Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Phytochemistry ; 148: 122-131, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29448137

RESUMEN

Studies on the active pathways and the genes involved in the biosynthesis of L-phenylalanine-derived volatiles in fleshy fruits are sparse. Melon fruit rinds converted stable-isotope labeled L-phe into more than 20 volatiles. Phenylpropanes, phenylpropenes and benzenoids are apparently produced via the well-known phenylpropanoid pathway involving phenylalanine ammonia lyase (PAL) and being (E)-cinnamic acid a key intermediate. Phenethyl derivatives seemed to be derived from L-phe via a separate biosynthetic route not involving (E)-cinnamic acid and PAL. To explore for a biosynthetic route to (E)-cinnamaldehyde in melon rinds, soluble protein cell-free extracts were assayed with (E)-cinnamic acid, CoA, ATP, NADPH and MgSO4, producing (E)-cinnamaldehyde in vitro. In this context, we characterized CmCNL, a gene encoding for (E)-cinnamic acid:coenzyme A ligase, inferred to be involved in the biosynthesis of (E)-cinnamaldehyde. Additionally we describe CmBAMT, a SABATH gene family member encoding a benzoic acid:S-adenosyl-L-methionine carboxyl methyltransferase having a role in the accumulation of methyl benzoate. Our approach leads to a more comprehensive understanding of L-phe metabolism into aromatic volatiles in melon fruit.


Asunto(s)
Cucumis melo/química , Frutas/química , Fenilalanina/metabolismo , Glucósidos/química , Glucósidos/aislamiento & purificación , Glicosilación , Metionina/metabolismo , Resonancia Magnética Nuclear Biomolecular , Fenilanina Amoníaco-Liasa/genética , Proteínas de Plantas/metabolismo , S-Adenosilmetionina/metabolismo , Semillas/química , Compuestos Orgánicos Volátiles/análisis
2.
Plant J ; 94(1): 169-191, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29385635

RESUMEN

Combined quantitative trait loci (QTL) and expression-QTL (eQTL) mapping analysis was performed to identify genetic factors affecting melon (Cucumis melo) fruit quality, by linking genotypic, metabolic and transcriptomic data from a melon recombinant inbred line (RIL) population. RNA sequencing (RNA-Seq) of fruit from 96 RILs yielded a highly saturated collection of > 58 000 single-nucleotide polymorphisms, identifying 6636 recombination events that separated the genome into 3663 genomic bins. Bin-based QTL analysis of 79 RILs and 129 fruit-quality traits affecting taste, aroma and color resulted in the mapping of 241 QTL. Thiol acyltransferase (CmThAT1) gene was identified within the QTL interval of its product, S-methyl-thioacetate, a key component of melon fruit aroma. Metabolic activity of CmThAT1-encoded protein was validated in bacteria and in vitro. QTL analysis of flesh color intensity identified a candidate white-flesh gene (CmPPR1), one of two major loci determining fruit flesh color in melon. CmPPR1 encodes a member of the pentatricopeptide protein family, involved in processing of RNA in plastids, where carotenoid and chlorophyll pigments accumulate. Network analysis of > 12 000 eQTL mapped for > 8000 differentially expressed fruit genes supported the role of CmPPR1 in determining the expression level of plastid targeted genes. We highlight the potential of RNA-Seq-based QTL analysis of small to moderate size, advanced RIL populations for precise marker-assisted breeding and gene discovery. We provide the following resources: a RIL population genotyped with a unique set of SNP markers, confined genomic segments that harbor QTL governing 129 traits and a saturated set of melon eQTLs.


Asunto(s)
Mapeo Cromosómico , Cucurbitaceae/genética , Frutas/genética , Sitios de Carácter Cuantitativo/genética , Cucurbitaceae/metabolismo , Calidad de los Alimentos , Frutas/metabolismo , Genes de Plantas/genética , Genes de Plantas/fisiología , Ligamiento Genético , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ARN
3.
BMC Plant Biol ; 15: 71, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25887588

RESUMEN

BACKGROUND: Melon (Cucumis melo) fruits exhibit phenotypic diversity in several key quality determinants such as taste, color and aroma. Sucrose, carotenoids and volatiles are recognized as the key compounds shaping the above corresponding traits yet the full network of biochemical events underlying their synthesis have not been comprehensively described. To delineate the cellular processes shaping fruit quality phenotypes, a population of recombinant inbred lines (RIL) was used as a source of phenotypic and genotypic variations. In parallel, ripe fruits were analyzed for both the quantified level of 77 metabolic traits directly associated with fruit quality and for RNA-seq based expression profiles generated for 27,000 unigenes. First, we explored inter-metabolite association patterns; then, we described metabolites versus gene association patterns; finally, we used the correlation-based associations for predicting uncharacterized synthesis pathways. RESULTS: Based on metabolite versus metabolite and metabolite versus gene association patterns, we divided metabolites into two key groups: a group including ethylene and aroma determining volatiles whose accumulation patterns are correlated with the expression of genes involved in the glycolysis and TCA cycle pathways; and a group including sucrose and color determining carotenoids whose accumulation levels are correlated with the expression of genes associated with plastid formation. CONCLUSIONS: The study integrates multiple processes into a genome scale perspective of cellular activity. This lays a foundation for deciphering the role of gene markers associated with the determination of fruit quality traits.


Asunto(s)
Color , Cucurbitaceae/metabolismo , Odorantes , Gusto , Cucurbitaceae/genética , Expresión Génica , Genes de Plantas
4.
Nat Commun ; 5: 4026, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24898284

RESUMEN

Taste has been the subject of human selection in the evolution of agricultural crops, and acidity is one of the three major components of fleshy fruit taste, together with sugars and volatile flavour compounds. We identify a family of plant-specific genes with a major effect on fruit acidity by map-based cloning of C. melo PH gene (CmPH) from melon, Cucumis melo taking advantage of the novel natural genetic variation for both high and low fruit acidity in this species. Functional silencing of orthologous PH genes in two distantly related plant families, cucumber and tomato, produced low-acid, bland tasting fruit, showing that PH genes control fruit acidity across plant families. A four amino-acid duplication in CmPH distinguishes between primitive acidic varieties and modern dessert melons. This fortuitous mutation served as a preadaptive antecedent to the development of sweet melon cultigens in Central Asia over 1,000 years ago.


Asunto(s)
Cucumis melo/genética , Cucumis sativus/genética , Frutas/química , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Ácido Cítrico/análisis , Cucumis melo/química , Cucumis sativus/química , Frutas/genética , Concentración de Iones de Hidrógeno , Solanum lycopersicum/química , Malatos/análisis
5.
Plant J ; 74(3): 458-72, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23402686

RESUMEN

Sulfur-containing aroma volatiles are important contributors to the distinctive aroma of melon and other fruits. Melon cultivars and accessions differ in the content of sulfur-containing and other volatiles. L-methionine has been postulated to serve as a precursor of these volatiles. Incubation of melon fruit cubes with ¹³C- and ²H-labeled L-methionine revealed two distinct catabolic routes into volatiles. One route apparently involves the action of an L-methionine aminotransferase and preserves the main carbon skeleton of L-methionine. The second route apparently involves the action of an L-methionine-γ-lyase activity, releasing methanethiol, a backbone for formation of thiol-derived aroma volatiles. Exogenous L-methionine also generated non-sulfur volatiles by further metabolism of α-ketobutyrate, a product of L-methionine-γ-lyase activity. α-Ketobutyrate was further metabolized into L-isoleucine and other important melon volatiles, including non-sulfur branched and straight-chain esters. Cell-free extracts derived from ripe melon fruit exhibited L-methionine-γ-lyase enzymatic activity. A melon gene (CmMGL) ectopically expressed in Escherichia coli, was shown to encode a protein possessing L-methionine-γ-lyase enzymatic activity. Expression of CmMGL was relatively low in early stages of melon fruit development, but increased in the flesh of ripe fruits, depending on the cultivar tested. Moreover, the levels of expression of CmMGL in recombinant inbred lines co-segregated with the levels of sulfur-containing aroma volatiles enriched with +1 m/z unit and postulated to be produced via this route. Our results indicate that L-methionine is a precursor of both sulfur and non-sulfur aroma volatiles in melon fruit.


Asunto(s)
Cucumis melo/enzimología , Frutas/metabolismo , Metionina/metabolismo , Azufre/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Liasas de Carbono-Azufre/metabolismo , Cucumis melo/genética , Cucumis melo/crecimiento & desarrollo , Activación Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Genes de Plantas , Isoleucina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solubilidad , Especificidad de la Especie , Transaminasas/metabolismo
6.
J Exp Bot ; 61(4): 1111-23, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20065117

RESUMEN

The unique aroma of melons (Cucumis melo L., Cucurbitaceae) is composed of many volatile compounds biosynthetically derived from fatty acids, carotenoids, amino acids, and terpenes. Although amino acids are known precursors of aroma compounds in the plant kingdom, the initial steps in the catabolism of amino acids into aroma volatiles have received little attention. Incubation of melon fruit cubes with amino acids and alpha-keto acids led to the enhanced formation of aroma compounds bearing the side chain of the exogenous amino or keto acid supplied. Moreover, L-[(13)C(6)]phenylalanine was also incorporated into aromatic volatile compounds. Amino acid transaminase activities extracted from the flesh of mature melon fruits converted L-isoleucine, L-leucine, L-valine, L-methionine, or L-phenylalanine into their respective alpha-keto acids, utilizing alpha-ketoglutarate as the amine acceptor. Two novel genes were isolated and characterized (CmArAT1 and CmBCAT1) encoding 45.6 kDa and 42.7 kDa proteins, respectively, that displayed aromatic and branched-chain amino acid transaminase activities, respectively, when expressed in Escherichia coli. The expression of CmBCAT1 and CmArAT1 was low in vegetative tissues, but increased in flesh and rind tissues during fruit ripening. In addition, ripe fruits of climacteric aromatic cultivars generally showed high expression of CmBCAT1 and CmArAT1 in contrast to non-climacteric non-aromatic fruits. The results presented here indicate that in melon fruit tissues, the catabolism of amino acids into aroma volatiles can initiate through a transamination mechanism, rather than decarboxylation or direct aldehyde synthesis, as has been demonstrated in other plants.


Asunto(s)
Aminoácidos Aromáticos/biosíntesis , Aminoácidos de Cadena Ramificada/biosíntesis , Cucumis melo/metabolismo , Aminoácidos Aromáticos/química , Aminoácidos de Cadena Ramificada/química , Cucumis melo/química , Cucumis melo/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA