Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Adv Sci (Weinh) ; : e2404886, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38973161

RESUMEN

Immune checkpoint blockade (ICB) immunotherapy remains hampered by insufficient immunogenicity and a high-lactate immunosuppressive tumor microenvironment (TME). Herein, a nanobody-engineered NIR-II nanoadjuvant with targeting metabolic reprogramming capability is constructed for potentiating NIR-II photothermal-ferroptosis immunotherapy. Specifically, the nanoadjuvant (2DG@FS-Nb) is prepared by metallic iron ion-mediated coordination self-assembly of D-A-D type NIR-II molecules and loading of glycolysis inhibitor, 2-deoxy-D-glucose (2DG), followed by modification with aPD-L1 nanobody (Nb), which can effectively target the immunosuppressive TME and trigger in situ immune checkpoint blockade. The nanoadjuvants responsively release therapeutic components in the acidic TME, enabling the precise tumor location by NIR-II fluorescence/photoacoustic imaging while initiating NIR-II photothermal-ferroptosis therapy. The remarkable NIR-II photothermal efficiency and elevated glutathione (GSH) depletion further sensitize ferroptosis to induce severe lipid peroxidation, provoking robust immunogenic cell death (ICD) to trigger anti-tumor immune response. Importantly, the released 2DG markedly inhibits lactate generation through glycolysis obstruction. Decreased lactate efflux remodels the immunosuppressive TME by suppressing M2 macrophage proliferation and downregulating regulatory T cell levels. This work provides a new paradigm for the integration of NIR-II phototheranostics and lactate metabolism regulation into a single nanoplatform for amplified anti-tumor immunotherapy combined with ICB therapy.

2.
iScience ; 26(11): 108322, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38026206

RESUMEN

Tumor-infiltrating immune cells (TIICs) and metastasis are crucial characteristics for tumorigenesis. However, the potential role of their combination in breast cancer (BRCA) remains elusive. Herein, on the basis of quantifying TIICs and tumor metastasis together, we established a precise prognostic scoring system named metastatic and immunogenomic risk score (MIRS) using a neural network model. MIRS showed better performance when compared with other published signatures. MIRS stratifies patients into a high risk subtype (MIRShigh) and a low risk subtype (MIRSlow). The MIRShigh patients exhibit significantly lower survival rate compared with MIRSlow patients (P<0.0001), higher response to chemotherapy, but lower response to immunotherapy. Conversely, higher infiltration level of TIICs and significantly prolonged survival (P=0.029) are observed in MIRSlow patients, indicating sensitive response in immunotherapy. This work presents a promising indicator to guide treatment options of the BRCA population and provides a predicted webtool that is almost universally applicable to BRCA patients.

3.
Nucleic Acids Res ; 51(21): 11634-11651, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37870468

RESUMEN

Bromodomain-containing protein 9 (BRD9) is a specific subunit of the non-canonical SWI/SNF (ncBAF) chromatin-remodeling complex, whose function in human embryonic stem cells (hESCs) remains unclear. Here, we demonstrate that impaired BRD9 function reduces the self-renewal capacity of hESCs and alters their differentiation potential. Specifically, BRD9 depletion inhibits meso-endoderm differentiation while promoting neural ectoderm differentiation. Notably, supplementation of NODAL, TGF-ß, Activin A or WNT3A rescues the differentiation defects caused by BRD9 loss. Mechanistically, BRD9 forms a complex with BRD4, SMAD2/3, ß-CATENIN and P300, which regulates the expression of pluripotency genes and the activity of TGF-ß/Nodal/Activin and Wnt signaling pathways. This is achieved by regulating the deposition of H3K27ac on associated genes, thus maintaining and directing hESC differentiation. BRD9-mediated regulation of the TGF-ß/Activin/Nodal pathway is also demonstrated in the development of pancreatic and breast cancer cells. In summary, our study highlights the crucial role of BRD9 in the regulation of hESC self-renewal and differentiation, as well as its participation in the progression of pancreatic and breast cancers.


Asunto(s)
Células Madre Embrionarias Humanas , Neoplasias , Humanos , Factor de Crecimiento Transformador beta/genética , Células Madre Embrionarias Humanas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Células Madre Embrionarias/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Diferenciación Celular/genética , Activinas/metabolismo , Vía de Señalización Wnt , Neoplasias/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
4.
Clin Cancer Res ; 29(19): 3986-4001, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37527025

RESUMEN

PURPOSE: Sarcoma is the second most common solid tumor type in children and adolescents. The high level of tumor heterogeneity as well as aggressive behavior of sarcomas brings serious difficulties to developing effective therapeutic strategies for clinical application. Therefore, it is of great importance to identify accurate biomarkers for early detection and prognostic prediction of sarcomas. EXPERIMENTAL DESIGN: In this study, we characterized three subtypes of sarcomas based on tumor immune infiltration levels (TIIL), and constructed a prognosis-related competing endogenous RNA (ceRNA) network to investigate molecular regulations in the sarcoma tumor microenvironment (TME). We further built a subnetwork consisting of mRNAs and lncRNAs that are targets of key miRNAs and strongly correlated with each other in the ceRNA network. After validation using public data and experiments in vivo and in vitro, we deeply dug the biological role of the miRNAs and lncRNAs in a subnetwork and their impact on TME. RESULTS: Altogether, 5 miRNAs (hsa-mir-125b-2, hsa-mir-135a-1, hsa-mir92a-2, hsa-mir-181a-2, and hsa-mir-214), 3 lncRNAs (LINC00641, LINC01146, and LINC00892), and 10 mRNAs (AGO2, CXCL10, CD86, CASP1, IKZF1, CD27, CD247, CD69, CCR2, and CSF2RB) in the subnetwork were identified as vital regulators to shape the TME. On the basis of the systematic network, we identified that trichostatin A, a pan-HDAC inhibitor, could potentially regulate the TME of sarcoma, thereby inhibiting the tumor growth. CONCLUSIONS: Our study identifies a ceRNA network as a promising biomarker for sarcoma. This system provides a more comprehensive understanding and a novel perspective of how ceRNAs are involved in shaping sarcoma TME.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Sarcoma , Niño , Humanos , Adolescente , Pronóstico , ARN Largo no Codificante/genética , Microambiente Tumoral/genética , Redes Reguladoras de Genes , MicroARNs/genética , ARN Mensajero/genética , Sarcoma/genética
5.
Cell Biol Toxicol ; 39(6): 2861-2880, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37058270

RESUMEN

BACKGROUND: Prolonged exposure to toxic heavy metals leads to deleterious health outcomes including kidney injury. Metal exposure occurs through both environmental pathways including contamination of drinking water sources and from occupational hazards, including the military-unique risks from battlefield injuries resulting in retained metal fragments from bullets and blast debris. One of the key challenges to mitigate health effects in these scenarios is to detect early insult to target organs, such as the kidney, before irreversible damage occurs. METHODS: High-throughput transcriptomics (HTT) has been recently demonstrated to have high sensitivity and specificity as a rapid and cost-effective assay for detecting tissue toxicity. To better understand the molecular signature of early kidney damage, we performed RNA sequencing (RNA-seq) on renal tissue using a rat model of soft tissue-embedded metal exposure. We then performed small RNA-seq analysis on serum samples from the same animals to identify potential miRNA biomarkers of kidney damage. RESULTS: We found that metals, especially lead and depleted uranium, induce oxidative damage that mainly cause dysregulated mitochondrial gene expression. Utilizing publicly available single-cell RNA-seq datasets, we demonstrate that deep learning-based cell type decomposition effectively identified cells within the kidney that were affected by metal exposure. By combining random forest feature selection and statistical methods, we further identify miRNA-423 as a promising early systemic marker of kidney injury. CONCLUSION: Our data suggest that combining HTT and deep learning is a promising approach for identifying cell injury in kidney tissue. We propose miRNA-423 as a potential serum biomarker for early detection of kidney injury.


Asunto(s)
MicroARNs , Transcriptoma , Ratas , Animales , Transcriptoma/genética , Riñón , Perfilación de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Biomarcadores/metabolismo
6.
PeerJ ; 9: e11453, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34221710

RESUMEN

Allergic bronchopulmonary aspergillosis (ABPA) is a complex hypersensitivity lung disease caused by a fungus known as Aspergillus fumigatus. It complicates and aggravates asthma. Despite their potential associations, the underlying mechanisms of asthma developing into ABPA remain obscure. Here we performed an integrative transcriptome analysis based on three types of human peripheral blood, which derived from ABPA patients, asthmatic patients and health controls, aiming to identify crucial lncRNAs implicated in ABPA and asthma. Initially, a high-confidence dataset of lncRNAs was identified using a stringent filtering pipeline. A comparative mutational analysis revealed no significant difference among these samples. Differential expression analysis disclosed several immune-related mRNAs and lncRNAs differentially expressed in ABPA and asthma. For each disease, three sub-networks were established using differential network analysis. Many key lncRNAs implicated in ABPA and asthma were identified, respectively, i.e., AL139423.1-201, AC106028.4-201, HNRNPUL1-210, PUF60-218 and SREBF1-208. Our analysis indicated that these lncRNAs exhibits in the loss-of-function networks, and the expression of which were repressed in the occurrences of both diseases, implying their important roles in the immune-related processes in response to the occurrence of both diseases. Above all, our analysis proposed a new point of view to explore the relationship between ABPA and asthma, which might provide new clues to unveil the pathogenic mechanisms for both diseases.

7.
Ther Adv Respir Dis ; 15: 1753466621995045, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33878985

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a rare form of immune-mediated interstitial lung disease characterized by progressive pulmonary fibrosis and scarring. The pathogenesis of IPF is still unclear. Gene fusion events exist universally during transcription and show alternated patterns in a variety of lung diseases. Therefore, the comprehension of the function of gene fusion in IPF might shed light on IPF pathogenesis research and facilitate treatment development. METHODS: In this study, we included 91 transcriptome datasets from the National Center for Biotechnology Information (NCBI), including 52 IPF patients and 39 healthy controls. We detected fusion events in these datasets and probed gene fusion-associated differential gene expression and functional pathways. To obtain robust results, we corrected the batch bias across different projects. RESULTS: We identified 1550 gene fusion events in all transcriptomes and studied the possible impacts of IL7 = AC083837.1 gene fusion. The two genes locate adjacently in chromosome 8 and share the same promoters. Their fusion is associated with differential expression of 282 genes enriched in six Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and 35 functional gene sets. Gene ontology (GO) enrichment analysis shows that IL7 = AC083837.1 gene fusion is associated with the enrichment of 187 gene sets. The co-expression network of interleukin-7 (IL7) indicates that decreased IL7 expression is associated with many pathways that regulate IPF progress. CONCLUSION: Based on the results, we conclude that IL7 = AC083837.1 gene fusion might exacerbate fibrosis in IPF via enhancing activities of natural killer cell-mediated cytotoxicity, skin cell apoptosis, and vessel angiogenesis, the interaction of which contributes to the development of fibrosis and the deterioration of respiratory function of IPF patients. Our work unveils the possible roles of gene fusion in regulating IPF and demonstrates that gene fusion investigation is a valid approach in probing immunologic mechanisms and searching potential therapeutic targets for treating IPF.The reviews of this paper are available via the supplemental material section.


Asunto(s)
Fusión Génica , Fibrosis Pulmonar Idiopática/genética , Interleucina-7/genética , Apoptosis/genética , Estudios de Casos y Controles , Regulación de la Expresión Génica , Humanos , Fibrosis Pulmonar Idiopática/fisiopatología , Células Asesinas Naturales/citología , Neovascularización Patológica/genética , Transcriptoma
9.
FEBS Open Bio ; 11(4): 1259-1276, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33278865

RESUMEN

Y-box-binding protein 1 (Ybx1, YB-1), also known as Y-box transcription factor, is involved in a variety of biological processes (BPs) and pathways, including embryogenesis, reproduction and development in vertebrates. Several noncoding RNAs regulate Ybx1 signaling. However, the role of long noncoding RNAs (lncRNAs) in embryogenesis remains incompletely understood. Here, we investigated the possible involvement of lncRNAs in Ybx1-mediated regulation of vertebrate development by performing systematic transcriptome analysis of RNA sequencing data derived from ybx1 homozygous mutant zebrafish on day 5 (day5_ybx1-/- ) and wild-type zebrafish on days 5 and 6 (day5_ybx1+/+ and day6_ybx1+/+ ). We identified several lncRNAs affected by ybx1 disruption that may target reduction-oxidation-related genes, such as duox (NADPH oxidase) and noxo1a (NADPH oxidase organizer). Knockdown of three selected lncRNAs led to morphological deformation of larvae, implying an involvement of these lncRNAs in zebrafish embryo development. In summary, our study provides new insights into the lncRNA-mediated mechanisms underlying development in Ybx1-deficient zebrafish larvae.


Asunto(s)
Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , ARN Largo no Codificante/genética , Proteína 1 de Unión a la Caja Y/genética , Proteínas de Pez Cebra/genética , Animales , Biología Computacional/métodos , Técnicas de Silenciamiento del Gen , Ontología de Genes , Redes Reguladoras de Genes , Reproducibilidad de los Resultados , Transcriptoma , Pez Cebra
10.
BMC Med Genomics ; 13(1): 136, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32948203

RESUMEN

BACKGROUND: Asthma is a chronic disorder of both adults and children affecting more than 300 million people heath worldwide. Diagnose and treatment for asthma, particularly in childhood asthma have always remained a great challenge because of its complex pathogenesis and multiple triggers, such as allergen, viral infection, tobacco smoke, dust, etc. It is thereby great significant to deeply investigate the transcriptome changes in asthmatic children before and after desensitization treatment, in order that we could identify potential and key mRNAs and lncRNAs which might be considered as useful RNA molecules for observing and supervising desensitization therapy for asthma, which might guide the diagnose and therapy in childhood asthma. METHODS: In the present study, we performed a systematic transcriptome analysis based on the deep RNA sequencing of ten asthmatic children before and after desensitization treatment, including identification of lncRNAs using a stringent filtering pipeline, differential expression analysis and network analysis, etc. RESULTS: First, a large number of lncRNAs were identified and characterized. Then differential expression analysis revealed 39 mRNAs and 15 lncRNAs significantly differentially expressed which involved in two biological processes and pathways. A co-expressed network analysis figured out a desensitization-treatment-related module which contains 27 mRNAs and 21 lncRNAs using WGCNA R package. Module analysis disclosed 17 genes associated to asthma at distinct level. Subsequent network analysis based on PCC figured out several key lncRNAs probably interacted to those key asthma-related genes, i.e., LINC02145, GUSBP2. Our functional investigation indicated that their functions might involve in immune, inflammatory response and apoptosis process. CONCLUSIONS: Our study successfully discovered many key noncoding RNA molecules related to pathogenesis of asthma and relevant treatment, which may provide some clues for asthmatic diagnose and therapy in future.


Asunto(s)
Asma/diagnóstico , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Marcadores Genéticos , ARN Largo no Codificante/sangre , ARN Largo no Codificante/genética , Transcriptoma , Asma/sangre , Asma/genética , Estudios de Casos y Controles , Niño , Femenino , Humanos , Masculino , Análisis de Secuencia de ARN
11.
Int J Biol Sci ; 15(11): 2296-2307, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31595148

RESUMEN

Liver is one of the most vital organs to maintain homeostasis because of its peculiar detoxification functionalities to detoxify chemicals and metabolize drugs and toxins. Due to its crucial functions, the liver is also prone to various diseases, i.e., hepatitis, cirrhosis and hepatoma, etc. Additionally, long non-coding RNAs (lncRNAs) has emerged as key regulators which are found to play important roles in transcription, splicing, translation, replication, chromatin shaping and post translational modification of proteins in living cells. However, the underlying mechanisms of biological processes mediated by lncRNA remain unclear. Here, with the aim of disclosing potential lncRNAs implicated in the biological processes in liver in response to cytotoxicity, we performed a co-expression network analysis based on the transcriptome data of the damaged liver tissue of Rattus norvegicus induced by three cytotoxic compounds (carbon tetrachloride, chloroform and thioacetamide). Our analysis unveils that many biological processes and pathways were collectively affected by the three cytotoxic compounds, including drug metabolism, oxidation-reduction process, oxidative stress, glucuronidation, liver development and flavonoid biosynthetic process, etc. Also, our network analysis has identified several highly conserved lncRNA-mRNA interactions participating in those correlated processes and pathways, implying their potential roles in response to the induced cytotoxicity in liver. Our study provides new insights into lncRNA-mRNA regulatory mechanisms in response to pathogenic cytotoxic damaging in liver and facilitates the development of lncRNA-oriented therapies for hepatic diseases in the future.


Asunto(s)
Hígado/efectos de los fármacos , Hígado/metabolismo , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , Animales , Tetracloruro de Carbono/toxicidad , Cloroformo/toxicidad , Ratas , Tioacetamida/toxicidad , Transcriptoma/efectos de los fármacos
12.
J Cell Physiol ; 234(12): 23216-23231, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31140619

RESUMEN

DNA is prone to damages, which would result in genetic disorders and enhance risk of tumorigenesis. Hence, understanding the molecular mechanisms of DNA damage and repair will provide deep insights into tumorigenesis, carcinogenesis as well as the corresponding treatments. Aiming at investigating potential long noncoding RNAs (lncRNAs) response against DNA damage, we performed a comprehensive transcriptomic analysis based on RNA sequencing data of the liver tissue from Rattus norvegicus, in which DNA damage was induced using aflatoxin B1, ifosfamide and N-nitrosodimethylamine. Through our analyses, numerous novel lncRNAs are identified for the first time, and differential network analysis discloses lncRNA-mediated regulatory networks related to DNA-damage response. The result shows that these DNA-damage-inducing chemicals might disrupt many lncRNA-mediated interactions involved in diverse biological processes and pathways, for example, immune function and cell adhesion. In contrast, the host might also activate a few RNA interactions in response to DNA damage, involving response to drug and regulation of cell cycle.


Asunto(s)
Carcinogénesis/genética , Daño del ADN/genética , Redes Reguladoras de Genes/genética , Hígado , ARN Largo no Codificante/genética , Aflatoxina B1/toxicidad , Animales , Carcinogénesis/inducido químicamente , Carcinógenos/toxicidad , Dimetilnitrosamina/toxicidad , Perfilación de la Expresión Génica , Ifosfamida/toxicidad , Hígado/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley
13.
BMC Genomics ; 20(1): 48, 2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30651068

RESUMEN

BACKGROUND: Being critically important to the ecosystem, the stability of coral reefs is directly related to the marine and surrounding terrestrial environments. However, coral reefs are now undergoing massive and accelerating devastation due to bleaching. The fact that the breakdown of symbiosis between coral and the dinoflagellate, zooxanthellae, has been well elucidated as the main cause of bleaching, implying the establishment of symbiosis with zooxanthellae plays a crucial role in maintaining coral survival. However, the relevant molecular and cellular mechanisms have not been well studied yet. In this study, based on the deep RNA-sequencing data derived from Mohamed, A. R. et al., an integrated transcriptome analysis was performed to deeply investigate global transcriptome changes of the coral Acropora digitifera in response to infection by dinoflagellate of the genus Symbiodinium. RESULTS: The results revealed that compared to RefTranscriptome_v1.0 (A. digitifera transcriptome assembly v1.0), numerous novel transcripts and isoforms were identified, the Symbiodinium-infected coral larvae at 4 h generated the highest proportion of specific isoforms. Alternative splicing analysis showed that intron retention predominated in all alternative transcripts among six statuses. Additionally, 8117 lncRNAs were predicted via a stringent stepwise filtering pipeline. A complex lncRNAs-mRNAs network including 815 lncRNAs and 6395 mRNAs were established, in which 21 lncRNAs were differentially expressed at 4 h post infection. Functional clustering analysis for those differentially lncRNAs-coexpressed mRNAs demonstrated that several biological processes and pathways related to protein kinase activity, metabolic pathways, mitochondrion, ribosome, etc. were enriched. CONCLUSIONS: Our study not only refined A. digitifera transcriptome via identification of novel transcripts and isoforms, but also predicted a high-confidence dataset of lncRNAs. Functional study based on the construction of lncRNAs-mRNAs co-expression network has disclosed a complex lncRNA-mediated regulation in response to Symbiodinium infection exhibited in A. digitifera. Once validated, these lncRNAs could be good potential targets for treatment and prevention of bleaching in coral.


Asunto(s)
Antozoos/genética , Antozoos/parasitología , Dinoflagelados/fisiología , Redes Reguladoras de Genes , ARN Largo no Codificante/metabolismo , Transcriptoma/genética , Empalme Alternativo/genética , Animales , Regulación hacia Abajo/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA