Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 631(8021): 537-543, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39020037

RESUMEN

Limited flight duration is a considerable obstacle to the widespread application of micro aerial vehicles (MAVs)1-3, especially for ultralightweight MAVs weighing less than 10 g, which, in general, have a flight endurance of no more than 10 min (refs. 1,4). Sunlight power5-7 is a potential alternative to improve the endurance of ultralight MAVs, but owing to the restricted payload capacity of the vehicle and low lift-to-power efficiency of traditional propulsion systems, previous studies have not achieved untethered sustained flight of MAVs fully powered by natural sunlight8,9. Here, to address these challenges, we introduce the CoulombFly, an electrostatic flyer consisting of an electrostatic-driven propulsion system with a high lift-to-power efficiency of 30.7 g W-1 and an ultralight kilovolt power system with a low power consumption of 0.568 W, to realize solar-powered sustained flight of an MAV under natural sunlight conditions (920 W m-2). The vehicle's total mass is only 4.21 g, within 1/600 of the existing lightest sunlight-powered aerial vehicle6.

2.
Nat Commun ; 15(1): 3815, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719823

RESUMEN

Running speed degradation of insect-scale (less than 5 cm) legged microrobots after carrying payloads has become a bottleneck for microrobots to achieve high untethered locomotion performance. In this work, we present a 2-cm legged microrobot (BHMbot, BeiHang Microrobot) with ultrafast untethered running speeds, which is facilitated by the complementary combination of bouncing length and bouncing frequency in the microrobot's running gait. The untethered BHMbot (2-cm-long, 1760 mg) can achieve a running speed of 17.5 BL s-1 and a turning centripetal acceleration of 65.4 BL s-2 at a Cost of Transport of 303.7 and a power consumption of 1.77 W. By controlling its two front legs independently, the BHMbot demonstrates various locomotion trajectories including circles, rectangles, letters and irregular paths across obstacles through a wireless control module. Such advancements enable the BHMbot to carry out application attempts including sound signal detection, locomotion inside a turbofan engine and transportation via a quadrotor.

3.
Soft Robot ; 11(2): 361-370, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38190294

RESUMEN

Insects and animals in nature generally have powerful muscles to guarantee their complex motion, such as crawling, running, and jumping. It is challenging for insect-sized robots to achieve controlled crawling and jumping within the scale of millimeters and milligrams. This article proposes a novelty bionic muscle actuator, where an electrical pulse is applied to generate joule heat to expand the actuator's chamber. Under the restoring force of the spring element, the chamber contracts back to the initial state to finish a complete cycle. The actuator can obtain high-frequency vibration under the high-frequency electrical signal. We propose a microrobot based on the novelty actuator to achieve controlled crawling and jumping over the obstacle of the millimeter-sized robot. The robot is fabricated with two actuators as a crawling module and one actuator as a jumping module, with a mass of 52 mg, length of 9.3 mm, width of 9.1 mm, and height of 4 mm. The microrobot has a maximum crawling turning velocity of 0.73 rad/s, a maximum jump height of 42 mm (10.5 times body height), and a maximum jump velocity of 0.91 m/s. This study extends the potential for applying the novelty bionic-muscle actuator to the microrobot.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA