Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 401: 130753, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38685516

RESUMEN

This work proposes a process design and techno-economic assessment for the production of γ-valerolactone from lignocellulosic derived fructose at industrial scale, with the aim of exploring its feasibility, identifying potential obstacles, and suggesting improvements in the context of France. First, the conceptual process design is developed, the process modelled and optimized. Second, different potential scenarios for the energy supply to the process are analyzed by means of a set of economic key performance indicators, aimed at highlighting the best potential profitability scenario for the sustainable exploitation of waste biomass in the context analyzed. The lowest Minimum Selling Price for GVL is obtained at 10 kt/y plant fueled by biomass, i.e. 1.89 €/kg, along with the highest end-of-live revenue, i.e. 113 M€. Finally, a sensitivity and uncertainties analysis, based on Monte Carlo simulations, are carried out on the results in order to test their robustness with respect to key input parameters.


Asunto(s)
Biomasa , Fructosa , Lactonas , Lactonas/química , Fructosa/química , Biotecnología/métodos , Biotecnología/economía , Método de Montecarlo
2.
Chemphyschem ; 24(4): e202200729, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36264764

RESUMEN

The solvent is of prime importance in biomass conversion as it influences dissolution, reaction kinetics, catalyst activity and thermodynamic equilibrium of the reaction system. So far, activity-based models were developed to predict kinetics and equilibria, but the influence of the catalyst on kinetics has not been succesfully predicted by thermodynamic models. In this work, the thermodynamic model ePC-SAFT advanced was used to predict the activities of the reactants and of the catalyst at various conditions (temperature, reactant concentrations, γ-valerolactone GVL cosolvent addition, catalyst concentration) for the homogeneously acid-catalyzed esterification of levulinic acid (LA) with ethanol. Different kinetic models were applied, and it was found that the catalyst influence on kinetics could be predicted correctly by simultaneously solving the dissociation equilibrium of H2 SO4 catalyst along the reaction coordinate and by relating reaction kinetics to proton activity. ePC-SAFT advanced model parameters were only fitted to reaction-independent phase equilibrium data. The key reaction properties were determined by applying ePC-SAFT advanced to one experimental kinetic curve for a set of temperatures, yielding the reaction enthalpy at standard state Δ R H 0 = 11 . 48 k J m o l - 1 ${{\Delta }^{R}{H}^{0}=11.48\ kJ\ mo{l}^{-1}}$ , activation energy E A = 30 . 28 k J m o l - 1 ${{E}_{A}=30.28\ kJ\ mo{l}^{-1}}$ and the intrinsic reaction rate constant k=0.011 s-1 at 323 K, which is independent of catalyst concentration. The new procedure allowed an a-priori identification of the effects of catalyst, solvent and reactant concentration on LA esterification.

3.
Front Nutr ; 9: 983843, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034908

RESUMEN

In the present work, effects of reaction temperature, reactant concentration, catalyst loading, and rotation speed on the kinetics of sesamin conversion in a sesame oil system were studied by using citric acid loading on Hß zeolite (CA/Hß) as a catalyst. A kinetic model was built for sesamin conversion. The kinetic model fits correctly the experimental concentration of sesamin and asarinin ( R S ⁢ e ⁢ s ⁢ a ⁢ m ⁢ i ⁢ n 2 = 0.93 and R A ⁢ s ⁢ a ⁢ r ⁢ i ⁢ n ⁢ i ⁢ n 2 = 0.97). The sesamin conversion is an endothermic reaction (△H rIso = 3 4.578kJ/mol). The CA/Hß catalyst could be easily regenerated by calcination, and there was no obvious loss of catalytic activity when reused. Knowledge of the sesamin conversion is of great significance for guiding production and improving the value and nutrition of sesame oil. In a word, this study lays the foundation for the scale-up of the production of asarinin from sesame oil using CA/Hß as the catalyst.

4.
Ind Eng Chem Res ; 60(47): 16827-16838, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34880549

RESUMEN

The current work studies the reductive catalytic depolymerization (RCD) of lignin from a novel semi-industrial process. The aim was to obtain aromatic mono-, di-, tri-, and tetramers for further valorization. The substrate and products were characterized by multiple analytical methods, including high pressure size-exclusion chromatography (HPSEC), gas chromatography-mass spectrometry, GC-flame ionization detector (FID), GC-FID/thermal conductivity detector (TCD), and NMR. The RCD was studied by exploring the influence of different parameters, such as lignin solubility, reaction time, hydrogen pressure, reaction temperature, pH, type and loading of the catalyst, as well as type and composition of the organic/aqueous solvent. The results show that an elevated temperature, a redox catalyst, and a hydrogen atmosphere are essential for the depolymerization and stability of the products, while the reaction medium also plays an important role. The highest obtained mono- to tetramers yield was 98% and mono- to dimers yield over 85% in the liquid phase products. The reaction mechanisms influenced the structure of the aliphatic chain in the monomers, but left the phenolic structure along with the methoxy groups largely unaltered. The current work contributes to the development and debottlenecking of the novel and sustainable overall process, which utilizes efficiently all the fractions of wood, in line with the principles of green engineering and chemistry.

5.
Chem Eng Sci ; 230: 116206, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33071294

RESUMEN

Heterogeneously catalyzed epoxidation of vegetable oils by hydrogen peroxide represents a greener route for the production of epoxides and a thermally safer reaction route compared to the classical Prileschajew epoxidation approach. The epoxidation kinetics of the heterogeneous system formed by aluminium oxide catalyst, hydrogen peroxide and methyl oleate as a model compound was studied with semibatch experiments in laboratory scale. It was found that semibatch operation improved the performance significantly compared to classical batch operation, a low and constant volumetric flowrate of hydrogen peroxide increased the final oxirane yield considerably. A semibatch reactor model and a kinetic model were developed, featuring the reaction temperature, the reactant molar ratio, the catalyst loading and the mass flow rate as the most significant experimental parameters. The mathematical model was able to well describe the experimental data. The approach can be applied to other liquid-solid catalyst systems in future in order to optimize the semibatch operation policy for complex reaction systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA