Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Mol Cell ; 83(19): 3546-3557.e8, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37802027

RESUMEN

Nonstructural protein 1 (Nsp1) produced by coronaviruses inhibits host protein synthesis. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Nsp1 C-terminal domain was shown to bind the ribosomal mRNA channel to inhibit translation, but it is unclear whether this mechanism is broadly used by coronaviruses, whether the Nsp1 N-terminal domain binds the ribosome, or how Nsp1 allows viral RNAs to be translated. Here, we investigated Nsp1 from SARS-CoV-2, Middle East respiratory syndrome coronavirus (MERS-CoV), and Bat-Hp-CoV coronaviruses using structural, biophysical, and biochemical experiments, revealing a conserved role for the C-terminal domain. Additionally, the N-terminal domain of Bat-Hp-CoV Nsp1 binds to the decoding center of the 40S subunit, where it would prevent mRNA and eIF1A accommodation. Structure-based experiments demonstrated the importance of decoding center interactions in all three coronaviruses and showed that the same regions of Nsp1 are necessary for the selective translation of viral RNAs. Our results provide a mechanistic framework to understand how Nsp1 controls preferential translation of viral RNAs.


Asunto(s)
COVID-19 , Quirópteros , Animales , Quirópteros/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Dominios Proteicos , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
2.
bioRxiv ; 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37398176

RESUMEN

Nonstructural protein 1 (Nsp1) produced by coronaviruses shuts down host protein synthesis in infected cells. The C-terminal domain of SARS-CoV-2 Nsp1 was shown to bind to the small ribosomal subunit to inhibit translation, but it is not clear whether this mechanism is broadly used by coronaviruses, whether the N-terminal domain of Nsp1 binds the ribosome, or how Nsp1 specifically permits translation of viral mRNAs. Here, we investigated Nsp1 from three representative Betacoronaviruses - SARS-CoV-2, MERS-CoV, and Bat-Hp-CoV - using structural, biophysical, and biochemical assays. We revealed a conserved mechanism of host translational shutdown across the three coronaviruses. We further demonstrated that the N-terminal domain of Bat-Hp-CoV Nsp1 binds to the decoding center of the 40S subunit, where it would prevent mRNA and eIF1A binding. Structure-based biochemical experiments identified a conserved role of these inhibitory interactions in all three coronaviruses and showed that the same regions of Nsp1 are responsible for the preferential translation of viral mRNAs. Our results provide a mechanistic framework to understand how Betacoronaviruses overcome translational inhibition to produce viral proteins.

3.
Nat Struct Mol Biol ; 30(6): 770-777, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37170030

RESUMEN

The translocon-associated protein (TRAP) complex resides in the endoplasmic reticulum (ER) membrane and interacts with the Sec translocon and the ribosome to facilitate biogenesis of secretory and membrane proteins. TRAP plays a key role in the secretion of many hormones, including insulin. Here we reveal the molecular architecture of the mammalian TRAP complex and how it engages the translating ribosome associated with Sec61 translocon on the ER membrane. The TRAP complex is anchored to the ribosome via a long tether and its position is further stabilized by a finger-like loop. This positions a cradle-like lumenal domain of TRAP below the translocon for interactions with translocated nascent chains. Our structure-guided TRAP mutations in Caenorhabditis elegans lead to growth deficits associated with increased ER stress and defects in protein hormone secretion. These findings elucidate the molecular basis of the TRAP complex in the biogenesis and translocation of proteins at the ER.


Asunto(s)
Retículo Endoplásmico , Glicoproteínas de Membrana , Animales , Glicoproteínas de Membrana/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Canales de Translocación SEC/metabolismo , Transporte de Proteínas , Mamíferos/metabolismo
4.
Science ; 380(6644): 531-536, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37141370

RESUMEN

The genetic code that specifies the identity of amino acids incorporated into proteins during protein synthesis is almost universally conserved. Mitochondrial genomes feature deviations from the standard genetic code, including the reassignment of two arginine codons to stop codons. The protein required for translation termination at these noncanonical stop codons to release the newly synthesized polypeptides is not currently known. In this study, we used gene editing and ribosomal profiling in combination with cryo-electron microscopy to establish that mitochondrial release factor 1 (mtRF1) detects noncanonical stop codons in human mitochondria by a previously unknown mechanism of codon recognition. We discovered that binding of mtRF1 to the decoding center of the ribosome stabilizes a highly unusual conformation in the messenger RNA in which the ribosomal RNA participates in specific recognition of the noncanonical stop codons.


Asunto(s)
Codón de Terminación , Mitocondrias , Terminación de la Cadena Péptídica Traduccional , Factores de Terminación de Péptidos , Humanos , Microscopía por Crioelectrón , Mitocondrias/genética , Mitocondrias/metabolismo , Factores de Terminación de Péptidos/química , Conformación Proteica
5.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35042777

RESUMEN

Mitochondrial ribosomes (mitoribosomes) play a central role in synthesizing mitochondrial inner membrane proteins responsible for oxidative phosphorylation. Although mitoribosomes from different organisms exhibit considerable structural variations, recent insights into mitoribosome assembly suggest that mitoribosome maturation follows common principles and involves a number of conserved assembly factors. To investigate the steps involved in the assembly of the mitoribosomal small subunit (mt-SSU) we determined the cryoelectron microscopy structures of middle and late assembly intermediates of the Trypanosoma brucei mitochondrial small subunit (mt-SSU) at 3.6- and 3.7-Å resolution, respectively. We identified five additional assembly factors that together with the mitochondrial initiation factor 2 (mt-IF-2) specifically interact with functionally important regions of the rRNA, including the decoding center, thereby preventing premature mRNA or large subunit binding. Structural comparison of assembly intermediates with mature mt-SSU combined with RNAi experiments suggests a noncanonical role of mt-IF-2 and a stepwise assembly process, where modular exchange of ribosomal proteins and assembly factors together with mt-IF-2 ensure proper 9S rRNA folding and protein maturation during the final steps of assembly.


Asunto(s)
Proteínas Mitocondriales/química , Ribosomas Mitocondriales/química , Fosforilación Oxidativa , ARN Ribosómico/química , Proteínas Ribosómicas/química , Subunidades Ribosómicas/química , Línea Celular , Microscopía por Crioelectrón , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , Modelos Moleculares , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas/genética , Subunidades Ribosómicas/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
6.
Nat Commun ; 12(1): 6635, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789727

RESUMEN

Pupylation is the post-translational modification of lysine side chains with prokaryotic ubiquitin-like protein (Pup) that targets proteins for proteasomal degradation in mycobacteria and other members of Actinobacteria. Pup ligase PafA and depupylase Dop are the two enzymes acting in this pathway. Although they share close structural and sequence homology indicative of a common evolutionary origin, they catalyze opposing reactions. Here, we report a series of high-resolution crystal structures of Dop in different functional states along the reaction pathway, including Pup-bound states in distinct conformations. In combination with biochemical analysis, the structures explain the role of the C-terminal residue of Pup in ATP hydrolysis, the process that generates the catalytic phosphate in the active site, and suggest a role for the Dop-loop as an allosteric sensor for Pup-binding and ATP cleavage.


Asunto(s)
Amidohidrolasas/química , Proteínas Bacterianas/química , Fosfatos/química , Ubiquitinas/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Amidohidrolasas/metabolismo , Proteínas Bacterianas/metabolismo , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Enlace de Hidrógeno , Hidrólisis , Modelos Moleculares , Fosfatos/metabolismo , Conformación Proteica , Procesamiento Proteico-Postraduccional , Ubiquitinas/metabolismo
7.
Science ; 372(6547): 1220-1224, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34112695

RESUMEN

Viruses are ubiquitous pathogens of global impact. Prompted by the hypothesis that their earliest progenitors recruited host proteins for virion formation, we have used stringent laboratory evolution to convert a bacterial enzyme that lacks affinity for nucleic acids into an artificial nucleocapsid that efficiently packages and protects multiple copies of its own encoding messenger RNA. Revealing remarkable convergence on the molecular hallmarks of natural viruses, the accompanying changes reorganized the protein building blocks into an interlaced 240-subunit icosahedral capsid that is impermeable to nucleases, and emergence of a robust RNA stem-loop packaging cassette ensured high encapsidation yields and specificity. In addition to evincing a plausible evolutionary pathway for primordial viruses, these findings highlight practical strategies for developing nonviral carriers for diverse vaccine and delivery applications.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cápside/metabolismo , Evolución Molecular Dirigida , ARN Mensajero/metabolismo , Sustitución de Aminoácidos , Aquifex/enzimología , Proteínas Bacterianas/química , Cápside/química , Microscopía por Crioelectrón , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Nucleocápside/química , Nucleocápside/genética , Nucleocápside/metabolismo , Dominios Proteicos , Estructura Secundaria de Proteína , Subunidades de Proteína , ARN Mensajero/química , ARN Mensajero/genética , Ribonucleasas/metabolismo
8.
Nat Commun ; 12(1): 3671, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135320

RESUMEN

Mitochondrial ribosomes are specialized for the synthesis of membrane proteins responsible for oxidative phosphorylation. Mammalian mitoribosomes have diverged considerably from the ancestral bacterial ribosomes and feature dramatically reduced ribosomal RNAs. The structural basis of the mammalian mitochondrial ribosome assembly is currently not well understood. Here we present eight distinct assembly intermediates of the human large mitoribosomal subunit involving seven assembly factors. We discover that the NSUN4-MTERF4 dimer plays a critical role in the process by stabilizing the 16S rRNA in a conformation that exposes the functionally important regions of rRNA for modification by the MRM2 methyltransferase and quality control interactions with the conserved mitochondrial GTPase MTG2 that contacts the sarcin-ricin loop and the immature active site. The successive action of these factors leads to the formation of the peptidyl transferase active site of the mitoribosome and the folding of the surrounding rRNA regions responsible for interactions with tRNAs and the small ribosomal subunit.


Asunto(s)
Ribosomas Mitocondriales/química , Peptidil Transferasas/química , Dominio Catalítico , Microscopía por Crioelectrón , Humanos , Metiltransferasas/química , Metiltransferasas/metabolismo , Ribosomas Mitocondriales/metabolismo , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/metabolismo , Conformación de Ácido Nucleico , Peptidil Transferasas/metabolismo , Multimerización de Proteína , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Subunidades Ribosómicas Grandes/química , Subunidades Ribosómicas Grandes/metabolismo , Factores de Transcripción/metabolismo
9.
Science ; 372(6548): 1306-1313, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34029205

RESUMEN

Programmed ribosomal frameshifting is a key event during translation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA genome that allows synthesis of the viral RNA-dependent RNA polymerase and downstream proteins. Here, we present the cryo-electron microscopy structure of a translating mammalian ribosome primed for frameshifting on the viral RNA. The viral RNA adopts a pseudoknot structure that lodges at the entry to the ribosomal messenger RNA (mRNA) channel to generate tension in the mRNA and promote frameshifting, whereas the nascent viral polyprotein forms distinct interactions with the ribosomal tunnel. Biochemical experiments validate the structural observations and reveal mechanistic and regulatory features that influence frameshifting efficiency. Finally, we compare compounds previously shown to reduce frameshifting with respect to their ability to inhibit SARS-CoV-2 replication, establishing coronavirus frameshifting as a target for antiviral intervention.


Asunto(s)
Sistema de Lectura Ribosómico , ARN Viral/genética , Ribosomas/ultraestructura , SARS-CoV-2/genética , Proteínas Virales/biosíntesis , Animales , Antivirales/farmacología , Codón de Terminación , ARN Polimerasa Dependiente de ARN de Coronavirus/biosíntesis , ARN Polimerasa Dependiente de ARN de Coronavirus/química , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , Microscopía por Crioelectrón , Fluoroquinolonas/farmacología , Sistema de Lectura Ribosómico/efectos de los fármacos , Genoma Viral , Humanos , Procesamiento de Imagen Asistido por Computador , Modelos Moleculares , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta , Pliegue de Proteína , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico 18S/química , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo , ARN Viral/química , ARN Viral/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Proteínas Virales/química , Proteínas Virales/genética , Replicación Viral/efectos de los fármacos
10.
Nat Commun ; 11(1): 6267, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33293513

RESUMEN

Royal jelly (RJ) is produced by honeybees (Apis mellifera) as nutrition during larval development. The high viscosity of RJ originates from high concentrations of long lipoprotein filaments that include the glycosylated major royal jelly protein 1 (MRJP1), the small protein apisimin and insect lipids. Using cryo-electron microscopy we reveal the architecture and the composition of RJ filaments, in which the MRJP1 forms the outer shell of the assembly, surrounding stacked apisimin tetramers harbouring tightly packed lipids in the centre. The structural data rationalize the pH-dependent disassembly of RJ filaments in the gut of the larvae.


Asunto(s)
Ácidos Grasos/química , Glicoproteínas/ultraestructura , Proteínas de Insectos/ultraestructura , Lipoproteínas/ultraestructura , Animales , Abejas , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Glicoproteínas/aislamiento & purificación , Glicoproteínas/metabolismo , Concentración de Iones de Hidrógeno , Proteínas de Insectos/aislamiento & purificación , Proteínas de Insectos/metabolismo , Larva , Lipoproteínas/aislamiento & purificación , Lipoproteínas/metabolismo , Multimerización de Proteína
11.
Nat Struct Mol Biol ; 27(11): 1094, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33082564

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

12.
Nat Struct Mol Biol ; 27(10): 959-966, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32908316

RESUMEN

The SARS-CoV-2 non-structural protein 1 (Nsp1), also referred to as the host shutoff factor, suppresses host innate immune functions. By combining cryo-electron microscopy and biochemistry, we show that SARS-CoV-2 Nsp1 binds to the human 40S subunit in ribosomal complexes, including the 43S pre-initiation complex and the non-translating 80S ribosome. The protein inserts its C-terminal domain into the mRNA channel, where it interferes with mRNA binding. We observe translation inhibition in the presence of Nsp1 in an in vitro translation system and in human cells. Based on the high-resolution structure of the 40S-Nsp1 complex, we identify residues of Nsp1 crucial for mediating translation inhibition. We further show that the full-length 5' untranslated region of the genomic viral mRNA stimulates translation in vitro, suggesting that SARS-CoV-2 combines global inhibition of translation by Nsp1 with efficient translation of the viral mRNA to allow expression of viral genes.


Asunto(s)
Betacoronavirus/química , Betacoronavirus/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Regiones no Traducidas 5' , Betacoronavirus/genética , Microscopía por Crioelectrón , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno/fisiología , Humanos , Modelos Moleculares , Mutación , Conformación Proteica , Dominios Proteicos , ARN Mensajero/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , SARS-CoV-2 , Proteínas no Estructurales Virales/genética
13.
Mol Cell ; 79(4): 629-644.e4, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32679035

RESUMEN

In contrast to the bacterial translation machinery, mitoribosomes and mitochondrial translation factors are highly divergent in terms of composition and architecture. There is increasing evidence that the biogenesis of mitoribosomes is an intricate pathway, involving many assembly factors. To better understand this process, we investigated native assembly intermediates of the mitoribosomal large subunit from the human parasite Trypanosoma brucei using cryo-electron microscopy. We identify 28 assembly factors, 6 of which are homologous to bacterial and eukaryotic ribosome assembly factors. They interact with the partially folded rRNA by specifically recognizing functionally important regions such as the peptidyltransferase center. The architectural and compositional comparison of the assembly intermediates indicates a stepwise modular assembly process, during which the rRNA folds toward its mature state. During the process, several conserved GTPases and a helicase form highly intertwined interaction networks that stabilize distinct assembly intermediates. The presented structures provide general insights into mitoribosomal maturation.


Asunto(s)
Ribosomas Mitocondriales/química , ARN Ribosómico/metabolismo , Subunidades Ribosómicas Grandes/química , Trypanosoma brucei brucei/metabolismo , Microscopía por Crioelectrón , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Ribosomas Mitocondriales/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , ARN Ribosómico/química , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes/metabolismo , Trypanosoma brucei brucei/genética
14.
Nat Commun ; 10(1): 4653, 2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31604936

RESUMEN

In mycobacteria, transcriptional activator PafBC is responsible for upregulating the majority of genes induced by DNA damage. Understanding the mechanism of PafBC activation is impeded by a lack of structural information on this transcription factor that contains a widespread, but poorly understood WYL domain frequently encountered in bacterial transcription factors. Here, we determine the crystal structure of Arthrobacter aurescens PafBC. The protein consists of two modules, each harboring an N-terminal helix-turn-helix DNA-binding domain followed by a central WYL and a C-terminal extension (WCX) domain. The WYL domains exhibit Sm-folds, while the WCX domains adopt ferredoxin-like folds, both characteristic for RNA-binding proteins. Our results suggest a mechanism of regulation in which WYL domain-containing transcription factors may be activated by binding RNA or other nucleic acid molecules. Using an in vivo mutational screen in Mycobacterium smegmatis, we identify potential co-activator binding sites on PafBC.


Asunto(s)
Proteínas Bacterianas/química , Daño del ADN , Micrococcaceae/genética , Factores de Transcripción/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Cristalografía por Rayos X , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Regulación hacia Arriba
15.
Science ; 365(6458): 1144-1149, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31515389

RESUMEN

Mitochondrial ribosomes (mitoribosomes) are large ribonucleoprotein complexes that synthesize proteins encoded by the mitochondrial genome. An extensive cellular machinery responsible for ribosome assembly has been described only for eukaryotic cytosolic ribosomes. Here we report that the assembly of the small mitoribosomal subunit in Trypanosoma brucei involves a large number of factors and proceeds through the formation of assembly intermediates, which we analyzed by using cryo-electron microscopy. One of them is a 4-megadalton complex, referred to as the small subunit assemblosome, in which we identified 34 factors that interact with immature ribosomal RNA (rRNA) and recognize its functionally important regions. The assembly proceeds through large-scale conformational changes in rRNA coupled with successive incorporation of mitoribosomal proteins, providing an example for the complexity of the ribosomal assembly process in mitochondria.


Asunto(s)
Proteínas Mitocondriales/ultraestructura , Ribosomas Mitocondriales/ultraestructura , ARN Ribosómico/ultraestructura , Proteínas Ribosómicas/ultraestructura , Trypanosoma brucei brucei/química , Microscopía por Crioelectrón , Modelos Moleculares , Conformación de Ácido Nucleico , Estructura Cuaternaria de Proteína , Interferencia de ARN , Estabilidad del ARN
16.
Sci Rep ; 9(1): 5634, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30948752

RESUMEN

Oxazolidinones are synthetic antibiotics used for treatment of infections caused by Gram-positive bacteria. They target the bacterial protein synthesis machinery by binding to the peptidyl transferase centre (PTC) of the ribosome and interfering with the peptidyl transferase reaction. Cadazolid is the first member of quinoxolidinone antibiotics, which are characterized by combining the pharmacophores of oxazolidinones and fluoroquinolones, and it is evaluated for treatment of Clostridium difficile gastrointestinal infections that frequently occur in hospitalized patients. In vitro protein synthesis inhibition by cadazolid was shown in Escherichia coli and Staphylococcus aureus, including an isolate resistant against linezolid, the prototypical oxazolidinone antibiotic. To better understand the mechanism of inhibition, we determined a 3.0 Å cryo-electron microscopy structure of cadazolid bound to the E. coli ribosome in complex with mRNA and initiator tRNA. Here we show that cadazolid binds with its oxazolidinone moiety in a binding pocket in close vicinity of the PTC as observed previously for linezolid, and that it extends its unique fluoroquinolone moiety towards the A-site of the PTC. In this position, the drug inhibits protein synthesis by interfering with the binding of tRNA to the A-site, suggesting that its chemical features also can enable the inhibition of linezolid-resistant strains.


Asunto(s)
Oxazolidinonas/metabolismo , Oxazolidinonas/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , Acetamidas/farmacología , Antibacterianos/farmacología , Infecciones por Clostridium/tratamiento farmacológico , Microscopía por Crioelectrón/métodos , Escherichia coli/metabolismo , Fluoroquinolonas/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Peptidil Transferasas/antagonistas & inhibidores , ARN de Transferencia de Metionina/metabolismo , Ribosomas/metabolismo , Staphylococcus aureus/metabolismo
17.
Science ; 362(6413)2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30213880

RESUMEN

Ribosomal RNA (rRNA) plays key functional and architectural roles in ribosomes. Using electron microscopy, we determined the atomic structure of a highly divergent ribosome found in mitochondria of Trypanosoma brucei, a unicellular parasite that causes sleeping sickness in humans. The trypanosomal mitoribosome features the smallest rRNAs and contains more proteins than all known ribosomes. The structure shows how the proteins have taken over the role of architectural scaffold from the rRNA: They form an autonomous outer shell that surrounds the entire particle and stabilizes and positions the functionally important regions of the rRNA. Our results also reveal the "minimal" set of conserved rRNA and protein components shared by all ribosomes that help us define the most essential functional elements.


Asunto(s)
Evolución Molecular , Ribosomas Mitocondriales/química , Proteínas Protozoarias/química , Proteínas Ribosómicas/química , Trypanosoma brucei brucei/ultraestructura , Ribosomas Mitocondriales/ultraestructura , Modelos Moleculares , Proteínas Protozoarias/ultraestructura , ARN Ribosómico/química , ARN Ribosómico/ultraestructura , Proteínas Ribosómicas/ultraestructura
18.
Nature ; 560(7717): 263-267, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30089917

RESUMEN

Mitochondria maintain their own specialized protein synthesis machinery, which in mammals is used exclusively for the synthesis of the membrane proteins responsible for oxidative phosphorylation1,2. The initiation of protein synthesis in mitochondria differs substantially from bacterial or cytosolic translation systems. Mitochondrial translation initiation lacks initiation factor 1, which is essential in all other translation systems from bacteria to mammals3,4. Furthermore, only one type of methionyl transfer RNA (tRNAMet) is used for both initiation and elongation4,5, necessitating that the initiation factor specifically recognizes the formylated version of tRNAMet (fMet-tRNAMet). Lastly, most mitochondrial mRNAs do not possess 5' leader sequences to promote mRNA binding to the ribosome2. There is currently little mechanistic insight into mammalian mitochondrial translation initiation, and it is not clear how mRNA engagement, initiator-tRNA recruitment and start-codon selection occur. Here we determine the cryo-EM structure of the complete translation initiation complex from mammalian mitochondria at 3.2 Å. We describe the function of an additional domain insertion that is present in the mammalian mitochondrial initiation factor 2 (mtIF2). By closing the decoding centre, this insertion stabilizes the binding of leaderless mRNAs and induces conformational changes in the rRNA nucleotides involved in decoding. We identify unique features of mtIF2 that are required for specific recognition of fMet-tRNAMet and regulation of its GTPase activity. Finally, we observe that the ribosomal tunnel in the initiating ribosome is blocked by insertion of the N-terminal portion of mitochondrial protein mL45, which becomes exposed as the ribosome switches to elongation mode and may have an additional role in targeting of mitochondrial ribosomes to the protein-conducting pore in the inner mitochondrial membrane.


Asunto(s)
Microscopía por Crioelectrón , Mamíferos , Mitocondrias/ultraestructura , Iniciación de la Cadena Peptídica Traduccional , Animales , Codón Iniciador/genética , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/ultraestructura , Mitocondrias/química , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/ultraestructura , Modelos Moleculares , ARN Mitocondrial/química , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN Mitocondrial/ultraestructura , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia de Metionina/ultraestructura
19.
EMBO J ; 37(7)2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29459436

RESUMEN

Final maturation of eukaryotic ribosomes occurs in the cytoplasm and requires the sequential removal of associated assembly factors and processing of the immature 20S pre-RNA Using cryo-electron microscopy (cryo-EM), we have determined the structure of a yeast cytoplasmic pre-40S particle in complex with Enp1, Ltv1, Rio2, Tsr1, and Pno1 assembly factors poised to initiate final maturation. The structure reveals that the pre-rRNA adopts a highly distorted conformation of its 3' major and 3' minor domains stabilized by the binding of the assembly factors. This observation is consistent with a mechanism that involves concerted release of the assembly factors orchestrated by the folding of the rRNA in the head of the pre-40S subunit during the final stages of maturation. Our results provide a structural framework for the coordination of the final maturation events that drive a pre-40S particle toward the mature form capable of engaging in translation.


Asunto(s)
Microscopía por Crioelectrón , Simulación del Acoplamiento Molecular , Proteínas Ribosómicas/ultraestructura , Subunidades Ribosómicas Pequeñas de Eucariotas/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Citoplasma , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/ultraestructura , Conformación Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/ultraestructura , Pliegue del ARN , ARN Ribosómico/química , ARN Ribosómico/ultraestructura , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/ultraestructura , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/aislamiento & purificación , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación
20.
Mol Cell ; 67(3): 447-456.e7, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28732596

RESUMEN

After having translated short upstream open reading frames, ribosomes can re-initiate translation on the same mRNA. This process, referred to as re-initiation, controls the translation of a large fraction of mammalian cellular mRNAs, many of which are important in cancer. Key ribosomal binding proteins involved in re-initiation are the eukaryotic translation initiation factor 2D (eIF2D) or the homologous complex of MCT-1/DENR. We determined the structures of these factors bound to the human 40S ribosomal subunit in complex with initiator tRNA positioned on an mRNA start codon in the P-site using a combination of cryoelectron microscopy and X-ray crystallography. The structures, supported by biochemical experiments, reveal how eIF2D emulates the function of several canonical translation initiation factors by using three independent, flexibly connected RNA binding domains to simultaneously monitor codon-anticodon interactions in the ribosomal P-site and position the initiator tRNA.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Proteínas Oncogénicas/metabolismo , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Sitio de Iniciación de la Transcripción , Iniciación de la Transcripción Genética , Sitios de Unión , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Microscopía por Crioelectrón , Cristalografía por Rayos X , Factor 2 Eucariótico de Iniciación/química , Factor 2 Eucariótico de Iniciación/genética , Factores Eucarióticos de Iniciación/química , Factores Eucarióticos de Iniciación/genética , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Complejos Multiproteicos , Mutación , Conformación de Ácido Nucleico , Proteínas Oncogénicas/química , Proteínas Oncogénicas/genética , Unión Proteica , Conformación Proteica , ARN Mensajero/química , ARN Mensajero/genética , ARN de Transferencia/química , ARN de Transferencia/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Relación Estructura-Actividad , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA