Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Pathog ; 20(6): e1012235, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38843111

RESUMEN

Amikacin and piperacillin/tazobactam are frequent antibiotic choices to treat bloodstream infection, which is commonly fatal and most often caused by bacteria from the family Enterobacterales. Here we show that two gene cassettes located side-by-side in and ancestral integron similar to In37 have been "harvested" by insertion sequence IS26 as a transposon that is widely disseminated among the Enterobacterales. This transposon encodes the enzymes AAC(6')-Ib-cr and OXA-1, reported, respectively, as amikacin and piperacillin/tazobactam resistance mechanisms. However, by studying bloodstream infection isolates from 769 patients from three hospitals serving a population of 1.2 million people in South West England, we show that increased enzyme production due to mutation in an IS26/In37-derived hybrid promoter or, more commonly, increased transposon copy number is required to simultaneously remove these two key therapeutic options; in many cases leaving only the last-resort antibiotic, meropenem. These findings may help improve the accuracy of predicting piperacillin/tazobactam treatment failure, allowing stratification of patients to receive meropenem or piperacillin/tazobactam, which may improve outcome and slow the emergence of meropenem resistance.


Asunto(s)
Antibacterianos , Elementos Transponibles de ADN , Humanos , Antibacterianos/farmacología , Elementos Transponibles de ADN/genética , Farmacorresistencia Bacteriana Múltiple/genética , Piperacilina/farmacología , Amicacina/farmacología , Pruebas de Sensibilidad Microbiana , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Infecciones por Enterobacteriaceae/genética , Enterobacteriaceae/genética , Enterobacteriaceae/efectos de los fármacos , Integrones/genética , Bacteriemia/microbiología , Bacteriemia/tratamiento farmacológico , Bacteriemia/genética
2.
Antimicrob Agents Chemother ; : e0024224, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767379

RESUMEN

Nitrofurantoin resistance in Escherichia coli is primarily caused by mutations damaging two enzymes, NfsA and NfsB. Studies based on small isolate collections with defined nitrofurantoin MICs have found significant random genetic drift in nfsA and nfsB, making it extremely difficult to predict nitrofurantoin resistance from whole-genome sequence (WGS) where both genes are not obviously disrupted by nonsense or frameshift mutations or insertional inactivation. Here, we report a WGS survey of 200 oqxAB-negative E. coli from community urine samples, of which 34 were nitrofurantoin resistant. We characterized individual non-synonymous mutations seen in nfsA and nfsB among this collection using complementation cloning and NfsA/B enzyme assays in cell extracts. We definitively identified R203C, H11Y, W212R, A112E, and A112T in NfsA and R121C, Q142H, F84S, P163H, W46R, K57E, and V191G in NfsB as amino acid substitutions that reduce enzyme activity sufficiently to cause resistance. In contrast, E58D, I117T, K141E, L157F, A172S, G187D, and A188V in NfsA and G66D, M75I, V93A, and A174E in NfsB are functionally silent in this context. We identified that 9/166 (5.4%) nitrofurantoin-susceptible isolates were "pre-resistant," defined as having loss of function mutations in nfsA or nfsB. Finally, using NfsA/B enzyme assays and proteomics, we demonstrated that 9/34 (26.5%) ribE wild-type nitrofurantoin-resistant isolates also carried functionally wild-type nfsB or nfsB/nfsA. In these cases, NfsA/B activity was reduced through downregulated gene expression. Our biological understanding of nitrofurantoin resistance is greatly improved by this analysis but is still insufficient to allow its reliable prediction from WGS data.

3.
Nat Commun ; 14(1): 3517, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316492

RESUMEN

Antimicrobial resistant Salmonella enterica serovar Concord (S. Concord) is known to cause severe gastrointestinal and bloodstream infections in patients from Ethiopia and Ethiopian adoptees, and occasional records exist of S. Concord linked to other countries. The evolution and geographical distribution of S. Concord remained unclear. Here, we provide a genomic overview of the population structure and antimicrobial resistance (AMR) of S. Concord by analysing genomes from 284 historical and contemporary isolates obtained between 1944 and 2022 across the globe. We demonstrate that S. Concord is a polyphyletic serovar distributed among three Salmonella super-lineages. Super-lineage A is composed of eight S. Concord lineages, of which four are associated with multiple countries and low levels of AMR. Other lineages are restricted to Ethiopia and horizontally acquired resistance to most antimicrobials used for treating invasive Salmonella infections in low- and middle-income countries. By reconstructing complete genomes for 10 representative strains, we demonstrate the presence of AMR markers integrated in structurally diverse IncHI2 and IncA/C2 plasmids, and/or the chromosome. Molecular surveillance of pathogens such as S. Concord supports the understanding of AMR and the multi-sector response to the global AMR threat. This study provides a comprehensive baseline data set essential for future molecular surveillance.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Humanos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Etiopía/epidemiología , Genómica , Salmonella/genética
4.
Microbiology (Reading) ; 168(8)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35997594

RESUMEN

Staphylococcus aureus bacteraemia (SAB) is a major cause of blood-stream infection (BSI) in both healthcare and community settings. While the underlying comorbidities of a patient significantly contributes to their susceptibility to and outcome following SAB, recent studies show the importance of the level of cytolytic toxin production by the infecting bacterium. In this study we demonstrate that this cytotoxicity can be determined directly from the diagnostic MALDI-TOF mass spectrum generated in a routine diagnostic laboratory. With further development this information could be used to guide the management and improve the outcomes for SAB patients.


Asunto(s)
Bacteriemia , Infecciones Estafilocócicas , Bacteriemia/diagnóstico , Bacteriemia/microbiología , Humanos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Infecciones Estafilocócicas/diagnóstico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus
6.
Appl Environ Microbiol ; 87(1)2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33067197

RESUMEN

Third-generation cephalosporin resistance (3GC-R) in Escherichia coli is a rising problem in human and farmed-animal populations. We conducted whole-genome sequencing analysis of 138 representative 3GC-R isolates previously collected from dairy farms in southwest England and confirmed by PCR to carry acquired 3GC-R genes. This analysis identified blaCTX-M (131 isolates encoding CTX-M-1, -14, -15, -and 32 and the novel variant CTX-M-214), blaCMY-2 (6 isolates), and blaDHA-1 (1 isolate). A highly conserved plasmid was identified in 73 isolates, representing 27 E. coli sequence types. This novel ∼220-kb IncHI2 plasmid carrying blaCTX-M-32 was sequenced to closure and designated pMOO-32. It was found experimentally to be stable in cattle and human transconjugant E. coli even in the absence of selective pressure and was found by multiplex PCR to be present on 26 study farms representing a remarkable range of transmission over 1,500 square kilometers. However, the plasmid was not found among human urinary E. coli isolates we recently characterized from people living in the same geographical location, collected in parallel with farm sampling. There were close relatives of two blaCTX-M plasmids circulating among eight human and two cattle isolates, and a closely related blaCMY-2 plasmid was found in one cattle and one human isolate. However, phylogenetic evidence of recent sharing of 3GC-R strains between farms and humans in the same region was not found.IMPORTANCE Third-generation cephalosporins (3GCs) are critically important antibacterials, and 3GC resistance (3GC-R) threatens human health, particularly in the context of opportunistic pathogens such as Escherichia coli There is some evidence for zoonotic transmission of 3GC-R E. coli through food, but little work has been done examining possible transmission via interaction of people with the local near-farm environment. We characterized acquired 3GC-R E. coli found on dairy farms in a geographically restricted region of the United Kingdom and compared these with E. coli from people living in the same region, collected in parallel. While there is strong evidence for recent farm-to-farm transmission of 3GC-R strains and plasmids-including one epidemic plasmid that has a remarkable capacity to be transmitted-there was no evidence that 3GC-R E. coli found on study farms had a significant impact on circulating 3GC-R E. coli strains or plasmids in the local human population.


Asunto(s)
Enfermedades de los Bovinos/transmisión , Infecciones por Escherichia coli/veterinaria , Escherichia coli/fisiología , beta-Lactamasas/genética , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , Inglaterra/epidemiología , Escherichia coli/enzimología , Escherichia coli/genética , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/transmisión , Epidemiología Molecular , Plásmidos/genética , Plásmidos/metabolismo , beta-Lactamasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA