Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
BMC Bioinformatics ; 21(1): 268, 2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32600298

RESUMEN

BACKGROUND: High-throughput technologies enable the cost-effective collection and analysis of DNA methylation data throughout the human genome. This naturally entails missing values management that can complicate the analysis of the data. Several general and specific imputation methods are suitable for DNA methylation data. However, there are no detailed studies of their performances under different missing data mechanisms -(completely) at random or not- and different representations of DNA methylation levels (ß and M-value). RESULTS: We make an extensive analysis of the imputation performances of seven imputation methods on simulated missing completely at random (MCAR), missing at random (MAR) and missing not at random (MNAR) methylation data. We further consider imputation performances on the popular ß- and M-value representations of methylation levels. Overall, ß-values enable better imputation performances than M-values. Imputation accuracy is lower for mid-range ß-values, while it is generally more accurate for values at the extremes of the ß-value range. The MAR values distribution is on the average more dense in the mid-range in comparison to the expected ß-value distribution. As a consequence, MAR values are on average harder to impute. CONCLUSIONS: The results of the analysis provide guidelines for the most suitable imputation approaches for DNA methylation data under different representations of DNA methylation levels and different missing data mechanisms.


Asunto(s)
Metilación de ADN , Recolección de Datos , Epigenómica/métodos , Humanos
2.
Hum Mutat ; 38(9): 1182-1192, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28634997

RESUMEN

Precision medicine aims to predict a patient's disease risk and best therapeutic options by using that individual's genetic sequencing data. The Critical Assessment of Genome Interpretation (CAGI) is a community experiment consisting of genotype-phenotype prediction challenges; participants build models, undergo assessment, and share key findings. For CAGI 4, three challenges involved using exome-sequencing data: Crohn's disease, bipolar disorder, and warfarin dosing. Previous CAGI challenges included prior versions of the Crohn's disease challenge. Here, we discuss the range of techniques used for phenotype prediction as well as the methods used for assessing predictive models. Additionally, we outline some of the difficulties associated with making predictions and evaluating them. The lessons learned from the exome challenges can be applied to both research and clinical efforts to improve phenotype prediction from genotype. In addition, these challenges serve as a vehicle for sharing clinical and research exome data in a secure manner with scientists who have a broad range of expertise, contributing to a collaborative effort to advance our understanding of genotype-phenotype relationships.


Asunto(s)
Trastorno Bipolar/genética , Enfermedad de Crohn/genética , Secuenciación del Exoma/métodos , Medicina de Precisión/métodos , Warfarina/uso terapéutico , Biología Computacional/métodos , Bases de Datos Genéticas , Predisposición Genética a la Enfermedad , Humanos , Difusión de la Información , Variantes Farmacogenómicas , Fenotipo , Warfarina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA