Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Mater Horiz ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38894689

RESUMEN

A facile reduction and doping process is employed with the supercritical ethanol drying method to form RuNi alloy aerogels. The optimized heterostructure comprising RuNi metal, RuO2, and NiO phases is synthesized through partial oxidation. When applied to the surface of Ni foam, the multiphase aerogels form a morphology of highly porous 0D colloidal aerogel networks on the surface. RuNi alloy-Ni foam oxidized at 350 °C (RuNi-350@NF) has an overpotential of 89 and 61 mV in 1 M KOH and 0.5 M H2SO4 media at 50 mA cm-2, as well as satisfactory long-term stability. Additionally, the Tafel slopes in alkaline and acidic media are found to be 34 and 30.9 mV dec-1, respectively. Furthermore, it exhibits long-term stability (35 h) in alkaline and acidic media at high current densities of 50 mA cm-2, respectively. This study presents a novel strategy for developing exceptionally efficient and free-standing 3D porous aerogel electrocatalysts with potential applications in hydrogen production.

2.
Bioengineering (Basel) ; 11(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38927806

RESUMEN

The aim of this study was to assess the usefulness of an attachable video laryngoscope (AVL) by attaching a camera and a monitor to a conventional Macintosh laryngoscope (CML). Normal and tongue edema airway scenarios were simulated using a manikin. Twenty physicians performed tracheal intubations using CML, AVL, Pentax Airwayscope® (AWS), and McGrath MAC® (MAC) in each scenario. Ten physicians who had clinical experience in using tracheal intubation were designated as the skilled group, and another ten physicians who were affiliated with other departments and had little clinical experience using tracheal intubation were designated as the unskilled group. The time required for intubation and the success rate were recorded. The degree of difficulty of use and glottic view assessment were scored by participants. All 20 participants successfully completed the study. There was no difference in tracheal intubation success rate and intubation time in the normal airway scenario in both skilled and unskilled groups. In the experienced group, AWS had the highest success rate (100%) in the tongue edema airway scenario, followed by AVL (60%), MAC (60%), and CML (10%) (p = 0.001). The time required to intubate using AWS was significantly shorter than that with AVL (10.2 s vs. 19.2 s) or MAC (10.2 s vs. 20.4 s, p = 0.007). The difficulty of using AVL was significantly lower than that of CML (7.8 vs. 2.8; p < 0.001). For the experienced group, AVL was interpreted as being inferior to AWS but better than MAC. Similarly, in the unskilled group, AVL had a similar success rate and tracheal intubation time as MAC in the tongue edema scenario, but this was not statistically significant. The difficulty of using AVL was significantly lower than that of CML (8.8 vs. 3.3; p < 0.001). AVL may be an alternative for VL.

3.
Phys Rev Lett ; 132(22): 226301, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38877917

RESUMEN

We demonstrate that the mode number of Andreev bound states in bilayer graphene Josephson junctions can be modulated by controlling the superconducting coherence length in situ. By exploiting the quadratic band dispersion of bilayer graphene, we control the Fermi velocity and thus the coherence length via the application of electrostatic gating. Tunneling spectroscopy of the Andreev bound states reveals a crossover from short to long Josephson junction regimes as we approach the charge neutral point of the bilayer graphene. Furthermore, analysis of different mode numbers of the Andreev energy spectrum allows us to estimate the phase-dependent Josephson current quantitatively. Our Letter provides a new way for studying multimode Andreev levels by tuning the Fermi velocity.

4.
Curr Issues Mol Biol ; 46(4): 2871-2883, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38666910

RESUMEN

Alzheimer's disease (AD) is a chronic neurodegenerative disease that causes cognitive impairment. Neuroinflammation induced by activated microglia exacerbates AD. Regulatory T cells (Tregs) play roles in limiting neuroinflammation by converting microglial polarization. Therefore, adoptive Treg therapy is considered an attractive option for neurodegenerative disorders. However, the mechanism underlying Treg therapy via microglial modulation is not fully understood. In this study, we sought to determine whether adoptively transferred Tregs were effective when microglia proliferation was inhibited by using GW2580, which is an inhibitor of CSF1R. We found that inhibition of microglial proliferation during Treg transfer did not alter the therapeutic effects of Tregs on cognitive deficits and the accumulation of Aß and pTAU in 3xTg-AD mice. The expression of pro- and anti-inflammatory markers in the hippocampus of 3xTg mice showed that GW2580 did not affect the inhibition of neuroinflammation by Treg transfer. Additionally, adoptively transferred Tregs were commonly detected in the brain on day 7 after transfer and their levels decreased slowly over 100 days. Our findings suggest that adoptively transferred Tregs can survive longer than 100 days in the brain, suppressing microglial activation and thus alleviating AD pathology. The present study provides valuable evidence to support the prolonged efficacy of adoptive Treg therapy in AD.

5.
Phys Chem Chem Phys ; 26(15): 11597-11603, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38536050

RESUMEN

We studied the chemisorption of silicon tetrachloride (SiCl4) on the NH2/NH-terminated silicon nitride slab model using density functional theory (DFT) for atomic layer deposition (ALD) of silicon nitride. Initially, two reaction pathways were compared, forming HCl or NH3+Cl- as a byproduct. The NH3+Cl- complex formation was more exothermic than the HCl formation, with an activation energy of 0.26 eV. The -NH2* reaction sites are restored by desorption of HCl from the NH3+Cl- complexes at elevated temperatures of 205 °C or higher. Next, three sequential ligand exchange reactions forming Si-N bonds were modeled and simulated. The reaction energies became progressively less exothermic as the reaction progressed, from -1.31 eV to -0.30 eV to 0.98 eV, due to the stretching of Si-N bonds and the distortion of the N-Si-N bond angles. Also, the activation energies for the second and third reactions were 2.17 eV and 1.55 eV, respectively, significantly higher than the 0.26 eV of the first reaction, mainly due to the additional dissociation of the N-H bond. The third Si-N bond formation is unfavorable due to the endothermic reaction and higher activation energy. Therefore, the chemisorbed species would be -SiCl2* when the surface is exposed to SiCl4.

6.
Nature ; 625(7994): 264-269, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38093009

RESUMEN

Spin nematic is a magnetic analogue of classical liquid crystals, a fourth state of matter exhibiting characteristics of both liquid and solid1,2. Particularly intriguing is a valence-bond spin nematic3-5, in which spins are quantum entangled to form a multipolar order without breaking time-reversal symmetry, but its unambiguous experimental realization remains elusive. Here we establish a spin nematic phase in the square-lattice iridate Sr2IrO4, which approximately realizes a pseudospin one-half Heisenberg antiferromagnet in the strong spin-orbit coupling limit6-9. Upon cooling, the transition into the spin nematic phase at TC ≈ 263 K is marked by a divergence in the static spin quadrupole susceptibility extracted from our Raman spectra and concomitant emergence of a collective mode associated with the spontaneous breaking of rotational symmetries. The quadrupolar order persists in the antiferromagnetic phase below TN ≈ 230 K and becomes directly observable through its interference with the antiferromagnetic order in resonant X-ray diffraction, which allows us to uniquely determine its spatial structure. Further, we find using resonant inelastic X-ray scattering a complete breakdown of coherent magnon excitations at short-wavelength scales, suggesting a many-body quantum entanglement in the antiferromagnetic state10,11. Taken together, our results reveal a quantum order underlying the Néel antiferromagnet that is widely believed to be intimately connected to the mechanism of high-temperature superconductivity12,13.

7.
Adv Sci (Weinh) ; 11(2): e2302410, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37997197

RESUMEN

The recent interests in bridging intriguing optical phenomena and thermal energy management has led to the demonstration of controlling thermal radiation with epsilon-near-zero (ENZ) and the related near-zero-index (NZI) optical media. In particular, the manipulation of thermal emission using phononic ENZ and NZI materials has shown promise in mid-infrared radiative cooling systems operating under low-temperature environments (below 100 °C). However, the absence of NZI materials capable of withstanding high temperatures has limited the spectral extension of these advanced technologies to the near-infrared (NIR) regime. Herein, a perovskite conducting oxide, lanthanum-doped barium stannate (La:BaSnO3 [LBSO]), as a refractory NZI material well suited for engineering NIR thermal emission is proposed. This work focuses on the experimental demonstration of superior high-temperature stability (of at least 1000 °C) of LBSO films in air and its durability under intense UV-pulsed laser irradiation below peak power of 9 MW cm-2 . Based on the low optical-loss in LBSO, a selective narrow-band thermal emission utilizing a metal-insulator-metal (MIM) Fabry-Pérot nanocavity consisting of LBSO films as metallic component is demonstrated. This study shows that LBSO is an ideal candidate as a refractory NZI component for thermal energy conversion operating at high temperatures in air and under strong light irradiations.

8.
Mycobiology ; 51(5): 300-312, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37929003

RESUMEN

Hydnum is a genus of ectomycorrhizal fungi belonging to the Hydnaceae family. It is widely distributed across different regions of the world, including North America, Europe, and Asia; however, some of them showed disjunct distributions. In recent years, with the integration of molecular techniques, the taxonomy and classification of Hydnum have undergone several revisions and advancements. However, these changes have not yet been applied in the Republic of Korea. In this study, we conducted an integrated analysis combining the morphological and molecular analyses of 30 specimens collected over a period of approximately 10 years in the Republic of Korea. For molecular analysis, the sequence data of the internal transcribed spacer (ITS) region, the large subunit of nuclear ribosomal RNA gene (nrLSU), and a portion of translation elongation factor 1-α (TEF1) were employed as molecular markers. Through this study, we identified eight species that had previously not been reported to occur in the Republic of Korea, including one new species, Hydnum paucispinum. A taxonomic key and detailed descriptions of the eight Hydnum species are provided in this study.

9.
Gels ; 9(8)2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37623106

RESUMEN

Silica aerogels and their derivatives have outstanding thermal properties with exceptional values in the thermal insulation industry. However, their brittle nature restricts their large-scale commercialization. Thus, enhancing their mechanical strength without affecting their thermal insulating properties is essential. Therefore, for the first time, highly thermally stable poly(acrylamide-co-acrylic acid) partial sodium salt is used as a reinforcing polymer to synthesize hybrid P(AAm-CO-AAc)-silica aerogels via epoxy ring-opening polymerization in the present study. Functional groups in P(AAm-CO-AAc) partial sodium salts, such as CONH2 and COOH, acted as nucleophiles for the epoxy ring-opening reaction with (3-glycidyloxypropyl)trimethoxysilane, which resulted in a seven-fold enhancement in mechanical strength compared to that of pristine silica aerogel while maintaining thermal conductivity at less than 30.6 mW/mK and porosity of more than 93.68%. Moreover, the hybrid P(AAm-CO-AAc)-silica aerogel demonstrated improved thermal stability up to 343 °C, owing to the synergetic effect between the P(AAm-CO-AAc) and the silica aerogel, corresponding to the thermal stability and strong covalent bonding among them. These excellent results illustrate that this new synthetic approach for producing hybrid P(AAm-CO-AAc)-silica aerogels is useful for enhancing the mechanical strength of pristine silica aerogel without impairing its thermal insulating property and shows potential as an industrial heat insulation material.

10.
AIDS ; 37(15): 2349-2357, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37650767

RESUMEN

OBJECTIVE: Accurate estimation of kidney function is critical among persons with HIV (PWH) to avoid under-dosing of antiretroviral therapies and ensure timely referral for kidney transplantation. Existing estimation equations for kidney function include race, the appropriateness of which has been debated. Given advancements in understanding of race and the necessity of accuracy in kidney function estimation, this study aimed to examine whether race, or genetic factors, improved prediction of serum creatinine among PWH. DESIGN: This cross-sectional study utilized data from the Center for AIDS Research Network of Integrated Clinical Systems cohort (2008-2018). The outcome was baseline serum creatinine. METHODS: Ordinary least squares regression was used to examine whether inclusion of race or genetic factors [ apolipoprotein-L1 ( APOL1 ) variants and genetic African ancestry] improved serum creatinine prediction. A reduction in root mean squared error (RMSE) greater than 2% was a clinically relevant improvement in predictive ability. RESULTS: There were 4183 PWH included. Among PWH whose serum creatinine was less than 1.7 mg/dl, race was significantly associated with serum creatinine ( ß â€Š= 0.06, SE = 0.01, P  < 0.001) but did not improve predictive ability. African ancestry and APOL1 variants similarly failed to improve predictive ability. Whereas, when serum creatinine was at least 1.7 mg/dl, inclusion of race reduced the RMSE by 2.1%, indicating improvement in predictive ability. APOL1 variants further improved predictive ability by reducing the RMSE by 2.9%. CONCLUSION: These data suggest that, among PWH, inclusion of race or genetic factors may only be warranted at higher serum creatinine levels. Work eliminating existing healthcare disparities while preserving the utility of estimating equations is needed.


Asunto(s)
Apolipoproteína L1 , Creatinina , Infecciones por VIH , Humanos , Apolipoproteína L1/genética , Negro o Afroamericano/genética , Creatinina/sangre , Estudios Transversales , Infecciones por VIH/tratamiento farmacológico , Factores de Riesgo
11.
Phys Chem Chem Phys ; 25(33): 22250-22257, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37577845

RESUMEN

Tetrakis(dimethylamino)-titanium (TDMAT, Ti(NMe2)4) has been used for the low-temperature atomic layer deposition (ALD) process of titanium oxide (TiO2) films. In this study, the chemisorption of TDMAT on a titanium oxide surface using a slab model was simulated by density functional theory (DFT) calculation. We calculated the activation energy for the chemisorption and predicted the final chemisorbed species. A TiO2 slab model was constructed with the optimized number of -OH surface groups. Three serial ligand exchange reactions between a TDMAT molecule and the TiO2 slab were exothermic with low activation energies of 0.16-0.46 eV, which can explain the low processing temperatures of the ALD TiO2 processes. Our DFT calculation showed that three NMe2 ligands of TDMAT would be released and the surface species of -TiNMe2 would be formed, which is in good agreement with the experimental observation in the literature.

12.
PLoS One ; 18(7): e0287867, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37437045

RESUMEN

BACKGROUNDS: A proper disinfection of denture is vital to prevent a fungal infection. A study on the feasibility of microencapsulated phytochemical as complementary disinfectant and its interaction with effervescent tablet immersion on denture base resin is lacking. OBJECTIVES: The aim of this study was to examine the feasibility of phytochemical-filled microcapsules as disinfectant for the inhibition of Candida albicans (C. albicans) attachment on the denture base produced by digital light processing (DLP). METHODS: 54 denture base specimens uniformly mixed with or without 5wt% phytochemical-filled microcapsules were prepared using DLP. Fungal cells were inoculated onto the surfaces of the specimens, which were divided into three different disinfection treatment groups (n = 9): 1) none, 2) sterile tap water immersion for 15 min, and 3) effervescent tablet immersion for 15 min. After each treatment, the biofilm on denture surface was stained with a crystal violet solution to measure the absorbance. The number of fungal colonies was counted as colony-forming units (CFU) per mL. Morphological changes were examined by microscopy. An aligned rank transform analysis of variance was performed to analyze the interaction of presence of microcapsule and disinfection condition, with statistical significance set at P < 0.05. RESULTS: Both for the absorbance and CFU, there was no significant interaction between the presence of microcapsules and disinfection conditions (P = 0.543 and P = 0.077, respectively). The presence of microcapsules was statistically significant (both P < 0.001), while the effect of disinfection condition was not significant (P = 0.165 and P = 0.189, respectively). Morphological changes in fungi were detected in the groups containing microcapsules, whereas undamaged hyphal structures were found in those without microcapsules, irrespective of disinfection treatments. CONCLUSIONS: The presence of phytochemical-filled microcapsules significantly reduced the adhesion of C. albicans and inhibited its proliferation on denture surfaces, regardless of disinfection conditions.


Asunto(s)
Desinfectantes , Candida albicans , Cápsulas , Bases para Dentadura , Estudios de Factibilidad , Fitoquímicos , Proliferación Celular
13.
Nat Commun ; 14(1): 4047, 2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37422498

RESUMEN

The pulverization of lithium metal electrodes during cycling recently has been suppressed through various techniques, but the issue of irreversible consumption of the electrolyte remains a critical challenge, hindering the progress of energy-dense lithium metal batteries. Here, we design a single-ion-conductor-based composite layer on the lithium metal electrode, which significantly reduces the liquid electrolyte loss via adjusting the solvation environment of moving Li+ in the layer. A Li||Ni0.5Mn0.3Co0.2O2 pouch cell with a thin lithium metal (N/P of 2.15), high loading cathode (21.5 mg cm-2), and carbonate electrolyte achieves 400 cycles at the electrolyte to capacity ratio of 2.15 g Ah-1 (2.44 g Ah-1 including mass of composite layer) or 100 cycles at 1.28 g Ah-1 (1.57 g Ah-1 including mass of composite layer) under a stack pressure of 280 kPa (0.2 C charge with a constant voltage charge at 4.3 V to 0.05 C and 1.0 C discharge within a voltage window of 4.3 V to 3.0 V). The rational design of the single-ion-conductor-based composite layer demonstrated in this work provides a way forward for constructing energy-dense rechargeable lithium metal batteries with minimal electrolyte content.


Asunto(s)
Líquidos Corporales , Litio , Electrólitos , Iones , Metales
14.
J Dent ; 137: 104608, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37433380

RESUMEN

OBJECTIVES: To investigate differences in the surface properties and microbial adhesion of denture base resins for digital light processing (DLP) with varying resin layer thicknesses (LT), build angles (BA), and resin viscosities. METHODS: Two denture base resins for DLP with different viscosities (high and low) were used to prepare disk specimens applying two manufacturing parameters: 1) LT (50 or 100 µm) and 2) BA (0-, 45-, and 90-degree). Surface roughness and contact angle values were measured on the test surfaces (n=10 per group). Streptococcus oralis and Candida albicans absorbance was measured to assess microorganism attachment (n=6 per group). A three-way analysis of variance (ANOVA) was conducted, considering the main effects and their interactions (viscosity, LT, and BA). Post-hoc multiple pairwise comparisons were performed. All data were analyzed at a level of significance (P) of 0.05. RESULTS: LT and BA significantly affected the surface roughness and contact angle of the specimens, depending on resin viscosity (P<.001). Absorbance measurement showed no significant interaction between the three factors (P>.05). However, significant interactions were observed between viscosity and BA (P<.05) and between LT and BA (P<.05). CONCLUSIONS: Regardless of the viscosity and LT, discs with a 0-degree BA showed the least roughness. High-viscosity specimens fabricated with a 0-degree BA had the lowest contact angle. Regardless of the LT and viscosity, discs with a 0-degree BA showed the lowest S. oralis attachment. Attachment of C. albicans was the least on the disk with 50 µm LT, irrespective of the viscosity. CLINICAL SIGNIFICANCE: Clinicians should consider the effects of LT and BA on surface roughness, contact angle, and microbial adhesion of DLP-generated dentures, which can differ depending on resin viscosity. A 50 µm LT and 0-degree BA can be used with a high-viscosity resin to fabricate denture bases with less microbial adhesion.


Asunto(s)
Candida albicans , Bases para Dentadura , Viscosidad , Propiedades de Superficie , Análisis de Varianza , Ensayo de Materiales
16.
J Dent ; 135: 104598, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37356562

RESUMEN

OBJECTIVES: To investigate effects of layer thickness, build angle, and viscosity on the mechanical properties and trueness of denture base resins used for digital light processing (DLP). METHODS: Two denture base resins for DLP in different viscosity (high and low) were tested by using two manufacturing parameters:1) layer thickness (LT) (50- or 100-µm) and 2) build angle (BA) (0-, 45-, and 90-degree). disk- and bar-shaped specimens were used to evaluate hardness and flexural strength, respectively. Denture base specimens were used to examine trueness, and the deviation was calculated as the root mean square. Three-way analysis of variance (ANOVA) was conducted to determine the interaction among the three factors (viscosity, LT, and BA). Statistical significance was set at P < .05. RESULTS: Effects of LT and BA on hardness differed according to viscosity, with significant interactions among three factors (P=.027). Regardless of LT or BA, the low-viscosity group had higher hardness than the high-viscosity group (P<.001). In terms of flexural strength, no significant interaction was detected between the factors (P=.212), however, the effects of LT and BA were significant (P=.003 and P<.001, respectively). Regarding trueness, a significant interaction was observed between viscosity and BA (P=.001). Low-viscosity group had higher trueness than high-viscosity group when the 45- and 90-degree BA were applied (P<.001). CONCLUSIONS: LT and BA significantly affected the mechanical properties and trueness of the 3DP denture base, depending on the viscosity. For hardness and trueness, using low-viscosity resin and manufacturing with 50-µm LT and 45-degree BA are recommended. CLINICAL SIGNIFICANCE: Resin viscosity affects the influence of LT and BA on the hardness, flexural strength, and trueness of DLP-generated denture bases. A 50-µm LT and 45-degree BA can be used with a low-viscosity resin to fabricate denture bases with higher hardness and trueness.


Asunto(s)
Bases para Dentadura , Resistencia Flexional , Viscosidad , Dureza , Ensayo de Materiales , Propiedades de Superficie
17.
J Prosthet Dent ; 130(2): 265.e1-265.e7, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37353410

RESUMEN

STATEMENT OF PROBLEM: Studies on the effects of postprocessing conditions on the physical properties, degree of conversion (DC), and biocompatibility of denture bases produced by digital light processing are lacking. PURPOSE: The purpose of this in vitro study was to evaluate the effects of the atmosphere during postpolymerization and of postpolymerization time on the flexural strength, Vickers hardness, DC, cytotoxicity, and residual monomer content of denture bases. MATERIAL AND METHODS: Six different groups of bar- and disk-shaped specimens from the denture base resin were produced, considering 2 different atmospheres (air and nitrogen) and 3 different postpolymerization times (5, 10, and 20 minutes). To determine the physical properties, the flexural strength and Vickers hardness were measured. Fourier transform infrared spectrometry was used to calculate DC. Cytotoxicity was assessed from the effect on human gingival fibroblasts. The residual monomer content was determined by using high-performance liquid chromatography. Based on the normality test by the Shapiro-Wilk method, a nonparametric factorial analysis of variances was conducted (α=.05). RESULTS: A significant interaction was detected between the atmosphere and postpolymerization time for hardness (P<.001) but no interaction for strength, DC, or cytotoxicity (P=.826, P=.786, and P=.563, respectively). Hardness was significantly affected by the postpolymerization time in the groups with the nitrogen atmosphere (P<.001). DC was significantly affected by the atmosphere (P=.012), whereas strength and cytotoxicity were not (P=.500 and P=.299, respectively). Cytotoxicity was significantly affected by the postpolymerization time (P<.001), but strength and DC were not (P=.482 and P=.167, respectively). Residual monomers were not detected after ≥10-minute postpolymerization time. CONCLUSIONS: The atmosphere significantly affected hardness and DC, whereas the postpolymerization time significantly affected hardness, DC, cytotoxicity, and residual monomer content. Denture bases produced in a nitrogen atmosphere and with the 10-minute postpolymerization time showed sufficient hardness, DC, and no cytotoxicity.


Asunto(s)
Resinas Acrílicas , Bases para Dentadura , Humanos , Resinas Acrílicas/química , Docilidad , Ensayo de Materiales , Resistencia Flexional , Dureza , Propiedades de Superficie
18.
MycoKeys ; 98: 87-111, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305062

RESUMEN

Cladosporium species are cosmopolitan fungi, characterized by olivaceous or dark colonies with coronate conidiogenous loci and conidial hila with a central convex dome surrounded by a raised periclinal rim. Cladosporium species have also been discovered in marine environments. Although many studies have been performed on the application of marine originated Cladosporium species, taxonomic studies on these species are scarce. We isolated Cladosporium species from three under-studied habitats (sediment, seawater, and seaweed) in two districts including an intertidal zone in the Republic of Korea and the open sea in the Western Pacific Ocean. Based on multigenetic marker analyses (for the internal transcribed spacer, actin, and translation elongation factor 1), we identified fourteen species, of which five were found to represent new species. These five species were C.lagenariiformesp. nov., C.maltirimosumsp. nov., C.marinumsp. nov. in the C.cladosporioides species complex, C.snafimbriatumsp. nov. in the C.herbarum species complex, and C.marinisedimentumsp. nov. in the C.sphaerospermum species complex. Morphological characteristics of the new species and aspects of differences with the already known species are described herein together with molecular data.

19.
J Microbiol ; 61(2): 189-197, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36745333

RESUMEN

Indoor fungi obtain carbon sources from natural sources and even recalcitrant biodegradable materials, such as plastics and synthetic dye. Their vigorous activity may have negative consequences, such as structural damage to building materials or the destruction of precious cultural materials. The animal specimen room of the Seoul National University stocked 36,000 animal resources that had been well-maintained for over 80 years. Due to abandonment without the management of temperature and humidity during the rainy summer season, many stuffed animal specimens had been heavily colonized by fungi. To investigate the fungal species responsible for the destruction of the historical specimens, we isolated fungi from the stuffed animal specimens and identified them at the species level based on morphology and molecular analysis of the ß-tubulin (BenA) gene. A total of 365 strains were isolated and identified as 26 species in Aspergillus (10 spp.), Penicillium (14 spp.), and Talaromyces (2 spp.). Penicillium brocae and Aspergillus sydowii were isolated from most sections of the animal specimens and have damaged the feathers and beaks of valuable specimens. Our findings indicate that within a week of mismanagement, it takes only a few fungal species to wipe out the decades of history of animal diversity. The important lesson here is to prevent this catastrophe from occurring again through a continued interest, not to put all previous efforts to waste.


Asunto(s)
Hongos , Penicillium , Animales , Hongos/genética , Temperatura , Seúl
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA