Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Psychopharmacology (Berl) ; 239(11): 3633-3656, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36178508

RESUMEN

RATIONALE: The pharmacological effects of antidepressants in modulating noradrenergic transmission as compared to serotonergic transmission in a rat model of Parkinson's disease under chronic L-DOPA therapy are insufficiently explored. OBJECTIVES: The aim of the present study was to investigate the effect of the tricyclic antidepressant desipramine administered chronically alone or jointly with L-DOPA, on motor behavior and monoamine metabolism in selected brain structures of rats with the unilateral 6-OHDA lesion. METHODS: The antiparkinsonian activities of L-DOPA and desipramine were assessed behaviorally using a rotation test and biochemically based on changes in the tissue concentrations of noradrenaline, dopamine and serotonin and their metabolites, evaluated separately for the ipsi- and contralateral motor (striatum, substantia nigra) and limbic (prefrontal cortex, hippocampus) structures of rat brain by HPLC method. RESULTS: Desipramine administered alone did not induce rotational behavior, but in combination with L-DOPA, it increased the number of contralateral rotations more strongly than L-DOPA alone. Both L-DOPA and desipramine + L-DOPA significantly increased DA levels in the ipsilateral striatum, substantia nigra, prefrontal cortex and the ipsi- and contralateral hippocampus. The combined treatment also significantly increased noradrenaline content in the ipsi- and contralateral striatum, while L-DOPA alone decreased serotonin level on both sides of the hippocampus. CONCLUSIONS: The performed analysis of the level of monoamines and their metabolites in the selected brain structures suggests that co-modulation of noradrenergic and dopaminergic transmission in Parkinson's disease by the combined therapy with desipramine + L-DOPA may have some positive implications for motor and psychiatric functions but further research is needed to exclude potential negative effects.


Asunto(s)
Levodopa , Enfermedad de Parkinson , Animales , Ratas , Levodopa/farmacología , Oxidopamina , Antidepresivos Tricíclicos/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Desipramina/farmacología , Dopamina/metabolismo , Serotonina/metabolismo , Antipruriginosos/metabolismo , Antipruriginosos/farmacología , Inhibidores de Agregación Plaquetaria/metabolismo , Inhibidores de Agregación Plaquetaria/farmacología , Antiparkinsonianos/farmacología , Antiparkinsonianos/metabolismo , Cuerpo Estriado , Norepinefrina/metabolismo
2.
Neurochem Int ; 150: 105193, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34571049

RESUMEN

Imipramine belongs to a group of tricyclic antidepressants (TCAs). It has been also documented that its antidepressant activity connects with the modulation of cytosolic phospholipase A2 (cPLA2) and arachidonic acid (AA) turnover. Through this mechanism, imipramine can indirectly modify glutamate (Glu) transmission. Additionally, it has been shown that chronic treatment with imipramine results in the upregulation of the metabotropic glutamate receptor subtype 5 (mGlu5 receptor) in the hippocampus of rats. Our previous study revealed that manipulation of the AA pathway via inhibition of cyclooxygenase-2 (COX-2) by selective COX-2 inhibitor (NS398) could effectively modulate the behavior of mice treated with imipramine. Here, we hypothesized that COX-2 inhibition could similarly to imipramine influence mGlu5 receptor, and thus NS398 can modulate the effect of imipramine on Glu. Moreover, such regulation changes should correspond with alterations in neurotransmission. Increased cPLA activity after imipramine administration may change the activity of the AA pathway and the endocannabinoid metabolism, e.g., 2-Arachidonyl-glycerol (2-AG). To verify the idea, mGlu5 receptor level was investigated in the hippocampus (HC) and prefrontal cortex (PFC) of mice treated for 7 or 14 days with imipramine and/or COX-2 inhibitor: NS398. Western blot and PCR analyses were conducted. Moreover, the excitatory (Glu) and inhibitory (gamma-aminobutyric acid; GABA) neurotransmitters were measured using HPLC and 2-AG using ELISA. A time-dependent change in mGlu5 receptor and COX-2 protein level, COX-2 expression, and 2-AG level in the PFC after imipramine administration was found. Up-regulation of mGlu5 receptor after NS398 was found in HC and PFC. A structure-dependent shift between excitatory vs. inhibitory transmission was detected when NS398 and imipramine were co-administered.


Asunto(s)
Encéfalo/metabolismo , Ciclooxigenasa 2/biosíntesis , Imipramina/farmacología , Nitrobencenos/farmacología , Receptor del Glutamato Metabotropico 5/biosíntesis , Sulfonamidas/farmacología , Regulación hacia Arriba/fisiología , Inhibidores de Captación Adrenérgica/farmacología , Animales , Antidepresivos Tricíclicos/farmacología , Encéfalo/efectos de los fármacos , Inhibidores de la Ciclooxigenasa/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptor del Glutamato Metabotropico 5/agonistas , Regulación hacia Arriba/efectos de los fármacos
3.
Eur J Pharmacol ; 910: 174460, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34469756

RESUMEN

Phosphodiesterase 10A (PDE10A), the enzyme which catalyzes hydrolysis of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), is located almost exclusively in striatal γ-amino-butyric acid (GABA)ergic medium spiny neurons (MSNs). Since dopaminergic deficiency in Parkinson's disease (PD) leads to functional imbalance of striatal direct and indirect output pathways formed by MSNs, PDE10A seems to be of special interest as a potential therapeutic target in PD. The aim of the present study was to examine the influence of 7-{5,8-dimethyl-[1,2,4]triazolo[1,5-a]pyrazin-2-yl}-2-phenylimidazo[1,2-a]pyrimidine (CPL500036), a novel selective inhibitor of PDE10A, on sensorimotor deficits and therapeutic effects of L-3,4-dihydroxyphenylalanine (L-DOPA) in hemiparkinsonian rats. Animals were unilaterally lesioned with 6-hydroxydopamine, and their sensorimotor deficits were examined in the stepping, cylinder, vibrissae and catalepsy tests. CPL500036 (0.1 and 0.3 mg/kg) was administered either acutely or chronically (2 weeks), alone or in combination with L-DOPA/benserazide (6 mg/kg/6 mg/kg). Acute treatment with CPL500036 reversed the lesion-induced impairments of contralateral forelimb use in the stepping and cylinder tests but did not influence deficits in the vibrissae test and the lesion-induced catalepsy. Moreover, CPL500036 did not diminish the therapeutic effects produced by acute and chronic treatment with L-DOPA in these tests. The present study suggests a potential use of CPL500036 as a co-treatment to L-DOPA in PD therapy.


Asunto(s)
Antiparkinsonianos/uso terapéutico , Levodopa/uso terapéutico , Enfermedad de Parkinson Secundaria/tratamiento farmacológico , Inhibidores de Fosfodiesterasa/uso terapéutico , Hidrolasas Diéster Fosfóricas/metabolismo , Animales , Antiparkinsonianos/farmacología , Modelos Animales de Enfermedad , Neuronas GABAérgicas/efectos de los fármacos , Humanos , Levodopa/farmacología , Masculino , Oxidopamina/administración & dosificación , Oxidopamina/toxicidad , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/diagnóstico , Enfermedad de Parkinson Secundaria/patología , Inhibidores de Fosfodiesterasa/farmacología , Ratas , Índice de Severidad de la Enfermedad
4.
Brain Res ; 1771: 147660, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34529964

RESUMEN

Since we found that inhibition of cyclooxygenase-2 (COX-2) with concomitant application of a metabotropic glutamate receptor subtype 5 (mGluR5) antagonist (MTEP) down-regulates mGluR7 in the hippocampus (HC) and changes behavior of mice, our team decided to investigate the mechanism responsible for the observed changes. The amino acid glutamate (Glu) is a major excitatory neurotransmitter in the brain. Glu uptake is regulated by excitatory amino acid transporters (EAAT). There are five transporters with documented expression in neurons and glia in the central nervous system (CNS). EAATs, maintain the correct transmission of the Glu signal and prevent its toxic accumulation by removing Glu from the synapse. It has been documented that the toxic level of Glu is one of the main causes of mental and cognitive abnormalities. Given the above mechanisms involved in the functioning of the Glu synapse, we hypothesized modification of Glu uptake, involving EAATs as the cause of the observed changes. This study investigated the level of selected EAATs in the HC after chronic treatment with mGluR5 antagonist MTEP, NS398, and their combination using Western blot. Concomitant MTEP treatment with NS398 or a single administration of the above causes changes in LTP and modulation of EAAT levels in mouse HC. As EAATs are cellular markers of oxidative stress mechanisms, the E. coli lipopolysaccharide (LPS) challenge was performed. The modified Barnes maze test (MBM) revealed alterations in the mouse spatial learning abilities. This study reports an interaction between the mGluR5 and COX-2 in the HC, with EAAT1 and EAAT3 involvement.


Asunto(s)
Ciclooxigenasa 2/fisiología , Transportador 1 de Aminoácidos Excitadores/biosíntesis , Transportador 3 de Aminoácidos Excitadores/biosíntesis , Hipocampo/metabolismo , Estrés Oxidativo , Receptores de Ácido Kaínico/fisiología , Animales , Inhibidores de la Ciclooxigenasa 2/farmacología , Transportador 1 de Aminoácidos Excitadores/genética , Transportador 3 de Aminoácidos Excitadores/genética , Lipopolisacáridos/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Receptores de Ácido Kaínico/antagonistas & inhibidores , Aprendizaje Espacial/efectos de los fármacos
5.
Molecules ; 26(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34361754

RESUMEN

A series of N-skatyltryptamines was synthesized and their affinities for serotonin and dopamine receptors were determined. Compounds exhibited activity toward 5-HT1A, 5-HT2A, 5-HT6, and D2 receptors. Substitution patterns resulting in affinity/activity switches were identified and studied using homology modeling. Chosen hits were screened to determine their metabolism, permeability, hepatotoxicity, and CYP inhibition. Several D2 receptor antagonists with additional 5-HT6R antagonist and agonist properties were identified. The former combination resembled known antipsychotic agents, while the latter was particularly interesting due to the fact that it has not been studied before. Selective 5-HT6R antagonists have been shown previously to produce procognitive and promnesic effects in several rodent models. Administration of 5-HT6R agonists was more ambiguous-in naive animals, it did not alter memory or produce slight amnesic effects, while in rodent models of memory impairment, they ameliorated the condition just like antagonists. Using the identified hit compounds 15 and 18, we tried to sort out the difference between ligands exhibiting the D2R antagonist function combined with 5-HT6R agonism, and mixed D2/5-HT6R antagonists in murine models of psychosis.


Asunto(s)
Antipsicóticos/farmacología , Inhibidores de Captación de Dopamina/farmacología , Indoles/farmacología , Nootrópicos/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Triptaminas/farmacología , Animales , Antipsicóticos/síntesis química , Familia 2 del Citocromo P450/metabolismo , Modelos Animales de Enfermedad , Inhibidores de Captación de Dopamina/síntesis química , Células Hep G2 , Humanos , Indoles/síntesis química , Ligandos , Masculino , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/fisiopatología , Ratones , Modelos Moleculares , Estructura Molecular , Nootrópicos/síntesis química , Unión Proteica , Trastornos Psicóticos/tratamiento farmacológico , Trastornos Psicóticos/metabolismo , Trastornos Psicóticos/fisiopatología , Receptores de Dopamina D2/metabolismo , Receptores de Serotonina/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/síntesis química , Relación Estructura-Actividad , Triptaminas/síntesis química
6.
Eur J Med Chem ; 220: 113533, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34049262

RESUMEN

The selective serotonin reuptake inhibitors (SSRIs), acting at the serotonin transporter (SERT), are one of the most widely prescribed antidepressant medications. All five approved SSRIs possess either fluorine or chlorine atoms, and there is a limited number of reports describing their analogs with heavier halogens, i.e., bromine and iodine. To elucidate the role of halogen atoms in the binding of SSRIs to SERT, we designed a series of 22 fluoxetine and fluvoxamine analogs substituted with fluorine, chlorine, bromine, and iodine atoms, differently arranged on the phenyl ring. The obtained biological activity data, supported by a thorough in silico binding mode analysis, allowed the identification of two partners for halogen bond interactions: the backbone carbonyl oxygen atoms of E493 and T497. Additionally, compounds with heavier halogen atoms were found to bind with the SERT via a distinctly different binding mode, a result not presented elsewhere. The subsequent analysis of the prepared XSAR sets showed that E493 and T497 participated in the largest number of formed halogen bonds. The XSAR library analysis led to the synthesis of two of the most active compounds (3,4-diCl-fluoxetine 42, SERT Ki = 5 nM and 3,4-diCl-fluvoxamine 46, SERT Ki = 9 nM, fluoxetine SERT Ki = 31 nM, fluvoxamine SERT Ki = 458 nM). We present an example of the successful use of a rational methodology to analyze binding and design more active compounds by halogen atom introduction. 'XSAR library analysis', a new tool in medicinal chemistry, was instrumental in identifying optimal halogen atom substitution.


Asunto(s)
Fluoxetina/farmacología , Fluvoxamina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Relación Dosis-Respuesta a Droga , Fluoxetina/síntesis química , Fluoxetina/química , Fluvoxamina/síntesis química , Fluvoxamina/química , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Inhibidores Selectivos de la Recaptación de Serotonina/síntesis química , Inhibidores Selectivos de la Recaptación de Serotonina/química , Relación Estructura-Actividad
7.
Eur J Med Chem ; 209: 112916, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33328102

RESUMEN

Among all of the monoaminergic receptors, the 5-HT6R has the highest number of non-basic ligands (approximately 5% of compounds stored in 25th version of ChEMBL database have the strongest basic pKa below 5, calculated using the Instant JChem calculator plugin). These compounds, when devoid of a basic nitrogen, exhibit high affinity and remarkable selectivity. Despite a decade of research, no clues have been given for explanation of such an intriguing phenomenon. Here, a series of analogs of four known 5-HT6R ligands, has been rationally designed to approach this issue. For each of the synthesized 42 compounds, a binding affinity for 5-HT6R has been measured, together with a selectivity profile against 5-HT1AR, 5-HT2AR, 5-HT7R and D2R. Performed induced fit docking and molecular dynamics experiments revealed that no particular interaction was responsible for the activity of non-basic compounds. In fact, a plain N-phenylsulfonylindole (1e) was found to possess a moderate (5-HT6R, Ki = 159 nM) affinity. No other monoaminergic receptor has as simple and selective ligand as this one. Thus, it is stated that it binds to the receptor solely based on its conformation and as such, possesses a minimum amount of features, required for binding. Also, any functional group able to form an additional interaction with the receptor increase the binding affinity, like in the case of two highly active non-basic compounds 3e and 5g (5-HT6R, Ki = 65 nM and 38 nM, respectively).


Asunto(s)
Diseño de Fármacos , Indoles/química , Receptores de Serotonina/metabolismo , Células HEK293 , Humanos , Indoles/metabolismo , Indoles/farmacología , Ligandos , Simulación de Dinámica Molecular , Ensayo de Unión Radioligante , Relación Estructura-Actividad
8.
Neuroscience ; 429: 106-118, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31935489

RESUMEN

The primary cause of harmaline tremor, which is a model of essential tremor (ET) in animals, is excessive activation of olivocerebellar glutamatergic climbing fibers. Our recent study indicated that 5'-chloro-5'-deoxy-(±)-N6-(±)-(endo-norborn-2-yl)adenosine (5'Cl5'd-(±)-ENBA), a potent and selective adenosine A1 receptor (A1) agonist, inhibited harmaline tremor. The present study was aimed to evaluate the role of glutamatergic transmission system in 5'Cl5'd-(±)-ENBA tremorolytic action in the harmaline model in rats, by analyzing glutamate release in the motor nuclei of the thalamus and mRNA expression of glutamatergic neuron markers (vGlut1/2) in reference to the general neuronal activity marker (zif-268) in different brain structures. The extracellular glutamate level in the motor thalamus was evaluated by in vivo microdialysis and the vGlut1/vGlut2 and zif-268 mRNA expression was analyzed by in situ hybridization. The intensity of tremor was measured automatically using Force Plate Actimeters (FPAs). 5'Cl5'd-(±)-ENBA (0.5 mg/kg) given 30 min before harmaline (30 mg/kg) decreased the harmaline-induced excessive glutamate release in the motor thalamus and reversed harmaline-induced molecular effects, such as elevation of the vGlut1 mRNA expression in the inferior olive (IO) and decrease in the motor cortex, as well as an increase of the zif-268 mRNA expression in the IO, motor thalamus and motor cortex. Moreover, 5'Cl5'd-(±)-ENBA reduced harmaline tremor by lowering its power in 9-15 Hz frequency band. Our findings show that A1 stimulation decreases glutamate release in the motor thalamic nuclei in the harmaline model of ET, suggesting that A1 receptors, especially in this structure, may be a potential therapeutic target in this disorder.


Asunto(s)
Temblor Esencial , Harmalina , Agonistas del Receptor de Adenosina A1 , Animales , Temblor Esencial/tratamiento farmacológico , Ratas , Ratas Wistar , Núcleos Talámicos Ventrales
9.
Eur J Med Chem ; 185: 111857, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31734022

RESUMEN

A virtual screening campaign aimed at finding structurally new compounds active at 5-HT6R provided a set of candidates. Among those, one structure, 4-(5-{[(2-{5-fluoro-1H-pyrrolo[2,3-b]pyridin-3-yl}ethyl)amino]methyl}furan-2-yl)phenol (1, 5-HT6R Ki = 91 nM), was selected as a hit for further optimization. As expected, the chemical scaffold of selected compound was significantly different from all the serotonin receptor ligands published to date. Synthetic efforts, supported by molecular modelling, provided 43 compounds representing different substitution patterns. The derivative 42, 4-(5-{[(2-{5-fluoro-1H-pyrrolo[2,3-b]pyridin-3-yl}ethyl)amino]methyl}furan-2-yl)phenol (5-HT6R Ki = 25, 5-HT2AR Ki = 32 nM), was selected as a lead and showed a good brain/plasma concentration profile, and it reversed phencyclidine-induced memory impairment. Considering the unique activity profile, the obtained series might be a good starting point for the development of a novel antipsychotic or antidepressant with pro-cognitive properties.


Asunto(s)
Antidepresivos/farmacología , Antipsicóticos/farmacología , Cognición/efectos de los fármacos , Receptor de Serotonina 5-HT2A/metabolismo , Receptores de Serotonina/metabolismo , Triptaminas/farmacología , Animales , Antidepresivos/síntesis química , Antidepresivos/química , Antipsicóticos/síntesis química , Antipsicóticos/química , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Células Hep G2 , Humanos , Ligandos , Estructura Molecular , Ratas , Relación Estructura-Actividad , Triptaminas/síntesis química , Triptaminas/química , Células Tumorales Cultivadas
10.
Eur J Med Chem ; 179: 1-15, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31229883

RESUMEN

A new strategy in the design of aminergic GPCR ligands is proposed - the use of aromatic, heterocyclic basic moieties in place of the evergreen piperazine or alicyclic and aliphatic amines. This hypothesis has been tested using a benchmark series of 5-HT6R antagonists obtained by coupling variously substituted 2-aminoimidazole moieties to the well established 1-benzenesulfonyl-1H-indoles, which served as the ligands cores. The crystallographic studies revealed that upon protonation, the 2-aminoimidazole fragment triggers a resonance driven conformational change leading to a form of higher affinity. This molecular switch may be responsible for the observed differences in 5-HT6R activity of the studied chemotypes with different amine-like fragments. Considering the multiple functionalization sites of the embedded guanidine fragment, diverse libraries were constructed, and the relationships between the structure and activity, metabolic stability, and solubility were established. Compounds from the N-(1H-imidazol-2-yl)acylamide chemotype (10a-z) exhibited high affinity for 5-HT6R and very high selectivity over 5-HT1A, 5-HT2A, 5-HT7 and D2 receptors (negligible binding), which was attributed to their very weak basicity. The lead compound in the series 4-methyl-5-[1-(naphthalene-1-sulfonyl)-1H-indol-3-yl]-1H-imidazol-2-amine (9i) was shown to reverse the cognitive impairment caused by the administration of scopolamine in rats indicating procognitive potential.


Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Diseño de Fármacos , Imidazoles/farmacología , Receptores de Serotonina/metabolismo , Antagonistas de la Serotonina/farmacología , Animales , Células Cultivadas , Disfunción Cognitiva/inducido químicamente , Relación Dosis-Respuesta a Droga , Células HEK293 , Células Hep G2 , Humanos , Imidazoles/síntesis química , Imidazoles/química , Masculino , Modelos Moleculares , Estructura Molecular , Ratas , Ratas Sprague-Dawley , Escopolamina/administración & dosificación , Antagonistas de la Serotonina/síntesis química , Antagonistas de la Serotonina/química , Relación Estructura-Actividad
11.
Eur J Med Chem ; 170: 261-275, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30904783

RESUMEN

The 5-HT7 receptor has recently gained much attention due to its involvement in multiple physiological functions and diseases. The insufficient quality of the available molecular probes prompted design of fluorinated 3-(1-alkyl-1H-imidazol-5-yl)-1H-indoles as a new generation of selective 5-HT7 receptor agonists. A potent and drug-like agonist, 3-(1-ethyl-1H-imidazol-5-yl)-5-iodo-4-fluoro-1H-indole (AGH-192, 35, Ki 5-HT7R = 4 nM), was identified by optimizing the halogen bond formation with Ser5.42 as the supposed partner. The compound was characterized by excellent water solubility, high selectivity over related CNS targets, high metabolic stability, oral bioavailability and low cytotoxicity. Rapid absorption into the blood, medium half-life and a high peak concentration in the brain Cmax = 1069 ng/g were found after i.p. (2.5 mg/kg) administration in mice. AGH-192 may thus serve as the long-sought tool compound in the study of 5-HT7 receptor function, as well as a potential analgesic, indicated by the antinociceptive effect observed in a mouse model of neuropathic pain.


Asunto(s)
Imidazoles/química , Imidazoles/farmacocinética , Indoles/química , Indoles/farmacocinética , Neuralgia/tratamiento farmacológico , Agonistas de Receptores de Serotonina/química , Agonistas de Receptores de Serotonina/farmacocinética , Administración Oral , Analgésicos/administración & dosificación , Analgésicos/química , Analgésicos/farmacocinética , Analgésicos/farmacología , Animales , Células HEK293 , Halogenación , Humanos , Imidazoles/administración & dosificación , Imidazoles/uso terapéutico , Indoles/administración & dosificación , Indoles/uso terapéutico , Masculino , Ratones , Modelos Moleculares , Neuralgia/metabolismo , Receptores de Serotonina/metabolismo , Agonistas de Receptores de Serotonina/administración & dosificación , Agonistas de Receptores de Serotonina/uso terapéutico
12.
Neurochem Int ; 121: 125-139, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30290201

RESUMEN

Antidepressant drugs are recommended for the treatment of Parkinson's disease (PD)-associated depression but their role in the modulation of L-DOPA-induced behavioral and neurochemical markers is poorly explored. The aim of the present study was to examine the impact of the tricyclic antidepressant amitriptyline and L-DOPA, administered chronically alone or in combination, on rotational behavior, monoamine levels and binding of radioligands to their transporters in the dopaminergic brain structures of unilaterally 6-OHDA-lesioned rats. Binding of [3H]nisoxetine to noradrenaline transporter (NET), [3H]GBR 12,935 to dopamine transporter (DAT) and [3H]citalopram to serotonin transporter (SERT) were analyzed by autoradiography. Amitriptyline administered alone did not induce rotational behavior but in combination with L-DOPA increased the number of contralateral rotations much more strongly than L-DOPA alone. The combined treatment also significantly increased the tissue dopamine (DA) content in the ipsilateral striatum and substantia nigra (SN) vs. L-DOPA alone. 6-OHDA-mediated lesion of nigrostriatal DA neurons drastically reduced DAT and NET bindings in the ipsilateral striatum. In the ipsilateral SN, DAT binding decreased while NET binding rose. SERT binding increased significantly mainly in the SN. Amitriptyline administered alone or jointly with L-DOPA had no effect on DAT binding on the lesioned side, significantly decreased SERT binding in the striatum and SN while NET binding only in the SN. Since in the DA-denervated striatum, SERT is mainly responsible for reuptake of L-DOPA-derived DA while in the SN, SERT and NET are involved, the inhibition of these transporters by antidepressant drugs may improve dopaminergic transmission and consequently motor behavior.


Asunto(s)
Amitriptilina/metabolismo , Antidepresivos Tricíclicos/metabolismo , Cuerpo Estriado/metabolismo , Levodopa/metabolismo , Trastornos Parkinsonianos/metabolismo , Sustancia Negra/metabolismo , Amitriptilina/farmacología , Animales , Antidepresivos Tricíclicos/farmacología , Cuerpo Estriado/efectos de los fármacos , Interacciones Farmacológicas/fisiología , Levodopa/farmacología , Masculino , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Oxidopamina/toxicidad , Trastornos Parkinsonianos/fisiopatología , Ratas , Ratas Wistar , Rotación , Sustancia Negra/efectos de los fármacos
13.
Pharmacol Biochem Behav ; 172: 50-58, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29913190

RESUMEN

The modified forced swim test (MFST) has excellent predictive validity for investigating the antipsychotic activity of drugs, with particular emphasis on their activity toward negative symptoms of schizophrenia. However, its face and construct validity are less understood. Therefore, in the present study, some biochemical changes within GABAergic and serotonergic neurotransmission that could be related to observed MK-801-induced disturbances and the activity of compounds active at those neurotransmitters were investigated. In biochemical experiments, mice were treated acutely or chronically with MK-801 (13 days, 0.4 mg/kg). Their brains were dissected and frontal cortices and hippocampi were taken for further analysis. The levels of neurotransmitters were investigated with HPLC, and the expression of surrogate markers of schizophrenia (5-HT1A receptors, GAD65, and GAD67, at both protein and mRNA levels) was measured via western blotting and qRT-PCR. The modified forced swim test and locomotor activity were used to assess the activity of GABAB and 5-HT1A-related compounds. Repeated MK-801 treatment (13 days, 0.4 mg/kg dose) led to decreases in the DOPAC/DA, 3MT/DA and HVA/DA metabolic ratios. Increased 5-HT1A protein expression and decreased GAD65 and GAD67 protein expression was observed in both the cortex and hippocampus. mRNA levels for all proteins were decreased. The increased immobility in the forced swim test was reversed both by a GABAB agonist (SKF97541, 0.025 or 0.05 mg/kg), a positive allosteric modulator of GABAB receptor (racBHFF, 5 or 10 mg/kg) and by a 5-HT1A agonist ((R)-(+)-8-OH-DPAT 0.01 or 0.025 mg/kg). Our research supports the hypothesis that changes in the levels of GABA and/or 5-HT1A receptors may contribute to the schizophrenia-like phenotype, and GABAergic and serotonergic agents may be good candidates for treating negative symptoms of schizophrenia.


Asunto(s)
Conducta Animal , Esquizofrenia/metabolismo , Psicología del Esquizofrénico , Natación , Animales , Western Blotting , Cromatografía Líquida de Alta Presión , Maleato de Dizocilpina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Glutamato Descarboxilasa/metabolismo , Masculino , Ratones , Neurotransmisores/metabolismo , Compuestos Organofosforados/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor de Serotonina 5-HT1A/efectos de los fármacos , Receptor de Serotonina 5-HT1A/metabolismo , Receptores de GABA-B/efectos de los fármacos , Esquizofrenia/fisiopatología
14.
Eur J Med Chem ; 145: 790-804, 2018 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-29407591

RESUMEN

Currently used antipsychotics are characterized by multireceptor mode of action. While antagonism of dopamine D2 receptors is responsible for the alleviation of "positive" symptoms of schizophrenia and the effects at other, particularly serotonergic receptors are necessary for their additional therapeutic effects, there is no consensus regarding an "ideal" target engagement. Here, a detailed SAR analysis in a series of 45 novel azinesulfonamides of cyclic amine derivatives, involving the aryl-piperazine/piperidine pharmacophore, central alicyclic amine and azinesulfonamide groups has led to the selection of (S)-4-((2-(2-(4-(benzo[b]thiophen-4-yl)piperazin-1-yl)ethyl)pyrrolidin-1-yl)sulfonyl)isoquinoline (62). The polypharmacology profile of 62, characterized by partial 5-HT1AR agonism, 5-HT2A/5-HT7/D2/D3R antagonism, and blockade of SERT, reduced the "positive"-like, and "negative"-like symptoms of psychoses. Compound 62 produced no catalepsy, demonstrated a low hyperprolactinemia liability and displayed pro-cognitive effects in the novel object recognition task and attentional set-shifting test. While association of in vitro features with the promising in vivo profile of 62 is still not fully established, its clinical efficacy should be verified in further stages of development.


Asunto(s)
Aminas/farmacología , Antipsicóticos/farmacología , Cognición/efectos de los fármacos , Receptores de Dopamina D2/metabolismo , Sulfonamidas/farmacología , Aminas/síntesis química , Aminas/química , Animales , Antipsicóticos/síntesis química , Antipsicóticos/química , Relación Dosis-Respuesta a Droga , Cobayas , Células HEK293 , Humanos , Masculino , Estructura Molecular , Ratas , Ratas Wistar , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química
15.
Mol Neurobiol ; 55(4): 2897-2910, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28455702

RESUMEN

The allosteric regulation of G protein-coupled receptors (GPCRs) is a well-known phenomenon, but there are only a few examples of allosteric modulation within the metabotropic serotonergic receptor family. Recently, we described zinc non-competitive interactions toward agonist binding at serotonin 5-HT1A receptors, in which biphasic effects, involving potentiation at sub-micromolar concentrations (10 µM) and inhibition at sub-millimolar concentrations (500 µM) of Zn2+ in radioligand binding assays, were consistent with both the agonist and antagonist-like effects of zinc ions observed in in vivo studies. Here, we showed new data demonstrating zinc allosteric inhibition of both agonist and antagonist binding at human recombinant 5-HT7 receptors stably expressed in HEK293 cells as observed by radioligand binding studies as well as zinc neutral antagonism displayed by the concentration of 10 µM in the functional LANCE assay. The allosteric nature of the effect of Zn on 5-HT7 receptors was confirmed (1) in saturation studies in which zinc inhibited the binding of potent orthosteric 5-HT7 receptor radioligands, the agonist [3H]5-CT, and the two antagonists [3H]SB-269970 and [3H]mesulergine, showing ceiling effect and differences in the magnitude of negative cooperativity (α = 0.15, 0.06, and 0.25, respectively); (2) in competition experiments in which 500 µM of zinc inhibited all radioligand displacements by non-labeled orthosteric ligands (5-CT, SB-269970, and clozapine), and the most significant reduction in affinity was observed for the 5-CT agonist (4.9-16.7-fold) compared with both antagonists (1.4-3.9-fold); and (3) in kinetic experiments in which 500 µM zinc increased the dissociation rate constants for [3H]5-CT and [3H]mesulergine but not for [3H]SB-269970. Additionally, in the functional LANCE test using the constitutively active HEK293 cell line expressing the 5-HT7 receptor, 10 µM zinc had features of neutral antagonism and increased the EC50 value of the 5-CT agonist by a factor of 3.2. Overall, these results showed that zinc can act as a negative allosteric inhibitor of 5-HT7 receptors. Given that the inhibiting effects of low concentrations of zinc in the functional assay represent the most likely direction of zinc activity under physiological conditions, among numerous zinc-regulated proteins, the 5-HT7 receptor can be considered a serotonergic target for zinc modulation in the CNS.


Asunto(s)
Receptores de Serotonina/metabolismo , Zinc/farmacología , Regulación Alostérica/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , AMP Cíclico/metabolismo , Ergolinas/farmacología , Células HEK293 , Humanos , Iones , Cinética , Ligandos , Fenoles , Sulfonamidas
16.
Pharmacol Rep ; 69(5): 985-994, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28843848

RESUMEN

BACKGROUND: Although Parkinson's disease (PD) is characterized by progressive neurodegeneration of multiple neurotransmitter systems, 6-hydroxydopamine (6-OHDA) as a model substance is mainly used to selectively damage the nigrostriatal dopaminergic neurons and induce parkinsonian-like motor disturbances in rats. We hypothesized that high doses of this neurotoxin affecting other monoaminergic systems may also evoke the depressive-like behavior. METHODS: The impact of 6-OHDA (8, 12, 16µg/4µl) administered unilaterally into the medial forebrain bundle on the sucrose solution intake (a measure of anhedonia) and on the tissue levels of noradrenaline (NA), dopamine (DA) and serotonin (5-HT) in the striatum (STR), substantia nigra (SN), prefrontal cortex (PFC) and hippocampus (HIP) was examined in rats pretreated or non-pretreated with desipramine. RESULTS: The highest dose of 6-OHDA reduced the preference for 3% sucrose solution both in rats without and with desipramine pretreatment. All used doses of 6-OHDA dramatically decreased DA content in the studied brain structures on the ipsilateral side. NA levels were severely decreased in the ipsilateral STR, HIP and PFC of rats non-pretreated with desipramine and to a much lesser extent in those pretreated with desipramine. In the SN, moderate decreases in NA level were found both in rats pretreated and non-pretreated with desipramine. Higher doses of 6-OHDA reduced 5-HT content in the ipsilateral STR, HIP and PFC, but not in the SN, only in rats non-pretreated with desipramine. CONCLUSIONS: Administration of the highest dose of 6-OHDA without desipramine pretreatment evoked neurochemical and behavioral changes resembling the advanced PD with coexisting depression.


Asunto(s)
Trastorno Depresivo/inducido químicamente , Haz Prosencefálico Medial/efectos de los fármacos , Oxidopamina/toxicidad , Enfermedad de Parkinson Secundaria/inducido químicamente , Animales , Conducta Animal , Dopamina/metabolismo , Masculino , Norepinefrina/metabolismo , Enfermedad de Parkinson Secundaria/patología , Ratas , Ratas Wistar , Serotonina/metabolismo
17.
Prog Neuropsychopharmacol Biol Psychiatry ; 79(Pt B): 155-161, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28647535

RESUMEN

Some clinical studies indicate that scopolamine may induce a rapid antidepressant effect. Although scopolamine is a muscarinic antagonist, it seems that not only cholinergic but also glutamatergic and GABAergic systems might be involved in the mechanism of its antidepressant activity in animal models of depression. Here, we present a set of behavioral data aimed at investigating the role of monoaminergic system activity in the mechanism of the antidepressant-like action of scopolamine in an animal model based on behavioral despair, namely, the tail suspension test (TST). It was found that AMPT induced a partial reduction in the antidepressant-like effect of scopolamine (0.3mg/kg) in the TST in C57BL/6 mice and that the effect of scopolamine was comparable to the effect of reboxetine (10mg/kg), which was used in this study as a reference drug. The attenuated antidepressant-like effect of scopolamine in AMPT-treated mice was observed in both its immediate (30min after administration) and prolonged (24h after administration) action in the TST. On the other hand, serotonin depletion by PCPA-pretreatment had no effect on the antidepressant effect of scopolamine (0.3mg/kg) either 30min or 24h after administration. Furthermore, a dose-dependent decrease in the immobility time of mice treated with a non-active dose of reboxetine (2mg/kg) together with non-active doses of scopolamine (0.03 and 0.1mg/kg) was found, suggesting a synergistic interaction between reboxetine and scopolamine in the TST. In contrast, a subeffective dose of the SSRI citalopram co-administered with subeffective doses of scopolamine did not induce significant changes in the behavior of mice in this test. Altogether, these data suggest that activation of the noradrenergic system might be involved in the antidepressant-like effect of scopolamine in the TST.


Asunto(s)
Antidepresivos/farmacología , Trastorno Depresivo/tratamiento farmacológico , Trastorno Depresivo/metabolismo , Moduladores del Transporte de Membrana/farmacología , Norepinefrina/metabolismo , Escopolamina/farmacología , Animales , Citalopram/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Masculino , Ratones Endogámicos C57BL , Morfolinas/farmacología , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Reboxetina , Serotonina/metabolismo , alfa-Metiltirosina/farmacología
18.
Sci Rep ; 7(1): 1444, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28473721

RESUMEN

A series of 5-aryl-1-alkylimidazole derivatives was synthesized using the van Leusen multicomponent reaction. The chemotype is the first example of low-basicity scaffolds exhibiting high affinity for 5-HT7 receptor together with agonist function. The chosen lead compounds 3-(1-ethyl-1H-imidazol-5-yl)-5-iodo-1H-indole (AGH-107, 1o, K i 5-HT7 = 6 nM, EC50 = 19 nM, 176-fold selectivity over 5-HT1AR) and 1e (5-methoxy analogue, K i 5-HT7 = 30 nM, EC50 = 60 nM) exhibited high selectivity over related CNS targets, high metabolic stability and low toxicity in HEK-293 and HepG2 cell cultures. A rapid absorption to the blood, high blood-brain barrier permeation and a very high peak concentration in the brain (Cmax = 2723 ng/g) were found for 1o after i.p. (5 mg/kg) administration in mice. The compound was found active in novel object recognition test in mice, at 0.5, 1 and 5 mg/kg. Docking to 5-HT7R homology models indicated a plausible binding mode which explain the unusually high selectivity over the related CNS targets. Halogen bond formation between the most potent derivatives and the receptor is consistent with both the docking results and SAR. 5-Chlorine, bromine and iodine substitution resulted in a 13, 27 and 89-fold increase in binding affinities, respectively, and in enhanced 5-HT1AR selectivity.


Asunto(s)
Imidazoles/síntesis química , Imidazoles/farmacología , Receptores de Serotonina/metabolismo , Agonistas de Receptores de Serotonina/síntesis química , Agonistas de Receptores de Serotonina/farmacología , Barrera Hematoencefálica/metabolismo , Química Encefálica , Diseño de Fármacos , Células HEK293 , Células Hep G2 , Humanos , Modelos Moleculares , Unión Proteica , Reconocimiento en Psicología/efectos de los fármacos , Relación Estructura-Actividad
19.
Neuroscience ; 340: 308-318, 2017 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-27826109

RESUMEN

A growing body of evidence indicates that impairment of the ubiquitin-proteasome (UPS) system in the substantia nigra (SN) plays an important role in the pathogenesis of Parkinson's disease (PD). The aim of our study was to compare two unilateral rat models, one produced by intranigral administration of the UPS inhibitor lactacystin or the other induced by 6-OHDA, in terms of their effect on the amphetamine- and apomorphine-induced rotational behavior, striatal dopamine (DA) D1 and D2 receptor sensitivity and tissue levels of DA and its metabolites. We found that these models did not differ in the intensity of ipsilateral rotations induced by amphetamine. In contrast, apomorphine produced contralateral rotations only in 6-OHDA-lesioned rats, and, depending on the dose, it induced either no or moderate ipsilateral rotations in the lactacystin-lesioned group. In addition, lactacystin induced a strong reduction in the tissue DA level and its metabolites in the lesioned striatum and SN when measured three weeks after the administration which was aggravated six weeks post-lesion, reaching the level comparable to the 6-OHDA group. Binding of [3H]raclopride to D2 receptors was increased in the lesioned striatum in both investigated (PD) models six weeks after lesion. In turn, binding of [3H]SCH23390 to the striatal D1 receptors was not changed in the lactacystin group but was increased bilaterally in the 6-OHDA group. The present results add a new value to the study of DA receptor sensitivity and are discussed in the context of the validity of the lactacystin model as a suitable model of Parkinson's disease.


Asunto(s)
Cuerpo Estriado/metabolismo , Actividad Motora/fisiología , Trastornos Parkinsonianos/metabolismo , Porción Compacta de la Sustancia Negra/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Acetilcisteína/análogos & derivados , Anfetamina/farmacología , Animales , Apomorfina/farmacología , Benzazepinas/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Cuerpo Estriado/efectos de los fármacos , Dopamina/metabolismo , Dopaminérgicos/farmacología , Relación Dosis-Respuesta a Droga , Lateralidad Funcional/fisiología , Masculino , Actividad Motora/efectos de los fármacos , Oxidopamina , Porción Compacta de la Sustancia Negra/efectos de los fármacos , Racloprida/farmacología , Ratas Wistar , Rotación
20.
Neuropharmacology ; 111: 169-179, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27569995

RESUMEN

Clinical studies have shown that the muscarinic receptor antagonist scopolamine induces a potent and rapid antidepressant effect relative to conventional antidepressants. However, potential undesirable effects, including memory impairment, partially limit the use of scopolamine in psychiatry. In the present study, we propose to overcome these limitations and enhance the therapeutic effects of scopolamine via administration in combination with the group II metabotropic glutamate (mGlu) receptor antagonist, LY341495. Joint administration of sub-effective doses of scopolamine (0.03 or 0.1 mg/kg, i.p.) with a sub-effective dose of LY341495 (0.1 mg/kg, i.p.) induced a profound antidepressant effect in the tail suspension test (TST) and in the forced swim test (FST) in mice. This drug combination did not impair memory, as measured using the Morris water maze (MWM), and did not influence the locomotor activity of mice. Furthermore, we found that an AMPA receptor antagonist, NBQX (10 mg/kg), completely reversed the antidepressant-like activity of a mixture of scopolamine and LY341495 in the TST. However, this effect was not influenced by para-chlorophenylalanine (PCPA) pre-treatment, indicating a lack of involvement of serotonergic system activation in the antidepressant-like effects of jointly given scopolamine and LY341495. Therefore, the combined administration of low doses of the antimuscarinic drug scopolamine and the group II mGlu receptor antagonist LY341495 might be a new, effective and safe strategy in the therapy of depression.


Asunto(s)
Aminoácidos/administración & dosificación , Antidepresivos/administración & dosificación , Trastorno Depresivo/tratamiento farmacológico , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Escopolamina/administración & dosificación , Xantenos/administración & dosificación , Animales , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Quinoxalinas/administración & dosificación , Receptores AMPA/antagonistas & inhibidores , Serotonina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA