Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
J Am Heart Assoc ; 13(4): e032646, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38353216

RESUMEN

BACKGROUND: The renal sympathetic nervous system modulates systemic blood pressure, cardiac performance, and renal function. Pathological increases in renal sympathetic nerve activity contribute to the pathogenesis of heart failure with preserved ejection fraction (HFpEF). We investigated the effects of renal sympathetic denervation performed at early or late stages of HFpEF progression. METHODS AND RESULTS: Male ZSF1 obese rats were subjected to radiofrequency renal denervation (RF-RDN) or sham procedure at either 8 weeks or 20 weeks of age and assessed for cardiovascular function, exercise capacity, and cardiorenal fibrosis. Renal norepinephrine and renal nerve tyrosine hydroxylase staining were performed to quantify denervation following RF-RDN. In addition, renal injury, oxidative stress, inflammation, and profibrotic biomarkers were evaluated to determine pathways associated with RDN. RF-RDN significantly reduced renal norepinephrine and tyrosine hydroxylase content in both study cohorts. RF-RDN therapy performed at 8 weeks of age attenuated cardiac dysfunction, reduced cardiorenal fibrosis, and improved endothelial-dependent vascular reactivity. These improvements were associated with reductions in renal injury markers, expression of renal NLR family pyrin domain containing 3/interleukin 1ß, and expression of profibrotic mediators. RF-RDN failed to exert beneficial effects when administered in the 20-week-old HFpEF cohort. CONCLUSIONS: Our data demonstrate that early RF-RDN therapy protects against HFpEF disease progression in part due to the attenuation of renal fibrosis and inflammation. In contrast, the renoprotective and left ventricular functional improvements were lost when RF-RDN was performed in later HFpEF progression. These results suggest that RDN may be a viable treatment option for HFpEF during the early stages of this systemic inflammatory disease.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Masculino , Ratas , Animales , Insuficiencia Cardíaca/metabolismo , Volumen Sistólico , Tirosina 3-Monooxigenasa/metabolismo , Riñón/metabolismo , Simpatectomía/métodos , Inflamación/metabolismo , Norepinefrina , Fibrosis , Desnervación
3.
Am J Physiol Heart Circ Physiol ; 326(1): H278-H290, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38038717

RESUMEN

Smoking and high-fat diet (HFD) consumption are two modifiable risk factors for cardiovascular (CV) diseases, and individuals who are overweight or obese due to unhealthy diet are more likely to use tobacco products. In this study, we aim to investigate the combined effects of nicotine (the addictive component of all tobacco products) and HFD on CV health, which are poorly understood. C57BL/6N male mice were placed on either HFD (60 kcal% fat) or regular diet (22 kcal% fat) and exposed to air or nicotine vapor for 10-12 wk. CV function was monitored by echocardiography and radiotelemetry, with left ventricular (LV) catheterization and aortic ring vasoreactivity assays performed at end point. Mice on HFD exhibited increased heart rate and impaired parasympathetic tone, whereas nicotine exposure increased sympathetic vascular tone as evidenced by increased blood pressure (BP) response to ganglionic blockade. Although neither nicotine nor HFD alone or in combination significantly altered BP, nicotine exposure disrupted circadian BP regulation with reduced BP dipping. LV catheterization revealed that combined exposure to nicotine and HFD led to LV diastolic dysfunction with increased LV end-diastolic pressure (LVEDP). Moreover, combined exposure resulted in increased inhibitory phosphorylation of endothelial nitric oxide synthase and greater impairment of endothelium-dependent vasodilation. Finally, a small cohort of C57BL/6N females with combined exposure exhibited similar increases in LVEDP, indicating that both sexes are susceptible to the combined effect of nicotine and HFD. In summary, combined exposure to nicotine and HFD leads to greater CV harm, including both additive and new-onset CV dysfunction.NEW & NOTEWORTHY Nicotine product usage and high-fat diet consumption are two modifiable risk factors for cardiovascular diseases. Here, we demonstrate that in mice, combined exposure to inhaled nicotine and high-fat diet results in unique cardiovascular consequences compared with either treatment alone, including left ventricular diastolic dysfunction, dysregulation of blood pressure, autonomic dysfunction, and greater impairment of endothelium-dependent vasorelaxation. These findings indicate that individuals who consume both nicotine products and high-fat diet have distinctive cardiovascular risks.


Asunto(s)
Dieta Alta en Grasa , Disfunción Ventricular Izquierda , Humanos , Femenino , Ratones , Masculino , Animales , Dieta Alta en Grasa/efectos adversos , Nicotina/toxicidad , Ratones Endogámicos C57BL , Vasodilatación , Presión Sanguínea , Disfunción Ventricular Izquierda/inducido químicamente
5.
J Am Heart Assoc ; 12(4): e028480, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36752224

RESUMEN

Background Recent studies have suggested that cardiac nitrosative stress mediated by pathological overproduction of nitric oxide (NO) via inducible NO synthase (iNOS) contributes to the pathogenesis of heart failure with preserved ejection fraction (HFpEF). Other studies have suggested that endothelial NO synthase (eNOS) dysfunction and attenuated NO bioavailability contribute to HFpEF morbidity and mortality. We sought to further investigate dysregulated NO signaling and to examine the effects of a NO-based dual therapy (sodium nitrite+hydralazine) following the onset of HFpEF using a "2-hit" murine model. Methods and Results Nine-week-old male C57BL/6 N mice (n=15 per group) were treated concurrently with high-fat diet and N(ω)-nitro-L-arginine methyl ester (L-NAME) (0.5 g/L per day) via drinking water for 10 weeks. At week 5, mice were randomized into either vehicle (normal saline) or combination treatment with sodium nitrite (75 mg/L in the drinking water) and hydralazine (2.0 mg/kg IP, BID). Cardiac structure and function were monitored with echocardiography and invasive hemodynamic measurements. Cardiac mitochondrial respiration, aortic vascular function, and exercise performance were also evaluated. Circulating and myocardial nitrite were measured to determine the bioavailability of NO. Circulating markers of oxidative or nitrosative stress as well as systemic inflammation were also determined. Severe HFpEF was evident by significantly elevated E/E', LVEDP, and Tau in mice treated with L-NAME and HFD, which was associated with impaired NO bioavailability, mitochondrial respiration, aortic vascular function, and exercise capacity. Treatment with sodium nitrite and hydralazine restored NO bioavailability, reduced oxidative and nitrosative stress, preserved endothelial function and mitochondrial respiration, limited the fibrotic response, and improved exercise capacity, ultimately attenuating the severity of "two-hit" HFpEF. Conclusions Our data demonstrate that nitrite, a well-established biomarker of NO bioavailability and a physiological source of NO, is significantly reduced in the heart and circulation in the "2-hit" mouse HFpEF model. Furthermore, sodium nitrite+hydralazine combined therapy significantly attenuated the severity of HFpEF in the "2-hit" cardiometabolic HFpEF. These data suggest that supplementing NO-based therapeutics with a potent antioxidant and vasodilator agent may result in synergistic benefits for the treatment of HFpEF.


Asunto(s)
Agua Potable , Insuficiencia Cardíaca , Ratones , Masculino , Animales , Insuficiencia Cardíaca/tratamiento farmacológico , Nitrito de Sodio , Volumen Sistólico/fisiología , NG-Nitroarginina Metil Éster , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Hidralazina/farmacología , Óxido Nítrico Sintasa
6.
JCI Insight ; 8(4)2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36602878

RESUMEN

Although murine models of coronary atherosclerotic disease have been used extensively to determine mechanisms, limited new therapeutic options have emerged. Pigs with familial hypercholesterolemia (FH pigs) develop complex coronary atheromas that are almost identical to human lesions. We reported previously that insulin-like growth factor 1 (IGF-1) reduced aortic atherosclerosis and promoted features of stable plaque in a murine model. We administered human recombinant IGF-1 or saline (control) in atherosclerotic FH pigs for 6 months. IGF-1 decreased relative coronary atheroma in vivo (intravascular ultrasound) and reduced lesion cross-sectional area (postmortem histology). IGF-1 increased plaque's fibrous cap thickness, and reduced necrotic core, macrophage content, and cell apoptosis, consistent with promotion of a stable plaque phenotype. IGF-1 reduced circulating triglycerides, markers of systemic oxidative stress, and CXCL12 chemokine levels. We used spatial transcriptomics (ST) to identify global transcriptome changes in advanced plaque compartments and to obtain mechanistic insights into IGF-1 effects. ST analysis showed that IGF-1 suppressed FOS/FOSB factors and gene expression of MMP9 and CXCL14 in plaque macrophages, suggesting possible involvement of these molecules in IGF-1's effect on atherosclerosis. Thus, IGF-1 reduced coronary plaque burden and promoted features of stable plaque in a pig model, providing support for consideration of clinical trials.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Hiperlipoproteinemia Tipo II , Placa Aterosclerótica , Ratones , Humanos , Animales , Porcinos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Aterosclerosis/patología , Placa Aterosclerótica/patología
7.
Nitric Oxide ; 132: 1-7, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36690137

RESUMEN

It is now more than 35 years since endothelium derived relaxing factor was identified as nitric oxide (NO). The last few decades have seen an explosion around nitric oxide biochemistry, physiology and clinical translation. The science reveals that all chronic disease is associated with decreased blood flow to the affected organ which results in increased inflammation, oxidative stress and immune dysfunction. This is true for cardiovascular disease, neurological disease, kidney, lung, liver disorders and every other major disorder. Since nitric oxide controls and regulates blood flow, oxygen and nutrient delivery to every cell, tissue and organ in the body and also mitigates inflammation, oxidative stress and immune dysfunction, a focus on restoring nitric oxide production is an obvious therapeutic strategy for a number of poorly managed chronic diseases. Since dietary nitrate is a major contributor to endogenous nitric oxide production, it should be considered as a means of therapy and restoration of nitric oxide. This review will update on the current state of the science and effects of inorganic nitrate administered through the diet on several chronic conditions and reveal how much is needed. It is clear now that antiseptic mouthwash and use of antacids disrupt nitrate metabolism to nitric oxide leading to clinical symptoms of nitric oxide deficiency. Based on the science, nitrate should be considered an indispensable nutrient that should be accounted for in dietary guidelines.


Asunto(s)
Enfermedades Cardiovasculares , Nitratos , Humanos , Nitritos/metabolismo , Óxido Nítrico/metabolismo , Enfermedades Cardiovasculares/metabolismo , Inflamación/tratamiento farmacológico
8.
Circ Res ; 132(2): 154-166, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36575984

RESUMEN

BACKGROUND: Hydrogen sulfide is a critical endogenous signaling molecule that exerts protective effects in the setting of heart failure. Cystathionine γ-lyase (CSE), 1 of 3 hydrogen-sulfide-producing enzyme, is predominantly localized in the vascular endothelium. The interaction between the endothelial CSE-hydrogen sulfide axis and endothelial-mesenchymal transition, an important pathological process contributing to the formation of fibrosis, has yet to be investigated. METHODS: Endothelial-cell-specific CSE knockout and Endothelial cell-CSE overexpressing mice were subjected to transverse aortic constriction to induce heart failure with reduced ejection fraction. Cardiac function, vascular reactivity, and treadmill exercise capacity were measured to determine the severity of heart failure. Histological and gene expression analyses were performed to investigate changes in cardiac fibrosis and the activation of endothelial-mesenchymal transition. RESULTS: Endothelial-cell-specific CSE knockout mice exhibited increased endothelial-mesenchymal transition and reduced nitric oxide bioavailability in the myocardium, which was associated with increased cardiac fibrosis, impaired cardiac and vascular function, and worsened exercise performance. In contrast, genetic overexpression of CSE in endothelial cells led to increased myocardial nitric oxide, decreased endothelial-mesenchymal transition and cardiac fibrosis, preserved cardiac and endothelial function, and improved exercise capacity. CONCLUSIONS: Our data demonstrate that endothelial CSE modulates endothelial-mesenchymal transition and ameliorate the severity of pressure-overload-induced heart failure, in part, through nitric oxide-related mechanisms. These data further suggest that endothelium-derived hydrogen sulfide is a potential therapeutic for the treatment of heart failure with reduced ejection fraction.


Asunto(s)
Insuficiencia Cardíaca , Sulfuro de Hidrógeno , Disfunción Ventricular Izquierda , Ratones , Animales , Sulfuro de Hidrógeno/metabolismo , Células Endoteliales/metabolismo , Óxido Nítrico/metabolismo , Ratones Noqueados , Endotelio Vascular/metabolismo , Fibrosis
9.
J Clin Invest ; 132(24)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36519539

RESUMEN

Atherosclerosis contributes to the majority of deaths related to cardiovascular disease (CVD). Recently, the nonspecific inflammatory biomarker soluble urokinase plasminogen activator receptor (suPAR) has shown prognostic value in patients with CVD; however, it remains unclear whether suPAR participates in the disease process. In this issue of the JCI, Hindy and colleagues report on their evaluation of a multi-ethnic cohort of over 5,000 participants without known CVD. High suPAR levels correlated with incident CVD and atherosclerosis. Genetic analysis revealed two variants associated with the suPAR-encoding gene (PLAUR) with higher plasma suPAR levels. Notably, a mouse model with high suPAR levels possessed aortic tissue with a proinflammatory phenotype, including monocytes with enhanced chemotaxis similar to that seen in atherogenesis. These findings suggest a causal relationship between suPAR and coronary artery calcification and have clinical implications that extend to inflammatory disorders beyond CVD.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Animales , Ratones , Humanos , Receptores del Activador de Plasminógeno Tipo Uroquinasa/genética , Enfermedades Cardiovasculares/genética , Factores de Riesgo , Biomarcadores , Aterosclerosis/genética
11.
Clin Sci (Lond) ; 136(12): 973-987, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35678315

RESUMEN

Cigarette smoking remains the leading modifiable risk factor for cardiopulmonary diseases; however, the effects of nicotine alone on cardiopulmonary function remain largely unknown. Previously, we have shown that chronic nicotine vapor inhalation in mice leads to the development of pulmonary hypertension (PH) with right ventricular (RV) remodeling. The present study aims to further examine the cardiopulmonary effects of nicotine and the role of the α7 nicotinic acetylcholine receptor (α7-nAChR), which is widely expressed in the cardiovascular system. Wild-type (WT) and α7-nAChR knockout (α7-nAChR-/-) mice were exposed to room air (control) or nicotine vapor daily for 12 weeks. Consistent with our previous study, echocardiography and RV catheterization reveal that male WT mice developed increased RV systolic pressure with RV hypertrophy and dilatation following 12-week nicotine vapor exposure; in contrast, these changes were not observed in male α7-nAChR-/- mice. In addition, chronic nicotine inhalation failed to induce PH and RV remodeling in female mice regardless of genotype. The effects of nicotine on the vasculature were further examined in male mice. Our results show that chronic nicotine inhalation led to impaired acetylcholine-mediated vasodilatory response in both thoracic aortas and pulmonary arteries, and these effects were accompanied by altered endothelial nitric oxide synthase phosphorylation (enhanced inhibitory phosphorylation at threonine 495) and reduced plasma nitrite levels in WT but not α7-nAChR-/- mice. Finally, RNA sequencing revealed up-regulation of multiple inflammatory pathways in thoracic aortas from WT but not α7-nAChR-/- mice. We conclude that the α7-nAChR mediates chronic nicotine inhalation-induced PH, RV remodeling and vascular dysfunction.


Asunto(s)
Nicotina , Receptor Nicotínico de Acetilcolina alfa 7 , Acetilcolina/metabolismo , Administración por Inhalación , Animales , Aorta Torácica/efectos de los fármacos , Femenino , Masculino , Ratones , Nicotina/administración & dosificación , Arteria Pulmonar/efectos de los fármacos , Regulación hacia Arriba , Vasodilatación/efectos de los fármacos , Receptor Nicotínico de Acetilcolina alfa 7/genética , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
12.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35743153

RESUMEN

Acute myocardial infarction (MI) is one of the leading causes of death worldwide. Early identification of ischemia and establishing reperfusion remain cornerstones in the treatment of MI, as mortality and morbidity can be significantly reduced by establishing reperfusion to the affected areas. The aim of the current study was to investigate the metabolomic changes in the serum in a swine model of MI induced by ischemia and reperfusion (I/R) injury, and to identify circulating metabolomic biomarkers for myocardial injury at different phases. Female Yucatan minipigs were subjected to 60 min of ischemia followed by reperfusion, and serum samples were collected at baseline, 60 min of ischemia, 4 h of reperfusion, and 24 h of reperfusion. Circulating metabolites were analyzed using an untargeted metabolomic approach. A bioinformatic approach revealed that serum metabolites show distinct profiles during ischemia and during early and late reperfusion. Some notable changes during ischemia include accumulation of metabolites that indicate impaired mitochondrial function and N-terminally modified amino acids. Changes in branched-chain amino-acid metabolites were noted during early reperfusion, while bile acid pathway derivatives and intermediates predominated in the late reperfusion phases. This indicates a potential for such an approach toward identification of the distinct phases of ischemia and reperfusion in clinical situations.


Asunto(s)
Enfermedad de la Arteria Coronaria , Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Animales , Enfermedad de la Arteria Coronaria/complicaciones , Femenino , Isquemia/complicaciones , Metabolómica , Isquemia Miocárdica/complicaciones , Daño por Reperfusión Miocárdica/metabolismo , Reperfusión/efectos adversos , Porcinos , Porcinos Enanos
13.
Circ Res ; 131(3): 222-235, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35701874

RESUMEN

BACKGROUND: Hydrogen sulfide (H2S) exerts mitochondria-specific actions that include the preservation of oxidative phosphorylation, biogenesis, and ATP synthesis, while inhibiting cell death. 3-MST (3-mercaptopyruvate sulfurtransferase) is a mitochondrial H2S-producing enzyme whose functions in the cardiovascular disease are not fully understood. In the current study, we investigated the effects of global 3-MST deficiency in the setting of pressure overload-induced heart failure. METHODS: Human myocardial samples obtained from patients with heart failure undergoing cardiac surgeries were probed for 3-MST protein expression. 3-MST knockout mice and C57BL/6J wild-type mice were subjected to transverse aortic constriction to induce pressure overload heart failure with reduced ejection fraction. Cardiac structure and function, vascular reactivity, exercise performance, mitochondrial respiration, and ATP synthesis efficiency were assessed. In addition, untargeted metabolomics were utilized to identify key pathways altered by 3-MST deficiency. RESULTS: Myocardial 3-MST was significantly reduced in patients with heart failure compared with nonfailing controls. 3-MST KO mice exhibited increased accumulation of branched-chain amino acids in the myocardium, which was associated with reduced mitochondrial respiration and ATP synthesis, exacerbated cardiac and vascular dysfunction, and worsened exercise performance following transverse aortic constriction. Restoring myocardial branched-chain amino acid catabolism with 3,6-dichlorobenzo1[b]thiophene-2-carboxylic acid (BT2) and administration of a potent H2S donor JK-1 ameliorates the detrimental effects of 3-MST deficiency in heart failure with reduced ejection fraction. CONCLUSIONS: Our data suggest that 3-MST derived mitochondrial H2S may play a regulatory role in branched-chain amino acid catabolism and mediate critical cardiovascular protection in heart failure.


Asunto(s)
Insuficiencia Cardíaca , Sulfuro de Hidrógeno , Disfunción Ventricular Izquierda , Adenosina Trifosfato/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Animales , Insuficiencia Cardíaca/metabolismo , Humanos , Sulfuro de Hidrógeno/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Miocardio/metabolismo , Disfunción Ventricular Izquierda/metabolismo
15.
Antioxidants (Basel) ; 10(3)2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808673

RESUMEN

Hydrogen sulfide (H2S) is an endogenous, gaseous signaling molecule that plays a critical role in cardiac and vascular biology. H2S regulates vascular tone and oxidant defenses and exerts cytoprotective effects in the heart and circulation. Recent studies indicate that H2S modulates various components of metabolic syndrome, including obesity and glucose metabolism. This review will discuss studies exhibiting H2S -derived cardioprotective signaling in heart failure with reduced ejection fraction (HFrEF). We will also discuss the role of H2S in metabolic syndrome and heart failure with preserved ejection fraction (HFpEF).

16.
JACC Basic Transl Sci ; 6(2): 154-170, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33665515

RESUMEN

A lack of preclinical large animal models of heart failure with preserved ejection fraction (HFpEF) that recapitulate this comorbid-laden syndrome has led to the inability to tease out mechanistic insights and to test novel therapeutic strategies. This study developed a large animal model that integrated multiple comorbid determinants of HFpEF in a miniswine breed that exhibited sensitivity to obesity, metabolic syndrome, and vascular disease with overt clinical signs of heart failure. The combination of a Western diet and 11-deoxycorticosterone acetate salt-induced hypertension in the Göttingen miniswine led to the development of a novel large animal model of HFpEF that exhibited multiorgan involvement and a full spectrum of comorbidities associated with human HFpEF.

17.
Circ Res ; 128(4): 508-510, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33600232

Asunto(s)
Corazón
18.
Annu Rev Physiol ; 83: 39-58, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33074771

RESUMEN

Heart failure (HF) is a global pandemic with a poor prognosis after hospitalization. Despite HF syndrome complexities, evidence of significant sympathetic overactivity in the manifestation and progression of HF is universally accepted. Confirmation of this dogma is observed in guideline-directed use of neurohormonal pharmacotherapies as a standard of care in HF. Despite reductions in morbidity and mortality, a growing patient population is resistant to these medications, while off-target side effects lead to dismal patient adherence to lifelong drug regimens. Novel therapeutic strategies, devoid of these limitations, are necessary to attenuate the progression of HF pathophysiology while continuing to reduce morbidity and mortality. Renal denervation is an endovascular procedure, whereby the ablation of renal nerves results in reduced renal afferent and efferent sympathetic nerve activity in the kidney and globally. In this review, we discuss the current state of preclinical and clinical research related to renal sympathetic denervation to treat HF.


Asunto(s)
Insuficiencia Cardíaca/terapia , Simpatectomía/métodos , Animales , Progresión de la Enfermedad , Insuficiencia Cardíaca/fisiopatología , Humanos , Riñón/fisiopatología
19.
J Am Heart Assoc ; 9(19): e017544, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32990120

RESUMEN

Background Hydrogen sulfide (H2S) is an important endogenous physiological signaling molecule and exerts protective properties in the cardiovascular system. Cystathionine γ-lyase (CSE), 1 of 3 H2S producing enzyme, is predominantly localized in the vascular endothelium. However, the regulation of CSE in vascular endothelium remains incompletely understood. Methods and Results We generated inducible endothelial cell-specific CSE overexpressed transgenic mice (EC-CSE Tg) and endothelial cell-specific CSE knockout mice (EC-CSE KO), and investigated vascular function in isolated thoracic aorta, treadmill exercise capacity, and myocardial injury following ischemia-reperfusion in these mice. Overexpression of CSE in endothelial cells resulted in increased circulating and myocardial H2S and NO, augmented endothelial-dependent vasorelaxation response in thoracic aorta, improved exercise capacity, and reduced myocardial-reperfusion injury. In contrast, genetic deletion of CSE in endothelial cells led to decreased circulating H2S and cardiac NO production, impaired endothelial dependent vasorelaxation response and reduced exercise capacity. However, myocardial-reperfusion injury was not affected by genetic deletion of endothelial cell CSE. Conclusions CSE-derived H2S production in endothelial cells is critical in maintaining endothelial function, exercise capacity, and protecting against myocardial ischemia/reperfusion injury. Our data suggest that the endothelial NO synthase-NO pathway is likely involved in the beneficial effects of overexpression of CSE in the endothelium.


Asunto(s)
Cistationina gamma-Liasa/metabolismo , Células Endoteliales/metabolismo , Tolerancia al Ejercicio/fisiología , Sulfuro de Hidrógeno/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Óxido Nítrico/metabolismo , Animales , Aorta Torácica/metabolismo , Aorta Torácica/fisiopatología , Ratones , Ratones Transgénicos , Miocardio/metabolismo , Miocardio/patología , Óxido Nítrico Sintasa/metabolismo , Transducción de Señal
20.
JACC Basic Transl Sci ; 5(7): 699-714, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32760857

RESUMEN

With the complexities that surround myocardial ischemia/reperfusion (MI/R) injury, therapies adjunctive to reperfusion that elicit beneficial pleiotropic effects and do not overlap with standard of care are necessary. This study found that the mitochondrial-derived peptide S14G-humanin (HNG) (2 mg/kg), an analogue of humanin, reduced infarct size in a large animal model of MI/R. However, when ischemic time was increased, the infarct-sparing effects were abolished with the same dose of HNG. Thus, although the 60-min MI/R study showed that HNG cardioprotection translates beyond small animal models, further studies are needed to optimize HNG therapy for longer, more patient-relevant periods of cardiac ischemia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA