RESUMEN
Allogeneic T cell expansion is the primary determinant of graft-versus-host disease (GVHD), and current dogma dictates that this is driven by histocompatibility antigen disparities between donor and recipient. This paradigm represents a closed genetic system within which donor T cells interact with peptide-major histocompatibility complexes (MHCs), though clonal interrogation remains challenging due to the sparseness of the T cell repertoire. We developed a Bayesian model using donor and recipient T cell receptor (TCR) frequencies in murine stem cell transplant systems to define limited common expansion of T cell clones across genetically identical donor-recipient pairs. A subset of donor CD4+ T cell clonotypes differentially expanded in identical recipients and were microbiota dependent. Microbiota-specific T cells augmented GVHD lethality and could target microbial antigens presented by gastrointestinal epithelium during an alloreactive response. The microbiota serves as a source of cognate antigens that contribute to clonotypic T cell expansion and the induction of GVHD independent of donor-recipient genetics.
Asunto(s)
Enfermedad Injerto contra Huésped , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/microbiología , Animales , Ratones , Ratones Endogámicos C57BL , Linfocitos T CD4-Positivos/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Microbiota/inmunología , Selección Clonal Mediada por Antígenos , Trasplante Homólogo , Teorema de Bayes , Trasplante de Células Madre/efectos adversos , Ratones Endogámicos BALB C , Microbioma Gastrointestinal/inmunología , Trasplante de Células Madre Hematopoyéticas/efectos adversosRESUMEN
Chronic antigen stimulation is thought to generate dysfunctional CD8 T cells. Here, we identify a CD8 T cell subset in the bone marrow tumor microenvironment that, despite an apparent terminally exhausted phenotype (TPHEX), expressed granzymes, perforin, and IFN-γ. Concurrent gene expression and DNA accessibility revealed that genes encoding these functional proteins correlated with BATF expression and motif accessibility. IFN-γ+ TPHEX effectively killed myeloma with comparable efficacy to transitory effectors, and disease progression correlated with numerical deficits in IFN-γ+ TPHEX. We also observed IFN-γ+ TPHEX within CD19-targeted chimeric antigen receptor T cells, which killed CD19+ leukemia cells. An IFN-γ+ TPHEX gene signature was recapitulated in TEX cells from human cancers, including myeloma and lymphoma. Here, we characterize a TEX subset in hematological malignancies that paradoxically retains function and is distinct from dysfunctional TEX found in chronic viral infections. Thus, IFN-γ+ TPHEX represent a potential target for immunotherapy of blood cancers.
Asunto(s)
Neoplasias Hematológicas , Mieloma Múltiple , Humanos , Receptor 2 Celular del Virus de la Hepatitis A , Mieloma Múltiple/metabolismo , Linfocitos T CD8-positivos , Fenotipo , Microambiente TumoralRESUMEN
ABSTRACT: Autologous stem cell transplantation (ASCT) is the standard of care consolidation therapy for eligible patients with myeloma but most patients eventually progress, an event associated with features of immune escape. Novel approaches to enhance antimyeloma immunity after ASCT represent a major unmet need. Here, we demonstrate that patient-mobilized stem cell grafts contain high numbers of effector CD8 T cells and immunosuppressive regulatory T cells (Tregs). We showed that bone marrow (BM)-residing T cells are efficiently mobilized during stem cell mobilization (SCM) and hypothesized that mobilized and highly suppressive BM-derived Tregs might limit antimyeloma immunity during SCM. Thus, we performed ASCT in a preclinical myeloma model with or without stringent Treg depletion during SCM. Treg depletion generated SCM grafts containing polyfunctional CD8 T effector memory cells, which dramatically enhanced myeloma control after ASCT. Thus, we explored clinically tractable translational approaches to mimic this scenario. Antibody-based approaches resulted in only partial Treg depletion and were inadequate to recapitulate this effect. In contrast, a synthetic interleukin-2 (IL-2)/IL-15 mimetic that stimulates the IL-2 receptor on CD8 T cells without binding to the high-affinity IL-2Ra used by Tregs efficiently expanded polyfunctional CD8 T cells in mobilized grafts and protected recipients from myeloma progression after ASCT. We confirmed that Treg depletion during stem cell mobilization can mitigate constraints on tumor immunity and result in profound myeloma control after ASCT. Direct and selective cytokine signaling of CD8 T cells can recapitulate this effect and represent a clinically testable strategy to improve responses after ASCT.
Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Mieloma Múltiple , Humanos , Mieloma Múltiple/patología , Linfocitos T Reguladores , Trasplante de Células Madre Hematopoyéticas/métodos , Movilización de Célula Madre Hematopoyética/métodos , Trasplante Autólogo , Trasplante de Células MadreRESUMEN
Huntington's disease arises from a toxic gain of function in the huntingtin ( HTT ) gene. As a result, many HTT-lowering therapies are being pursued in clinical studies, including those that reduce HTT RNA and protein expression in the liver. To investigate potential impacts, we characterized molecular, cellular, and metabolic impacts of chronic HTT lowering in mouse hepatocytes. Lifelong hepatocyte HTT loss is associated with multiple physiological changes, including increased circulating bile acids, cholesterol and urea, hypoglycemia, and impaired adhesion. HTT loss causes a clear shift in the normal zonal patterns of liver gene expression, such that pericentral gene expression is reduced. These alterations in liver zonation in livers lacking HTT are observed at the transcriptional, histological and plasma metabolite level. We have extended these phenotypes physiologically with a metabolic challenge of acetaminophen, for which the HTT loss results in toxicity resistance. Our data reveal an unexpected role for HTT in regulating hepatic zonation, and we find that loss of HTT in hepatocytes mimics the phenotypes caused by impaired hepatic ß-catenin function.
RESUMEN
Some hematological malignancies such as multiple myeloma are inherently resistant to immune-mediated antitumor responses, the cause of which remains unknown. Allogeneic bone marrow transplantation (alloBMT) is the only curative immunotherapy for hematological malignancies due to profound graft-versus-tumor (GVT) effects, but relapse remains the major cause of death. We developed murine models of alloBMT where the hematological malignancy is either sensitive [acute myeloid leukemia (AML)] or resistant (myeloma) to GVT effects. We found that CD8+ T cell exhaustion in bone marrow was primarily alloantigen-driven, with expression of inhibitory ligands present on myeloma but not AML. Because of this tumor-independent exhaustion signature, immune checkpoint inhibition (ICI) in myeloma exacerbated graft-versus-host disease (GVHD) without promoting GVT effects. Administration of post-transplant cyclophosphamide (PT-Cy) depleted donor T cells with an exhausted phenotype and spared T cells displaying a stem-like memory phenotype with chromatin accessibility present in cytokine signaling genes, including the interleukin-18 (IL-18) receptor. Whereas ICI with anti-PD-1 or anti-TIM-3 remained ineffective after PT-Cy, administration of a decoy-resistant IL-18 (DR-18) strongly enhanced GVT effects in both myeloma and leukemia models, without exacerbation of GVHD. We thus defined mechanisms of resistance to T cell-mediated antitumor effects after alloBMT and described an immunotherapy approach targeting stem-like memory T cells to enhance antitumor immunity.
Asunto(s)
Enfermedad Injerto contra Huésped , Neoplasias Hematológicas , Mieloma Múltiple , Animales , Cromatina , Ciclofosfamida , Inhibidores de Puntos de Control Inmunológico , Interleucina-18 , Isoantígenos , Células T de Memoria , Ratones , Mieloma Múltiple/terapia , Trasplante HomólogoRESUMEN
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by a trinucleotide expansion in exon 1 of the huntingtin (HTT) gene. Cell death in HD occurs primarily in striatal medium spiny neurons (MSNs), but the involvement of specific MSN subtypes and of other striatal cell types remains poorly understood. To gain insight into cell type-specific disease processes, we studied the nuclear transcriptomes of 4524 cells from the striatum of a genetically precise knock-in mouse model of the HD mutation, HttQ175/+, and from wild-type controls. We used 14- to 15-month-old male mice, a time point at which multiple behavioral, neuroanatomical, and neurophysiological changes are present but at which there is no known cell death. Thousands of differentially expressed genes (DEGs) were distributed across most striatal cell types, including transcriptional changes in glial populations that are not apparent from RNA-seq of bulk tissue. Reconstruction of cell type-specific transcriptional networks revealed a striking pattern of bidirectional dysregulation for many cell type-specific genes. Typically, these genes were repressed in their primary cell type, yet de-repressed in other striatal cell types. Integration with existing epigenomic and transcriptomic data suggest that partial loss-of-function of the polycomb repressive complex 2 (PRC2) may underlie many of these transcriptional changes, leading to deficits in the maintenance of cell identity across virtually all cell types in the adult striatum.SIGNIFICANCE STATEMENT Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder characterized by specific loss of medium spiny neurons (MSNs) in the striatum, accompanied by more subtle changes in many other cell types. It is thought that changes in transcriptional regulation are an important underlying mechanism, but cell type-specific gene expression changes are not well understood, particularly at time points relevant to the onset of disease-related symptoms. Single-nucleus (sn)RNA-seq in a genetically precise mouse model enabled us to identify novel patterns of transcriptional dysregulation because of HD mutations, including bidirectional dysregulation of many cell type identity genes that may be driven by partial loss-of-function of the polycomb repressive complex (PRC). Identifying these regulators of transcriptional dysregulation in HD can be leveraged to design novel disease-modifying therapeutics.
Asunto(s)
Cuerpo Estriado/patología , Enfermedad de Huntington/patología , Neuronas/patología , Complejo Represivo Polycomb 2/metabolismo , Animales , Cuerpo Estriado/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Neuronas/metabolismo , RNA-SeqRESUMEN
Apathy is one of the most prevalent and progressive psychiatric symptoms in Huntington's disease (HD) patients. However, preclinical work in HD mouse models tends to focus on molecular and motor, rather than affective, phenotypes. Measuring behavior in mice often produces noisy data and requires large cohorts to detect phenotypic rescue with appropriate power. The operant equipment necessary for measuring affective phenotypes is typically expensive, proprietary to commercial entities, and bulky which can render adequately sized mouse cohorts as cost-prohibitive. Thus, we describe here a home-built, open-source alternative to commercial hardware that is reliable, scalable, and reproducible. Using off-the-shelf hardware, we adapted and built several of the rodent operant buckets (ROBucket) to test HttQ111/+ mice for attention deficits in fixed ratio (FR) and progressive ratio (PR) tasks. We find that, despite normal performance in reward attainment in the FR task, HttQ111/+ mice exhibit reduced PR performance at 9-11 months of age, suggesting motivational deficits. We replicated this in two independent cohorts, demonstrating the reliability and utility of both the apathetic phenotype, and these ROBuckets, for preclinical HD studies.