIV-hydroperoxo complex, [Mn(BDPBrP)(OOH)]+ (3). Intriguingly, the reactions of 1 with 4-chlorophenol and 4-methoxyphenol follow two routes of CPET and sequential proton and electron transfer to furnish complex 2 in the end. UV-vis and EPR spectroscopic studies coupled with DFT calculations provided support for this wide mechanistic spectrum of activating various phenol O-H bonds by a single MnIII-superoxo complex, 1.

2.
Chemistry ; 30(26): e202400336, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38438303

RESUMEN

Here, we combined magnetometry, multi-frequency electronic paramagnetic resonance, and wave function based ab initio calculations to investigate magnetic properties of two high spin Co(II) complexes Co(BDPRP) (BDPRP=2,6-bis((2-(S)-di(4-R)phenylhydroxylmethyl-1-pyrrolidi-nyl)methyl)pyridine, R=H for 8; R=tBu for 9). Complexes 8 and 9 featuring effective D3h symmetry were found to possess D=24.0 and 32.0 cm-1, respectively, in their S=3/2 ground states of 1 e ' ' d x z / y z 4 1 e ' d x y / x 2 - y 2 2 1 a 1 ' d z 2 1 ${{\left(1{{\rm e}}^{{\rm { {^\prime}}}{\rm { {^\prime}}}}\right({d}_{xz/yz}\left)\right)}^{4}{\left(1{{\rm e}}^{{\rm { {^\prime}}}}\right({d}_{{xy/{x}^{2}-y}^{2}}\left)\right)}^{2}{\left(1{{\rm a}}_{1}^{{\rm { {^\prime}}}}\right({d}_{{z}^{2}}\left)\right)}^{1}}$ . Ligand field analyses revealed that the low-lying d-d excited states make either positive or vanishing contributions to D. Hence, total positive D values were measured for 8 and 9, as well as related D3h high spin Co(II) complexes. In contrast, negative D values are usually observed for C3v congeners. In-depth analyses suggested that lowering symmetry from D3h to C3v induces orbital mixing between 1 e d x z / y z ${1{\rm e}\left({d}_{xz/yz}\right)}$ and 2 e d x y / x 2 - y 2 ${2{\rm e}\left({d}_{{xy/{x}^{2}-y}^{2}}\right)}$ and admixes excited state 4 A 2 1 e → 2 e ${{}^{4}{{\rm A}}_{2}\left(1e\to 2e\right)}$ into the ground state. Both factors turn the total D value progressively negative with the increasing distance (δ) of the Co(II) center out of the equatorial plane. Therefore, δ determines the sign and magnitude of final D values of five-coordinate trigonal bipyramidal S=3/2 Co(II) complexes as measured for a series of such species with varying δ.

3.
JACS Au ; 2(8): 1899-1909, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36032524

RESUMEN

Systematic investigations on H atom transfer (HAT) thermodynamics of metal O2 adducts is of fundamental importance for the design of transition metal catalysts for substrate oxidation and/or oxygenation directly using O2. Such work should help elucidate underlying electronic-structure features that govern the OO-H bond dissociation free energies (BDFEs) of metal-hydroperoxo species, which can be used to quantitatively appraise the HAT activity of the corresponding metal-superoxo complexes. Herein, the BDFEs of two homologous CoIII- and MnIII-hydroperoxo complexes, 3-Co and 3-Mn, were calculated to be 79.3 and 81.5 kcal/mol, respectively, employing the Bordwell relationship based on experimentally determined pK a values and redox potentials of the one-electron-oxidized forms, 4-Co and 4-Mn. To further verify these values, we tested the HAT capability of their superoxo congeners, 2-Co and 2-Mn, toward three different substrates possessing varying O-H BDFEs. Specifically, both metal-superoxo species are capable of activating the O-H bond of 4-oxo-TEMPOH with an O-H BDFE of 68.9 kcal/mol, only 2-Mn is able to abstract a H atom from 2,4-di-tert-butylphenol with an O-H BDFE of 80.9 kcal/mol, and neither of them can react with 3,5-dimethylphenol with an O-H BDFE of 85.6 kcal/mol. Further computational investigations suggested that it is the high spin state of the MnIII center in 3-Mn that renders its OO-H BDFE higher than that of 3-Co, which features a low-spin CoIII center. The present work underscores the role of the metal spin state being as crucial as the oxidation state in modulating BDFEs.

4.
Anal Sci ; 38(4): 711-716, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35434761

RESUMEN

An investigation of the process involved in the production of and dyeing with indigo based on a CO2/O2 sensor device and a cellphone-camera is reported. The former involves transforming indican to indigo, and the latter the process by which indigo and indigo-white are produced. During the process of indigo production, a clear and positive correlation can be observed between the concentration of gas levels (either the production of CO2 or the consumption of O2) and the final yield. The authors found that for the first time that the change in the concentration levels of CO2/O2 can be used as important parameters for indigo dyeing. The optimal time required to produce indigo can be decided by the change of CO2/O2 concentration level. It is no long should depending on the experience of a craftsperson. Furthermore, the optimal time needed to produce indigo also can be decided by the concentration levels of glucose. The color analysis of indigo dyeing can be performed by using a camera and by calculating the RGB and HSV (hue, saturation, value) values.


Asunto(s)
Teléfono Celular , Carmin de Índigo , Dióxido de Carbono , Colorantes , Indoles
5.
Chem Commun (Camb) ; 56(94): 14821-14824, 2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33151205

RESUMEN

Addition of HOTf to a mixture of CoIII(BDPP)(O2˙) (1, H2BDPP = 2,6-bis((2-(S)-diphenylhydroxylmethyl-1-pyrrolidinyl)methyl)pyridine) and Cp*2Fe produced H2O2 in high yield implying formation of CoIII(BDPP)(OOH) (3), and reaction of Sc(OTf)3 with the same mixture gave a peroxo-bridged CoIII/ScIII5. These findings demonstrate the ambiphilic property of CoIII-superoxo 1.

6.
J Am Chem Soc ; 142(23): 10255-10260, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32412757

RESUMEN

Earlier work revealed that metal-superoxo species primarily function as radicals and/or electrophiles. Herein, we present ambiphilicity of a MnIII-superoxo complex revealed by its proton- and metal-coupled electron-transfer processes. Specifically, a MnIV-hydroperoxo intermediate, [Mn(BDPBrP)(OOH)]+ (1, H2BDPBrP = 2,6-bis((2-(S)-di(4-bromo)phenylhydroxylmethyl-1-pyrrolidinyl)methyl)pyridine) was generated by treatment of a MnIII-superoxo complex, Mn(BDPBrP)(O2•) (2) with trifluoroacetic acid at -120 °C. Detailed insights into the electronic structure of 1 are obtained using resonance Raman and multi-frequency electron paramagnetic resonance spectroscopies coupled with density functional theory calculations. Similarly, the reaction of 2 with scandium(III) triflate was shown to give a Mn(IV)/Sc(III) bridging peroxo species, [Mn(BDPBrP)(OO)Sc(OTf)n](3-n)+ (4). Furthermore, it is found that deprotonation of 1 quantitatively regenerates 2, and that one-electron oxidation of the corresponding MnIII-hydroperoxo species, Mn(BDPBrP)(OOH) (3), also yields 1.

7.
Inorg Chem ; 59(12): 8308-8319, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32437613

RESUMEN

Despite a comprehensive study on the biosynthesis and function of nitric oxide, biological metabolism of nitric oxide, especially when its concentration exceeds the cytotoxic level, remains elusive. Oxidation of nitric oxide by O2 in aqueous solution has been known to yield NO2-. On the other hand, a biomimetic study on the metal-mediated conversion of NO to NO2-/NO3- via O2 reactivity disclosed a conceivable pathway for aerobic metabolism of NO. During the NO-to-NO3- conversion, transient formation of metal-bound peroxynitrite and subsequent release of •NO2 via O-O bond cleavage were evidenced by nitration of tyrosine residue or 2,4-di-tert-butylphenol (DTBP). However, the synthetic/catalytic/enzymatic cycle for conversion of nitric oxide into a nitrite pool is not reported. In this study, sequential reaction of the ferrous complex [(PMDTA)Fe(κ2-O,O'-NO2)(κ1-O-NO2)] (3; PMDTA = pentamethyldiethylenetriamine) with NO(g), KC8, and O2 established a synthetic cycle, complex 3 → {Fe(NO)2}9 DNIC [(PMDTA)Fe(NO)2][NO2] (4) → {Fe(NO)2}10 DNIC [(PMDTA)Fe(NO)2] (1) → [(PMDTA)(NO)Fe(κ2-O,N-ONOO)] (2) → complex 3, for the transformation of nitric oxide into nitrite. In contrast to the reported reactivity of metal-bound peroxynitrite toward nitration of DTBP, peroxynitrite-bound MNIC 2 lacks phenol nitration reactivity toward DTBP. Presumably, the [(PMDTA)Fe] core in {Fe(NO)}8 MNIC 2 provides a mononuclear template for intramolecular interaction between Fe-bound peroxynitrite and Fe-bound NO-, yielding Fe-bound nitrite stabilized in the form of complex 3. This [(PMDTA)Fe]-core-mediated concerted peroxynitrite homolytic O-O bond cleavage and combination of the O atom with Fe-bound NO- reveals a novel and effective pathway for NO-to-NO2- transformation. Regarding the reported assembly of the dinitrosyliron unit (DNIU) [Fe(NO)2] in the biological system, this synthetic cycle highlights DNIU as a potential intermediate for nitric oxide monooxygenation activity in a nonheme iron system.


Asunto(s)
Complejos de Coordinación/química , Compuestos Férricos/química , Compuestos Ferrosos/química , Óxido Nítrico/química , Nitritos/química , Poliaminas/química , Complejos de Coordinación/síntesis química , Estructura Molecular , Oxígeno/química
8.
Environ Pollut ; 261: 114024, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32045790

RESUMEN

Chromium (VI) reduction by organic compounds is one of the major pathways to alleviate the toxicity and mobility of Cr(VI) in the environment. However, oxidative products of organic molecules receive less scientific concerns. In this study, hydroquinone (H2Q) was used as a representative organic compound to determine the redox reactions with Cr(VI) and the concomitant oxidative products. Spectroscopic analyses showed that Cr(III) hydroxides dominated the precipitates produced during redox reactions of Cr(VI) and H2Q. For the separated filtrates, the acidification induced the oxidative polymerization of organic molecules, accompanied with the complexation with Cr(III). The aromatic domains dominated the chemical structures of the black and fluffy organic polymers, which was different to the natural humic acids due to the shortage of aliphatic chains. Results of linear combination fitting (LCF) for Cr K-edge X-ray absorption near edge structure (XANES) spectra demonstrated that up to 90.4% of Cr inventory in precipitates derived after the acidification of filtrates was Cr(III) complexed with humic-like polymers, suggesting that Cr(III) possibly acted as a linkage among organic molecules during the polymerization processes of H2Q. This study demonstrated that Cr(VI) may lead to the polymerization of organic molecules in an acidic solution, and thus, it could raise scientific awareness that the oxidative decomposition of organic molecules may not be the only pathway while interacting with the strong oxidant of Cr(VI).


Asunto(s)
Cromo , Hidroquinonas , Sustancias Húmicas/análisis , Oxidación-Reducción , Polimerizacion
9.
Inorg Chem ; 58(19): 12964-12974, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31524386

RESUMEN

To explore the reactivity of copper-alkylperoxo species enabled by the heterolytic peroxide activation, room-temperature stable mononuclear nonheme copper(II)-alkylperoxo complexes bearing a N-(2-ethoxyethanol)-bis(2-picolyl)amine ligand (HN3O2), [CuII(OOR)(HN3O2)]+ (R = cumyl or tBu), were synthesized and spectroscopically characterized. A combined experimental and computational investigation on the reactivity and reaction mechanisms in the phosphorus oxidation, C-H bond activation, and aldehyde deformylation reactions by the copper(II)-alkylperoxo complexes has been conducted. DFT-optimized structures suggested that a hydrogen bonding interaction exists between the ethoxyethanol backbone of the HN3O2 ligand and either the proximal or distal oxygen atom of the alkylperoxide moiety, and this interaction consequently results in the enhanced stability of the copper(II)-alkylperoxo species. In the phosphorus oxidation reaction, both experimental and computational results indicated that a phosphine-triggered heterolytic O-O bond cleavage occurred to yield phosphine oxide and alcohol products. DFT calculations suggested that (i) the H-bonding between the ethoxyethanol backbone and distal oxygen of the alkylperoxide moiety and (ii) the phosphine binding to the proximal oxygen of the alkylperoxide moiety engendered the heterolytic peroxide activation. In the C-H bond activation reactions, temperature-dependent reactivity of the copper(II)-alkylperoxo complexes was observed, and a relatively strong activation energy of 95 kcal mol-1 was required to promote the homolytic peroxide activation. A rate-limiting hydrogen atom abstraction reaction of xanthene by the putative copper(II)-oxyl radical resulted in the formation of the dimeric copper product and the substrate radical that further underwent autocatalytic oxidation reactions to form an oxygen incorporated product. Finally, amphoteric reactivity of copper(II)-alkylperoxo complexes has been assessed by conducting kinetic studies and product analysis of the aldehyde deformylation reaction.

10.
Angew Chem Int Ed Engl ; 58(49): 17589-17593, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31532866

RESUMEN

Terminal metal nitrides have been proposed as key intermediates in a series of pivotal chemical transformations. However, exploring the chemical activity of transient tetragonal iron(V) nitrides is largely impeded by their facile dimerization in fluid solutions. Herein, in situ EPR and Mössbauer investigations are presented of unprecedented oxygenation of a paramagnetic iron(V) nitrido intermediate, [FeV N(cyclam-ac)]+ (2, cyclam-ac- =1,4,8,11-tetraazacyclotetradecane-1-acetate anion), yielding an iron nitrosyl complex, [Fe(NO)(cyclam-ac)]+ (3). Further theoretical studies suggest that during the reaction a closed-shell singlet O atom is transferred to 2. Consequently, the N-O bond formation does not follow a radical coupling mechanism proposed for the N-N bond formation but is accomplished by three mutual electron-transfer pathways between 2 and the O atom donor, thanks to the ambiphilic nature of 2.

11.
Inorg Chem ; 58(15): 9756-9765, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31328507

RESUMEN

Metal-superoxo species are typically proposed as key intermediates in the catalytic cycle of dioxygen activation by metalloenzymes involving different transition metal cofactors. In this regard, while a series of Fe-, Co-, and Ni-superoxo complexes have been reported to date, well-defined Mn-superoxo complexes remain rather rare. Herein, we report two mononuclear MnIII-superoxo species, Mn(BDPP)(O2•-) (2, H2BDPP = 2,6-bis((2-(S)-diphenylhydroxylmethyl-1-pyrrolidinyl)methyl)pyridine) and Mn(BDPBrP)(O2•-) (2', H2BDPBrP = 2,6-bis((2-(S)-di(4-bromo)phenylhydroxyl-methyl-1-pyrrolidinyl)methyl)pyridine), synthesized by bubbling O2 into solutions of their MnII precursors, Mn(BDPP) (1) and Mn(BDPBrP) (1'), at -80 °C. A combined spectroscopic (resonance Raman and electron paramagnetic resonance (EPR) spectroscopy) and computational study evidence that both complexes contain a high-spin MnIII center (SMn = 2) antiferromagnetically coupled to a superoxo radical ligand (SOO• = 1/2), yielding an overall S = 3/2 ground state. Complexes 2 and 2' were shown to be capable of abstracting a H atom from 2,2,6,6-tetramethyl-1-hydroxypiperidine (TEMPO-H) to form MnIII-hydroperoxo species, Mn(BDPP)(OOH) (5) and Mn(BDPBrP)(OOH) (5'). Complexes 5 and 5' can be independently prepared by the reactions of the isolated MnIII-aqua complexes, [Mn(BDPP)(H2O)]OTf (6) and [Mn(BDPBrP)(H2O)]OTf (6'), with H2O2 in the presence of NEt3. The parallel-mode EPR measurements established a high-spin S = 2 ground state for 5 and 5'.

12.
Inorg Chem ; 58(1): 22-26, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30991473

RESUMEN

An organocuprate(III) complex, [Cu(TMSPS3)(CH2CN)]- (2), was identified along with a sequential derivative, [Cu(TMSPS3)(CN)]- (3), and an intermediate, [Cu(TMSPS3)(HN═PPh3)] (4), formed in a relative transformation. Apical ligands among these complexes all strongly associate with a robust trigonal copper(III) platform. The nature of the ligand binding was spectroscopically and computationally investigated through a series of copper(III) complexes. The bonding along the principal C3 axis is adaptable, and σ interaction dominates the axial ligand coordination, where the cyanomethyl group exhibits the strongest bonding. Complex 2 is a scarce example of a thermostable aliphatic organocuprate(III) compound, which sheds some light on the organocopper(III) chemistry widely involved in many copper-mediated catalyses.

13.
Inorg Chem ; 57(15): 8956-8963, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-29985596

RESUMEN

A new nonaromatic selenabenziporphyrin was synthesized by (3 + 1) condensation of m-benzitripyrrane and 2,5-bis[( p-tolyl)hydroxymethyl] selenophene under mild trifluoroacetic acid-catalyzed reaction conditions. The selenabenziporphyrin was characterized by high-resolution mass spectrometry, one- and two-dimensional NMR spectroscopy, and X-ray crystallography. The crystal structure revealed that the macrocycle was planar with moderately tilted m-phenylene ring and that the phenylene ring completely blocks the macrocyclic π-delocalization. The selenabenziporphyrin exhibits one broad absorption band at 645 nm along with one sharp band at 415 nm, and electrochemical studies revealed that the macrocycle was electron-deficient. The selenabenziporphyrin readily forms organometallic Pd(II) complex when treated with PdCl2 in CH3CN/CHCl3 at reflux followed by recrystallization. The X-ray structure revealed that the Pd(II) ion was coordinated with two pyrrole "N"s, selenophene "Se", and m-phenylene ring "C" in square-planar fashion, and the complex retained its nonaromatic nature. The Pd(II) complex exhibits ill-defined absorption bands, and it was more electron-deficient than free-base selenabenziporphyrin macrocycle. Time-dependent density functional theory studies supported the experimental observations.

14.
Dalton Trans ; 47(11): 3796-3802, 2018 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-29446427

RESUMEN

A nickel(ii) complex, Ni(HPS2)2 (1) that contains two pendant thiols, is rapidly aerobically oxidized in the presence of an amine to produce a diamagnetic nickel(iv) complex, Ni(PS2)2 (2). This process was investigated spectroscopically at a temperature of -80 °C. Absorption spectra revealed that the deprotonation of one pendant thiol of 1 triggers an oxidative cascade; EPR findings indicate that single-spin species comprised of nickel(iii) intermediates are produced in the reaction solution. Possible reaction routes were examined by DFT calculations, in which an energy profile indicates that (i) a self-driven formation of 2 favors a sequential proton/electron transfer pathway; (ii) kinetically trapped nickel(iii) intermediates may respond to the specificity of the coordination of 2 in a cis-form. The overall findings help one to rationalize how a nickel(ii) precursor can be oxidized by O2 to a higher oxidation state.

15.
Org Lett ; 20(3): 636-639, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29355327

RESUMEN

An unprecedented tellurabenziporphyrin containing C, N, and Te donor atoms was synthesized by condensing benzitripyrrane and tellurophene diol under acid catalyzed conditions. The tellurabenziporphyrin readily forms a Pd(II) complex when treated with PdCl2 in CHCl3/CH3CN. The crystal structures of tellurabenziporphyrin and its Pd(II) complex revealed that the benzene ring hinders the π-electron delocalization. An unusual five-membered ring formed inside the macrocycle due to the strong interaction between "Te" and "N" in the Pd(II) complex.

16.
Oncotarget ; 8(62): 105735-105748, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29285288

RESUMEN

Para (p)-phenylenediamine and its toxic metabolites induce excess reactive oxygen species formation that results in bladder voiding dysfunction. We determined the effects of synthetic Ni-containing superoxide dismutase mimics and the role of oxidative stress in p-phenylenediamine-induced urinary bladder dysfunction. P-phenylenediamine (60 µg/kg/day) was intraperitoneally administered for 4 weeks to induce bladder injury in female Wistar rats. Synthetic Ni-containing superoxide dismutase mimics, WCT003 (1.5 mg/kg) and WCT006 (1.5 mg/kg), were then intraperitoneally administered for 2 weeks. Transcystometrograms were performed in urethane-anesthetized rats. The in vitro and in vivo reactive oxygen species levels and pathological changes in formalin-fixed bladder sections were evaluated. Western blotting and immunohistochemistry elucidated the pathophysiological mechanisms of oxidative stress-induced apoptosis, autophagy, and pyroptosis. P-phenylenediamine increased voiding frequency, blood and urinary bladder levels of reactive oxygen species, and neutrophil and mast cell infiltration. It also upregulated biomarkers of autophagy (LC3 II), apoptosis (poly (ADP-ribose) polymerase), and pyroptosis (Caspase 1). WCT003 and WCT006 ameliorated reactive oxygen species production, inflammation, apoptosis, autophagy, pyroptosis, and bladder hyperactivity. P-phenylenediamine increased oxidative stress, inflammatory leukocytosis, autophagy, apoptosis, and pyroptosis formation within the urinary bladder. Novel synthetic nickel-containing superoxide dismutase mimics relieved p-phenylenediamine-induced bladder inflammation and voiding dysfunction.

17.
Inorg Chem ; 56(22): 13913-13929, 2017 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-29087196

RESUMEN

We report the formation of new cyclic porphyrin tetrads 1 and 2, which were obtained from the reaction between dihydroxytin(IV) porphyrin and cis-dihydroxy-21-thiaporphyrin/21,23-dithiaporphyrin. The unique oxophilicity of tin(IV) porphyrin was the driving force for the formation of these tetrads. Moreover, these novel tetrads represent the first examples of cyclic porphyrins containing tin(IV) that are constructed exclusively on the basis of the "Sn-O" interaction without any other complementary, noncompetitive mode of interactions. The molecular structures of the cyclic tetrads have been investigated by matrix-assisted laser desorption ionization time-of-flight mass spectrometry, NMR spectroscopy, quantum-mechanical calculations, and, in one case, single-crystal X-ray crystallography. The X-ray structure revealed that the two cis-dihydroxy-N2S2 porphyrins were coordinated at the axial positions of two tin(IV) porphyrins, leading to the symmetric cyclic tetrad structure. The optical properties of tetrads were studied, and these compounds were stable under redox conditions. Preliminary photophysical studies carried out on the tetrads indicated efficient energy transfer from tin(IV) porphyrin to the thiaporphyrin unit, which highlights their potential applications in energy and electron transfer in the future.

18.
Org Lett ; 19(21): 5924-5927, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-29052997

RESUMEN

The dibenzofuran/dibenzothiophene-based nonaromatic hybrid macrocycles, exhibiting the features of both contracted macrocycles, subporphyrins and triphyrins, have been synthesized under simple reaction conditions using readily available precursors. The monoanionic new macrocyclic ligands with three donor atoms, such as two pyrrole nitrogens and one dibenzofuran oxygen or dibenzothiophene sulfur, readily form Re(I) complexes.

19.
Inorg Chem ; 56(7): 3763-3772, 2017 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-28333456

RESUMEN

The Ru(II) and BF2 complexes of calixsmaragdyrin were prepared under simple reaction conditions and characterized by HR-MS, 1D and 2D NMR spectroscopy, optical spectroscopy, and electrochemistry, and the structure of the Ru(II) complex of calixsmaragdyrin was elucidated by X-ray crystallography. The crystal structure of the Ru(II) complex revealed that the Ru(II) ion is hexacoordinate with the three pyrrole nitrogen ligands from the tripyrrin unit of the calixsmaragdyrin macrocycle, and the remaining coordination sites of Ru(II) ion were occupied by two carbonyl groups and one hydroxyl (-OH) group. The calixsmaragdyrin macrocycle in the Ru(II) complex was distorted with a dome-like structure. In the BF2 complex of calixsmaragdyrin, the BF2 unit was bound to two pyrrolic nitrogens of the dipyrrin moiety of calixsmaragdyrin as deduced by detailed 1- and 2-dimensional NMR spectroscopy studies. The Ru(II) complex displayed a strong Soret-like absorption band at 449 nm with the absence of Q-bands, whereas the BF2 complex showed a Soret-like band at 475 nm with two well-defined Q-bands at 787 and 883 nm, respectively. Quantum mechanical DFT calculations yielded relaxed equilibrium structures that were similar to the X-ray crystal structures, and the related charge density distributions indicated that the d orbital of the Ru(II) ion was contributing to the HOMO and LUMO states. In addition, TD-DFT calculations successfully reproduced the large bathochromic shifts, oscillator strengths, and electronic transitions that were observed in the experimental absorption spectra of all three complexes. Both the Ru(II) and the BF2 complexes of calixsmaragdyrin were stable under redox conditions.

20.
Chemistry ; 23(8): 1830-1838, 2017 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-27797164

RESUMEN

An enantioselective RhI -catalyzed conjugate addition reaction of α-substituted ß-nitroacrylates with various arylboronic acids by using chiral RhI diene catalysts is described for the first time. The addition reaction proceeds under mild conditions in a range of common organic solvents and additives, and it affords the corresponding quaternary-carbon-containing α,α-disubstituted ß-nitropropionate products in up to 63 % yield and 99 % ee. Reaction of either (E)- or (Z)-ß-nitroacrylates provided the same enantiomer of the product, and a range of esters and aryl groups were tolerated. To demonstrate the utility of the method, ethyl (R)-1,1-methyl-1-phenyl-3-nitropropionate, prepared herein, was converted to the non-proteinogenic ß2,2 -amino acid, (R)-2-(aminomethyl)-2-phenylpropanoic acid, and to the ß2,2 -lactam, (R)-3-methyl-3-phenylazetidin-2-one. In addition, a tripeptide, which comprised l-phenylalanine, l-alanine, and ß2,2 -amino acid 7, was also synthesized.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA