RESUMEN
Northern corn leaf blight, caused by the fungal pathogen Exserohilum turcicum, is a major disease of maize. The first major locus conferring resistance to E. turcicum race 0, Ht1, was identified over 50 years ago, but the underlying gene has remained unknown. We employed a map-based cloning strategy to identify the Ht1 causal gene, which was found to be a coiled-coil nucleotide-binding, leucine-rich repeat (NLR) gene, which we named PH4GP-Ht1. Transgenic testing confirmed that introducing the native PH4GP-Ht1 sequence to a susceptible maize variety resulted in resistance to E. turcicum race 0. A survey of the maize nested association mapping genomes revealed that susceptible Ht1 alleles had very low to no expression of the gene. Overexpression of the susceptible B73 allele, however, did not result in resistant plants, indicating that sequence variations may underlie the difference between resistant and susceptible phenotypes. Modelling of the PH4GP-Ht1 protein indicated that it has structural homology to the Arabidopsis NLR resistance gene ZAR1, and probably forms a similar homopentamer structure following activation. RNA sequencing data from an infection time course revealed that 1 week after inoculation there was a threefold reduction in fungal biomass in the PH4GP-Ht1 transgenic plants compared to wild-type plants. Furthermore, PH4GP-Ht1 transgenics had significantly more inoculation-responsive differentially expressed genes than wild-type plants, with enrichment seen in genes associated with both defence and photosynthesis. These results demonstrate that the NLR PH4GP-Ht1 is the causal gene underlying Ht1, which represents a different mode of action compared to the previously reported wall-associated kinase northern corn leaf blight resistance gene Htn1/Ht2/Ht3.
Asunto(s)
Ascomicetos , Leucina/genética , Ascomicetos/fisiología , Fenotipo , Zea mays/microbiología , Nucleótidos , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad/genéticaRESUMEN
Southern corn rust (SCR), caused by the fungal pathogen Puccinia polysora, is a major threat to maize production worldwide. Efficient breeding and deployment of resistant hybrids are key to achieving durable control of SCR. Here, we report the molecular cloning and characterization of RppC, which encodes an NLR-type immune receptor and is responsible for a major SCR resistance quantitative trait locus. Furthermore, we identified the corresponding avirulence effector, AvrRppC, which is secreted by P. polysora and triggers RppC-mediated resistance. Allelic variation of AvrRppC directly determines the effectiveness of RppC-mediated resistance, indicating that monitoring of AvrRppC variants in the field can guide the rational deployment of RppC-containing hybrids in maize production. Currently, RppC is the most frequently deployed SCR resistance gene in China, and a better understanding of its mode of action is critical for extending its durability.
Asunto(s)
Basidiomycota , Zea mays , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Zea mays/genética , Zea mays/microbiologíaRESUMEN
Southern corn rust (SCR), which is caused by the fungal pathogen Puccinia polysora Underw, is a prevalent foliar disease in maize. Breeding for resistant cultivars is a desirable way for the efficient control of this disease. To identify quantitative trait loci (QTL) for conferring resistance to SCR, a recombinant inbred population including 138 lines (RILs) derived from the SCR-resistant line CML496 and susceptible line Lx9801 was evaluated for phenotypic reaction to SCR in three trials in two locations over 2 years. The population was genotyped with the maize 9.4K SNP Genotyping Array marker platform. A total of 3 QTL were mapped on chromosomes 6, 9 and 10, respectively. One major QTL on chromosome 10 (bin 10.00/10.01), RppCML496, was consistently detected across environments, which explained 43-78% of the total phenotypic variation. Using a fine mapping strategy, we delimited RppCML496 to an interval of 128 Kb. Genome mining of this region suggests two candidate genes, and a NBS-LRR gene is the promising one for RppCML496 against SCR. The tightly linked molecular markers developed in this study can be used for molecular breeding of resistance to SCR in maize.
Asunto(s)
Sitios de Carácter Cuantitativo , Zea mays , Mapeo Cromosómico , Fitomejoramiento , Enfermedades de las Plantas/genética , Puccinia , Zea mays/genéticaRESUMEN
Southern corn rust (SCR) is a prevalent foliar disease that can lead to severe yield losses in maize. Growing SCR-resistant varieties is the most effective way to control the disease. To identify major quantitative trait loci (QTLs) for SCR resistance, a recombinant inbred line population derived from a cross between CIMBL83 (resistant) and Lx9801 (susceptible) was analyzed. The resistance to SCR had high heritability within the population, and a major QTL on chromosome 4 (qSCR4.01), which can explain 48 to 65% of the total phenotypic variation, was consistently detected across multiple environments. Using a progeny-based fine-mapping strategy, we delimited qSCR4.01 to an interval of â¼770 kb. In contrast to other major QTLs for SCR resistance previously reported on the short arm of chromosome 10, qSCR4.01 is a novel QTL and, therefore, a desirable source of SCR resistance in maize breeding programs.
Asunto(s)
Sitios de Carácter Cuantitativo , Zea mays/genética , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Humanos , Enfermedades de las PlantasRESUMEN
Application of nitrogen fertilizer in the past 50 years has resulted in significant increases in crop yields. However, loss of nitrogen from crop fields has been associated with negative impacts on the environment. Developing maize hybrids with improved nitrogen use efficiency is a cost-effective strategy for increasing yield sustainably. We report that a dominant male-sterile mutant Ms44 encodes a lipid transfer protein which is expressed specifically in the tapetum. A single amino acid change from alanine to threonine at the signal peptide cleavage site of the Ms44 protein abolished protein processing and impeded the secretion of protein from tapetal cells into the locule, resulting in dominant male sterility. While the total nitrogen (N) content in plants was not changed, Ms44 male-sterile plants reduced tassel growth and improved ear growth by partitioning more nitrogen to the ear, resulting in a 9.6% increase in kernel number. Hybrids carrying the Ms44 allele demonstrated a 4%-8.5% yield advantage when N is limiting, 1.7% yield advantage under drought and 0.9% yield advantage under optimal growth conditions relative to the yield of wild type. Furthermore, we have developed an Ms44 maintainer line for fertility restoration, male-sterile inbred seed increase and hybrid seed production. This study reveals that protein secretion from the tapetum into the locule is critical for pollen development and demonstrates that a reduction in competition between tassel and ear by male sterility improves grain yield under low-nitrogen conditions in maize.
Asunto(s)
Infertilidad Vegetal/genética , Proteínas de Plantas/genética , Mutación Puntual/genética , Zea mays/genética , Nitrógeno/metabolismo , Infertilidad Vegetal/fisiología , Polimorfismo de Nucleótido Simple/genética , Zea mays/metabolismo , Zea mays/fisiologíaRESUMEN
Alternative splicing enhances transcriptome diversity in all eukaryotes and plays a role in plant tissue identity and stress adaptation. To catalog new maize (Zea mays) transcripts and identify genomic loci that regulate alternative splicing, we analyzed over 90 RNA-seq libraries from maize inbred lines B73 and Mo17, as well as Syn10 doubled haploid lines (progenies from B73 × Mo17). Transcript discovery was augmented with publicly available data from 14 maize tissues, expanding the maize transcriptome by more than 30,000 and increasing the percentage of intron-containing genes that undergo alternative splicing to 40%. These newly identified transcripts greatly increase the diversity of the maize proteome, sometimes coding for entirely different proteins compared with their most similar annotated isoform. In addition to increasing proteome diversity, many genes encoding novel transcripts gained an additional layer of regulation by microRNAs, often in a tissue-specific manner. We also demonstrate that the majority of genotype-specific alternative splicing can be genetically mapped, with cis-acting quantitative trait loci (QTLs) predominating. A large number of trans-acting QTLs were also apparent, with nearly half located in regions not shown to contain genes associated with splicing. Taken together, these results highlight the currently underappreciated role that alternative splicing plays in tissue identity and genotypic variation in maize.
Asunto(s)
Empalme Alternativo/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Zea mays/genética , Mapeo Cromosómico , Perfilación de la Expresión Génica , Genes de Plantas , Variación Genética , Genotipo , MicroARNs/genética , MicroARNs/metabolismo , Especificidad de Órganos/genética , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteoma/metabolismo , Sitios de Carácter Cuantitativo/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Análisis de Secuencia de ARNRESUMEN
tassel-less1 (tls1) is a classical maize (Zea mays) inflorescence mutant. Homozygous mutant plants have no tassels or very small tassels, and ear development is also impaired. Using a positional cloning approach, ZmNIP3;1 (a NOD26-like intrinsic protein) was identified as the candidate gene for tls1. The ZmNIP3;1 gene is completely deleted in the tls1 mutant genome. Two Mutator-insertional TUSC alleles of ZmNIP3;1 exhibited tls1-like phenotypes, and allelism tests confirmed that the tls1 gene encodes ZmNIP3;1. Transgenic plants with an RNA interference (RNAi) construct to down-regulate ZmNIP3;1 also showed tls1-like phenotypes, further demonstrating that TLS1 is ZmNIP3;1. Sequence analysis suggests that ZmNIP3;1 is a boron channel protein. Foliar application of boron could rescue the tls1 phenotypes and restore the normal tassel and ear development. Gene expression analysis indicated that in comparison with that of the wild type or tls1 plants treated with boron, the transition from the vegetative to reproductive phase or the development of the floral meristem is impaired in the shoot apical meristem of the tls1 mutant plants. It is concluded that the tls1 mutant phenotypes are caused by impaired boron transport, and boron is essential for inflorescence development in maize.