Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Plant J ; 118(6): 2269-2295, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38578789

RESUMEN

The mature seed in legumes consists of an embryo and seed coat. In contrast to knowledge about the embryo, we know relatively little about the seed coat. We analyzed the gene expression during seed development using a panel of cultivated and wild pea genotypes. Gene co-expression analysis identified gene modules related to seed development, dormancy, and domestication. Oxidoreductase genes were found to be important components of developmental and domestication processes. Proteomic and metabolomic analysis revealed that domestication favored proteins involved in photosynthesis and protein metabolism at the expense of seed defense. Seed coats of wild peas were rich in cell wall-bound metabolites and the protective compounds predominated in their seed coats. Altogether, we have shown that domestication altered pea seed development and modified (mostly reduced) the transcripts along with the protein and metabolite composition of the seed coat, especially the content of the compounds involved in defense. We investigated dynamic profiles of selected identified phenolic and flavonoid metabolites across seed development. These compounds usually deteriorated the palatability and processing of the seeds. Our findings further provide resources to study secondary metabolism and strategies for improving the quality of legume seeds which comprise an important part of the human protein diet.


Asunto(s)
Domesticación , Regulación de la Expresión Génica de las Plantas , Pisum sativum , Metabolismo Secundario , Semillas , Semillas/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Pisum sativum/genética , Pisum sativum/metabolismo , Metabolismo Secundario/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteómica/métodos , Flavonoides/metabolismo
2.
Biomolecules ; 13(12)2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38136646

RESUMEN

In light of recent climate change, with its rising temperatures and precipitation changes, we are facing the need to increase the valuable crop's tolerance against unfavorable environmental conditions. Emmer wheat is a cereal crop with high nutritional value. We investigated the possibility of improving the stress tolerance of emmer wheat by activating the synthesis of the stress hormone jasmonate by overexpressing two genes of the jasmonate biosynthetic pathway from Arabidopsis thaliana, ALLENE OXIDE SYNTHASE (AtAOS) and OXOPHYTODIENOATE REDUCTASE 3 (AtOPR3). Analyses of jasmonates in intact and mechanically wounded leaves of non-transgenic and transgenic plants showed that the overexpression of each of the two genes resulted in increased wounding-induced levels of jasmonic acid and jasmonate-isoleucine. Against all expectations, the overexpression of AtAOS, encoding a chloroplast-localized enzyme, does not lead to an increased level of the chloroplast-formed 12-oxo-phytodienoic acid (OPDA), suggesting an effective conversion of OPDA to downstream products in wounded emmer wheat leaves. Transgenic plants overexpressing AtAOS or AtOPR3 with increased jasmonate levels show a similar phenotype, manifested by shortening of the first and second leaves and elongation of the fourth leaf, as well as increased tolerance to osmotic stress induced by the presence of the polyethylene glycol (PEG) 6000.


Asunto(s)
Arabidopsis , Triticum , Triticum/genética , Presión Osmótica , Arabidopsis/metabolismo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética
3.
Plants (Basel) ; 12(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37653967

RESUMEN

12-Oxophytodienoate reductase is the enzyme involved in the biosynthesis of phytohormone jasmonates, which are considered to be the major regulators of plant tolerance to biotic challenges, especially necrotrophic pathogens. However, we observe compromised tolerance to the necrotrophic fungal pathogen Botrytis cinerea in transgenic hexaploid bread wheat and tetraploid emmer wheat plants overexpressing 12-OXOPHYTODIENOATE REDUCTASE-3 gene from Arabidopsis thaliana, while in Arabidopsis plants themselves, endogenously produced and exogenously applied jasmonates exert a strong protective effect against B. cinerea. Exogenous application of methyl jasmonate on hexaploid and tetraploid wheat leaves suppresses tolerance to B. cinerea and induces the formation of chlorotic damages. Exogenous treatment with methyl jasmonate in concentrations of 100 µM and higher causes leaf yellowing even in the absence of the pathogen, in agreement with findings on the role of jasmonates in the regulation of leaf senescence. Thereby, the present study demonstrates the negative role of the jasmonate system in hexaploid and tetraploid wheat tolerance to B. cinerea and reveals previously unknown jasmonate-mediated responses.

4.
Front Plant Sci ; 13: 874761, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36507396

RESUMEN

Due to its outstanding throughput and analytical resolution, gel-free LC-based shotgun proteomics represents the gold standard of proteome analysis. Thereby, the efficiency of sample preparation dramatically affects the correctness and reliability of protein quantification. Thus, the steps of protein isolation, solubilization, and proteolysis represent the principal bottleneck of shotgun proteomics. The desired performance of the sample preparation protocols can be achieved by the application of detergents. However, these compounds ultimately compromise reverse-phase chromatographic separation and disrupt electrospray ionization. Filter-aided sample preparation (FASP) represents an elegant approach to overcome these limitations. Although this method is comprehensively validated for cell proteomics, its applicability to plants and compatibility with plant-specific protein isolation protocols remain to be confirmed. Thereby, the most important gap is the absence of the data on the linearity of underlying protein quantification methods for plant matrices. To fill this gap, we address here the potential of FASP in combination with two protein isolation protocols for quantitative analysis of pea (Pisum sativum) seed and Arabidopsis thaliana leaf proteomes by the shotgun approach. For this aim, in comprehensive spiking experiments with bovine serum albumin (BSA), we evaluated the linear dynamic range (LDR) of protein quantification in the presence of plant matrices. Furthermore, we addressed the interference of two different plant matrices in quantitative experiments, accomplished with two alternative sample preparation workflows in comparison to conventional FASP-based digestion of cell lysates, considered here as a reference. The spiking experiments revealed high sensitivities (LODs of up to 4 fmol) for spiked BSA and LDRs of at least 0.6 × 102. Thereby, phenol extraction yielded slightly better recoveries, whereas the detergent-based method showed better linearity. Thus, our results indicate the very good applicability of FASP to quantitative plant proteomics with only limited impact of the protein isolation technique on the method's overall performance.

5.
New Phytol ; 235(5): 1807-1821, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35585778

RESUMEN

Seed coats serve as protective tissue to the enclosed embryo. As well as mechanical there are also chemical defence functions. During domestication, the property of the seed coat was altered including the removal of the seed dormancy. We used a range of genetic, transcriptomic, proteomic and metabolomic approaches to determine the function of the pea seed polyphenol oxidase (PPO) gene. Sequencing analysis revealed one nucleotide insertion or deletion in the PPO gene, with the functional PPO allele found in all wild pea samples, while most cultivated peas have one of the three nonfunctional ppo alleles. PPO functionality cosegregates with hilum pigmentation. PPO gene and protein expression, as well as enzymatic activity, was downregulated in the seed coats of cultivated peas. The functionality of the PPO gene relates to the oxidation and polymerisation of gallocatechin in the seed coat. Additionally, imaging mass spectrometry supports the hypothesis that hilum pigmentation is conditioned by the presence of both phenolic precursors and sufficient PPO activity. Taken together these results indicate that the nonfunctional polyphenol oxidase gene has been selected during pea domestication, possibly due to better seed palatability or seed coat visual appearance.


Asunto(s)
Catecol Oxidasa , Pisum sativum , Catecol Oxidasa/genética , Catecol Oxidasa/metabolismo , Domesticación , Pisum sativum/genética , Pisum sativum/metabolismo , Pigmentación , Proteómica , Semillas/genética , Semillas/metabolismo
6.
Plants (Basel) ; 10(9)2021 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-34579418

RESUMEN

Transition from seed to seedling is one of the critical developmental steps, dramatically affecting plant growth and viability. Before plants enter the vegetative phase of their ontogenesis, massive rearrangements of signaling pathways and switching of gene expression programs are required. This results in suppression of the genes controlling seed maturation and activation of those involved in regulation of vegetative growth. At the level of hormonal regulation, these events are controlled by the balance of abscisic acid and gibberellins, although ethylene, auxins, brassinosteroids, cytokinins, and jasmonates are also involved. The key players include the members of the LAFL network-the transcription factors LEAFY COTYLEDON1 and 2 (LEC 1 and 2), ABSCISIC ACID INSENSITIVE3 (ABI3), and FUSCA3 (FUS3), as well as DELAY OF GERMINATION1 (DOG1). They are the negative regulators of seed germination and need to be suppressed before seedling development can be initiated. This repressive signal is mediated by chromatin remodeling complexes-POLYCOMB REPRESSIVE COMPLEX 1 and 2 (PRC1 and PRC2), as well as PICKLE (PKL) and PICKLE-RELATED2 (PKR2) proteins. Finally, epigenetic methylation of cytosine residues in DNA, histone post-translational modifications, and post-transcriptional downregulation of seed maturation genes with miRNA are discussed. Here, we summarize recent updates in the study of hormonal and epigenetic switches involved in regulation of the transition from seed germination to the post-germination stage.

7.
Cancers (Basel) ; 13(13)2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34282777

RESUMEN

Childhood papillary thyroid carcinoma (PTC) diagnosed after the Chernobyl accident in Belarus displayed a high frequency of gene rearrangements and low frequency of point mutations. Since 2001, only sporadic thyroid cancer occurs in children aged up to 14 years but its molecular characteristics have not been reported. Here, we determine the major oncogenic events in PTC from non-exposed Belarusian children and assess their clinicopathological correlations. Among the 34 tumors, 23 (67.6%) harbored one of the mutually exclusive oncogenes: 5 (14.7%) BRAFV600E, 4 (11.8%) RET/PTC1, 6 (17.6%) RET/PTC3, 2 (5.9%) rare fusion genes, and 6 (17.6%) ETV6ex4/NTRK3. No mutations in codons 12, 13, and 61 of K-, N- and H-RAS, BRAFK601E, or ETV6ex5/NTRK3 or AKAP9/BRAF were detected. Fusion genes were significantly more frequent than BRAFV600E (p = 0.002). Clinicopathologically, RET/PTC3 was associated with solid growth pattern and higher tumor aggressiveness, BRAFV600E and RET/PTC1 with classic papillary morphology and mild clinical phenotype, and ETV6ex4/NTRK3 with follicular-patterned PTC and reduced aggressiveness. The spectrum of driver mutations in sporadic childhood PTC in Belarus largely parallels that in Chernobyl PTC, yet the frequencies of some oncogenes may likely differ from those in the early-onset Chernobyl PTC; clinicopathological features correlate with the oncogene type.

8.
Int J Mol Sci ; 22(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374189

RESUMEN

Desiccation tolerance appeared as the key adaptation feature of photoautotrophic organisms for survival in terrestrial habitats. During the further evolution, vascular plants developed complex anatomy structures and molecular mechanisms to maintain the hydrated state of cell environment and sustain dehydration. However, the role of the genes encoding the mechanisms behind this adaptive feature of terrestrial plants changed with their evolution. Thus, in higher vascular plants it is restricted to protection of spores, seeds and pollen from dehydration, whereas the mature vegetative stages became sensitive to desiccation. During maturation, orthodox seeds lose up to 95% of water and successfully enter dormancy. This feature allows seeds maintaining their viability even under strongly fluctuating environmental conditions. The mechanisms behind the desiccation tolerance are activated at the late seed maturation stage and are associated with the accumulation of late embryogenesis abundant (LEA) proteins, small heat shock proteins (sHSP), non-reducing oligosaccharides, and antioxidants of different chemical nature. The main regulators of maturation and desiccation tolerance are abscisic acid and protein DOG1, which control the network of transcription factors, represented by LEC1, LEC2, FUS3, ABI3, ABI5, AGL67, PLATZ1, PLATZ2. This network is complemented by epigenetic regulation of gene expression via methylation of DNA, post-translational modifications of histones and chromatin remodeling. These fine regulatory mechanisms allow orthodox seeds maintaining desiccation tolerance during the whole period of germination up to the stage of radicle protrusion. This time point, in which seeds lose desiccation tolerance, is critical for the whole process of seed development.


Asunto(s)
Aclimatación , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/biosíntesis , Semillas/metabolismo , Factores de Transcripción/biosíntesis , Deshidratación/genética , Deshidratación/metabolismo , Desecación , Proteínas de Plantas/genética , Semillas/genética , Factores de Transcripción/genética
10.
Int J Mol Sci ; 21(2)2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31952342

RESUMEN

Protein glycation is usually referred to as an array of non-enzymatic post-translational modifications formed by reducing sugars and carbonyl products of their degradation. The resulting advanced glycation end products (AGEs) represent a heterogeneous group of covalent adducts, known for their pro-inflammatory effects in mammals, and impacting on pathogenesis of metabolic diseases and ageing. In plants, AGEs are the markers of tissue ageing and response to environmental stressors, the most prominent of which is drought. Although water deficit enhances protein glycation in leaves, its effect on seed glycation profiles is still unknown. Moreover, the effect of drought on biological activities of seed protein in mammalian systems is still unstudied with respect to glycation. Therefore, here we address the effects of a short-term drought on the patterns of seed protein-bound AGEs and accompanying alterations in pro-inflammatory properties of seed protein in the context of seed metabolome dynamics. A short-term drought, simulated as polyethylene glycol-induced osmotic stress and applied at the stage of seed filling, resulted in the dramatic suppression of primary seed metabolism, although the secondary metabolome was minimally affected. This was accompanied with significant suppression of NF-kB activation in human SH-SY5Y neuroblastoma cells after a treatment with protein hydrolyzates, isolated from the mature seeds of drought-treated plants. This effect could not be attributed to formation of known AGEs. Most likely, the prospective anti-inflammatory effect of short-term drought is related to antioxidant effect of unknown secondary metabolite protein adducts, or down-regulation of unknown plant-specific AGEs due to suppression of energy metabolism during seed filling.


Asunto(s)
Sequías , Metabolómica/métodos , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Semillas/metabolismo , Antioxidantes/metabolismo , Línea Celular Tumoral , Metabolismo Energético , Cromatografía de Gases y Espectrometría de Masas , Productos Finales de Glicación Avanzada/metabolismo , Glicosilación , Humanos , FN-kappa B/metabolismo , Estrés Fisiológico
11.
Int J Mol Sci ; 20(15)2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-31357424

RESUMEN

Seeds represent the major source of food protein, impacting on both human nutrition and animal feeding. Therefore, seed quality needs to be appropriately addressed in the context of viability and food safety. Indeed, long-term and inappropriate storage of seeds might result in enhancement of protein glycation, which might affect their quality and longevity. Glycation of seed proteins can be probed by exhaustive acid hydrolysis and quantification of the glycation adduct Nɛ-(carboxymethyl)lysine (CML) by liquid chromatography-mass spectrometry (LC-MS). This approach, however, does not allow analysis of thermally and chemically labile glycation adducts, like glyoxal-, methylglyoxal- and 3-deoxyglucosone-derived hydroimidazolones. Although enzymatic hydrolysis might be a good solution in this context, it requires aqueous conditions, which cannot ensure reconstitution of seed protein isolates. Because of this, the complete profiles of seed advanced glycation end products (AGEs) are not characterized so far. Therefore, here we propose the approach, giving access to quantitative solubilization of seed proteins in presence of sodium dodecyl sulfate (SDS) and their quantitative enzymatic hydrolysis prior to removal of SDS by reversed phase solid phase extraction (RP-SPE). Using methylglyoxal-derived hydroimidazolone 1 (MG-H1) as a case example, we demonstrate the applicability of this method for reliable and sensitive LC-MS-based quantification of chemically labile AGEs and its compatibility with bioassays.


Asunto(s)
Imidazoles/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Piruvaldehído/química , Semillas/química , Cromatografía Liquida , Productos Finales de Glicación Avanzada/química , Productos Finales de Glicación Avanzada/metabolismo , Glicosilación , Hidrólisis , Espectrometría de Masas , Proteínas de Plantas/aislamiento & purificación , Piruvaldehído/análogos & derivados , Reproducibilidad de los Resultados , Semillas/metabolismo , Extracción en Fase Sólida , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
12.
Sci Adv ; 4(10): eaat4457, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30417088

RESUMEN

For millennia, the Pontic-Caspian steppe was a connector between the Eurasian steppe and Europe. In this scene, multidirectional and sequential movements of different populations may have occurred, including those of the Eurasian steppe nomads. We sequenced 35 genomes (low to medium coverage) of Bronze Age individuals (Srubnaya-Alakulskaya) and Iron Age nomads (Cimmerians, Scythians, and Sarmatians) that represent four distinct cultural entities corresponding to the chronological sequence of cultural complexes in the region. Our results suggest that, despite genetic links among these peoples, no group can be considered a direct ancestor of the subsequent group. The nomadic populations were heterogeneous and carried genetic affinities with populations from several other regions including the Far East and the southern Urals. We found evidence of a stable shared genetic signature, making the eastern Pontic-Caspian steppe a likely source of western nomadic groups.


Asunto(s)
Genoma Humano/genética , Migración Humana/historia , Asia , Cromosomas Humanos Y , ADN Mitocondrial , Europa (Continente) , Asia Oriental , Flujo Genético , Genética de Población , Haplotipos , Historia Antigua , Humanos , Masculino , Población Blanca/genética
13.
Endocr J ; 62(2): 173-82, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25374130

RESUMEN

Long-term management of patients with differentiated thyroid cancer (DTC) commonly includes TSH-suppressive therapy with L-T4 and, in case of postsurgical hypoparathyroidism, Calcium-D3 supplementation, both of which may affect skeletal health. Experience with female patients treated for DTC at a young age and who were then receiving long-term therapy with L-T4 and Calcium-D3 medication is very limited to date. This cross-sectional study set out to investigate effects of Calcium-D3 supplementation and TSH-suppressive therapy on bone mineral density (BMD) in 124 young female patients treated for DTC at a mean age of 14 years and followed-up for an average of 10 years. BMD was found to be significantly higher in patients receiving Calcium-D3 medication than in patients not taking supplements. The level of ionized calcium was the strongest factor determining lumbar spine BMD in patients not receiving Calcium-D3 supplementation. Pregnancy ending in childbirth and HDL-cholesterol were associated with a weak adverse effect on spine and femoral BMD. No evidence of adverse effects of L-T4 and of radioiodine therapies on BMD was found. We conclude that Calcium-D3 medication has a beneficial effect on BMD, and that TSH-suppressive therapy does not affect BMD in women treated for DTC at young age, at least after 10 years of follow-up.


Asunto(s)
Conservadores de la Densidad Ósea/uso terapéutico , Resorción Ósea/prevención & control , Calcio de la Dieta/uso terapéutico , Colecalciferol/uso terapéutico , Suplementos Dietéticos , Complicaciones Posoperatorias/prevención & control , Adolescente , Densidad Ósea/efectos de los fármacos , Densidad Ósea/efectos de la radiación , Resorción Ósea/inducido químicamente , Resorción Ósea/epidemiología , Resorción Ósea/etiología , Accidente Nuclear de Chernóbil , Terapia Combinada/efectos adversos , Estudios Transversales , Femenino , Estudios de Seguimiento , Terapia de Reemplazo de Hormonas/efectos adversos , Humanos , Hipoparatiroidismo/tratamiento farmacológico , Hipoparatiroidismo/epidemiología , Hipoparatiroidismo/etiología , Incidencia , Radioisótopos de Yodo/efectos adversos , Radioisótopos de Yodo/uso terapéutico , Neoplasias Inducidas por Radiación/epidemiología , Neoplasias Inducidas por Radiación/radioterapia , Neoplasias Inducidas por Radiación/cirugía , Complicaciones Posoperatorias/inducido químicamente , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Radiofármacos/efectos adversos , Radiofármacos/uso terapéutico , República de Belarús/epidemiología , Factores de Riesgo , Neoplasias de la Tiroides/epidemiología , Neoplasias de la Tiroides/etiología , Neoplasias de la Tiroides/radioterapia , Neoplasias de la Tiroides/cirugía , Tiroidectomía/efectos adversos , Tiroxina/efectos adversos , Tiroxina/uso terapéutico
14.
Plant Signal Behav ; 4(11): 1059-62, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19829064

RESUMEN

Shoots of Thellungiella derived by micropropagation were used to estimate the plants' salt tolerance and ability to regulate Na+ uptake. Two species with differing salt tolerances were studied: Thellungiella salsuginea (halophilla), which is less tolerant, and Thellungiella botschantzevii, which is more tolerant. Although the shoots of neither ecotype survived at 700 mM NaCl or 200 mM Na2SO4, micropropagated shoots of T. botschantzevii were more tolerant to Na2SO4 (10-100 mM) and NaCl (100-300 mM). In the absence of roots, Na2SO4 salinity reduced shoot growth more dramatically than NaCl salinity. Plantlets of both species were able to adapt to salt stress even when they did not form roots. First, there was no significant correlation between Na+ accumulation in shoots and Na+ concentration in the growth media. Second, K+ concentrations in the shoots exposed to different salt concentrations were maintained at equivalent levels to control plants grown in medium without NaCl or Na2SO4. These results suggest that isolated shoots of Thellungiella possess their own mechanisms for enabling salt tolerance, which contribute to salt tolerance in intact plants.


Asunto(s)
Brassicaceae/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Potasio/metabolismo , Tolerancia a la Sal , Sodio/metabolismo , Estrés Fisiológico , Brassicaceae/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Salinidad , Cloruro de Sodio/metabolismo , Sulfatos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA