Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Nat Food ; 3(11): 942-956, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-37118218

RESUMEN

Food systems are important contributors to global emissions of air pollutants. Here, building on the EDGAR-FOOD database of greenhouse gas emissions, we estimate major air pollutant compounds emitted by different stages of the food system, at country level, during the past 50 years, resulting from food production, processing, packaging, transport, retail, consumption and disposal. Air pollutant estimates from food systems include total nitrogen and its components (N2O, NH3 and NOx), SO2, CO, non-methane volatile organic compounds (NMVOC) and particulate matter (PM10, PM2.5, black carbon and organic carbon). We show that 10% to 90% of air pollutant emissions come from food systems, resulting from steady increases over the past five decades. In 2018, more than half of total N (and 87% of ammonia) emissions come from food systems and up to 35% of particulate matter. Food system emissions are responsible for about 22.4% of global mortality due to poor air quality and 1.4% of global crop production losses.

2.
Glob Environ Change ; 69: 102281, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34471331

RESUMEN

Intensive agriculture and densely populated areas represent major sources of nutrient pollution for European inland and coastal waters, altering the aquatic ecosystems and affecting their capacity to provide ecosystem services and support economic activities. Ambitious water policies are in place in the European Union (EU) for protecting and restoring aquatic ecosystems under the Water Framework Directive and the Marine Strategy Framework Directive. This research quantified the current pressures of point and diffuse nitrogen and phosphorus emissions to European fresh and coastal waters (2005-2012), and analysed the effects of three policy scenarios of nutrient reduction: 1) the application of measures currently planned in the Rural Development Programmes and under the Urban Waste Water Treatment Directive (UWWTD); 2) the full implementation of the UWWTD and the absence of derogations in the Nitrates Directive; 3) high reduction of nutrient, using best technologies in wastewaters treatment and optimal fertilisation in agriculture. The results of the study show that for the period 2005-2012, the nitrogen load to European seas was 3.3-4.1 TgN/y and the phosphorus load was 0.26-0.30 TgP/y. Policy measures supporting technological improvements (third scenario) could decrease the nutrient export to the seas up to 14% for nitrogen and 20% for phosphorus, improving the ecological status of rivers and lakes, but widening the nutrient imbalance in coastal ecosystems (i.e. increasing nitrogen availability with respect to phosphorus), affecting eutrophication. Further nutrient reductions could be possible by a combination of measures especially in the agricultural sector. However, without tackling current agricultural production and consumption system, the reduction might not be sufficient for achieving the goals of EU water policy in some regions. The study analysed the expected changes and the source contribution in different European regional seas, and highlights the advantages of addressing the land-sea dynamics, checking the coherence of measures taken under different policies.

3.
Nat Food ; 2(3): 198-209, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37117443

RESUMEN

We have developed a new global food emissions database (EDGAR-FOOD) estimating greenhouse gas (GHG; CO2, CH4, N2O, fluorinated gases) emissions for the years 1990-2015, building on the Emissions Database of Global Atmospheric Research (EDGAR), complemented with land use/land-use change emissions from the FAOSTAT emissions database. EDGAR-FOOD provides a complete and consistent database in time and space of GHG emissions from the global food system, from production to consumption, including processing, transport and packaging. It responds to the lack of detailed data for many countries by providing sectoral contributions to food-system emissions that are essential for the design of effective mitigation actions. In 2015, food-system emissions amounted to 18 Gt CO2 equivalent per year globally, representing 34% of total GHG emissions. The largest contribution came from agriculture and land use/land-use change activities (71%), with the remaining were from supply chain activities: retail, transport, consumption, fuel production, waste management, industrial processes and packaging. Temporal trends and regional contributions of GHG emissions from the food system are also discussed.

4.
Environ Pollut ; 159(11): 3254-68, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21570167

RESUMEN

A comparison of nitrogen (N) budgets for the year 2000 of agro-ecosystems is made for the EU 27 countries by four models with different complexity and data requirements, i.e. INTEGRATOR, IDEAg, MITERRA and IMAGE. The models estimate a comparable total N input in European agriculture, i.e. 23.3-25.7 Mton N yr(-1), but N uptake varies more, i.e. from 11.3 to 15.4 Mton N yr(-1) leading to total N surpluses varying from 10.4 to 13.2 Mton N yr(-1). The estimated overall variation at EU 27 is small for the emissions of ammonia (2.8-3.1 Mton N yr(-1)) and nitrous oxide (0.33-0.43 Mton N yr(-1)), but large for the sum of N leaching and runoff (2.7-6.3 Mton N yr(-1)). Unlike the overall EU estimates, the difference in N output fluxes between models is large at regional scale. This is mainly determined by N inputs, differences being highest in areas with high livestock density.


Asunto(s)
Agricultura/métodos , Monitoreo del Ambiente/métodos , Modelos Biológicos , Nitrógeno/análisis , Amoníaco/análisis , Europa (Continente) , Fertilizantes/análisis , Fertilizantes/estadística & datos numéricos , Estiércol/análisis , Óxido Nitroso/análisis , Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA