Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(43): e2213450119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36256818

RESUMEN

Bacterial catabolic pathways have considerable potential as industrial biocatalysts for the valorization of lignin, a major component of plant-derived biomass. Here, we describe a pathway responsible for the catabolism of acetovanillone, a major component of several industrial lignin streams. Rhodococcus rhodochrous GD02 was previously isolated for growth on acetovanillone. A high-quality genome sequence of GD02 was generated. Transcriptomic analyses revealed a cluster of eight genes up-regulated during growth on acetovanillone and 4-hydroxyacetophenone, as well as a two-gene cluster up-regulated during growth on acetophenone. Bioinformatic analyses predicted that the hydroxyphenylethanone (Hpe) pathway proceeds via phosphorylation and carboxylation, before ß-elimination yields vanillate from acetovanillone or 4-hydroxybenzoate from 4-hydroxyacetophenone. Consistent with this prediction, the kinase, HpeHI, phosphorylated acetovanillone and 4-hydroxyacetophenone. Furthermore, HpeCBA, a biotin-dependent enzyme, catalyzed the ATP-dependent carboxylation of 4-phospho-acetovanillone but not acetovanillone. The carboxylase's specificity for 4-phospho-acetophenone (kcat/KM = 34 ± 2 mM-1 s-1) was approximately an order of magnitude higher than for 4-phospho-acetovanillone. HpeD catalyzed the efficient dephosphorylation of the carboxylated products. GD02 grew on a preparation of pine lignin produced by oxidative catalytic fractionation, depleting all of the acetovanillone, vanillin, and vanillate. Genomic and metagenomic searches indicated that the Hpe pathway occurs in a relatively small number of bacteria. This study facilitates the design of bacterial strains for biocatalytic applications by identifying a pathway for the degradation of acetovanillone.


Asunto(s)
Biotina , Lignina , Lignina/metabolismo , Acetofenonas , Adenosina Trifosfato
2.
ISME J ; 16(8): 1944-1956, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35501417

RESUMEN

Characterizing microorganisms and enzymes involved in lignin biodegradation in thermal ecosystems can identify thermostable biocatalysts. We integrated stable isotope probing (SIP), genome-resolved metagenomics, and enzyme characterization to investigate the degradation of high-molecular weight, 13C-ring-labeled synthetic lignin by microbial communities from moderately thermophilic hot spring sediment (52 °C) and a woody "hog fuel" pile (53 and 62 °C zones). 13C-Lignin degradation was monitored using IR-GCMS of 13CO2, and isotopic enrichment of DNA was measured with UHLPC-MS/MS. Assembly of 42 metagenomic libraries (72 Gb) yielded 344 contig bins, from which 125 draft genomes were produced. Fourteen genomes were significantly enriched with 13C from lignin, including genomes of Actinomycetes (Thermoleophilaceae, Solirubrobacteraceae, Rubrobacter sp.), Firmicutes (Kyrpidia sp., Alicyclobacillus sp.) and Gammaproteobacteria (Steroidobacteraceae). We employed multiple approaches to screen genomes for genes encoding putative ligninases and pathways for aromatic compound degradation. Our analysis identified several novel laccase-like multi-copper oxidase (LMCO) genes in 13C-enriched genomes. One of these LMCOs was heterologously expressed and shown to oxidize lignin model compounds and minimally transformed lignin. This study elucidated bacterial lignin depolymerization and mineralization in thermal ecosystems, establishing new possibilities for the efficient valorization of lignin at elevated temperature.


Asunto(s)
Gammaproteobacteria , Microbiota , Bacterias/genética , Bacterias/metabolismo , Gammaproteobacteria/metabolismo , Isótopos/metabolismo , Lignina/metabolismo , Espectrometría de Masas en Tándem
3.
ISME J ; 15(3): 879-893, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33139871

RESUMEN

Thermal swamps are unique ecosystems where geothermally warmed waters mix with decomposing woody biomass, hosting novel biogeochemical-cycling and lignin-degrading microbial consortia. Assembly of shotgun metagenome libraries resolved 351 distinct genomes from hot-spring (30-45 °C) and mesophilic (17 °C) sediments. Annotation of 39 refined draft genomes revealed metabolism consistent with oligotrophy, including pathways for degradation of aromatic compounds, such as syringate, vanillate, p-hydroxybenzoate, and phenol. Thermotolerant Burkholderiales, including Rubrivivax ssp., were implicated in diverse biogeochemical and aromatic transformations, highlighting their broad metabolic capacity. Lignin catabolism was further investigated using metatranscriptomics of sediment incubated with milled or Kraft lignin at 45 °C. Aromatic compounds were depleted from lignin-amended sediment over 148 h. The metatranscriptomic data revealed upregulation of des/lig genes predicted to specify the catabolism of syringate, vanillate, and phenolic oligomers in the sphingomonads Altererythrobacter ssp. and Novosphingobium ssp., as well as in the Burkholderiales genus, Rubrivivax. This study demonstrates how temperature structures biogeochemical cycling populations in a unique ecosystem, and combines community-level metagenomics with targeted metatranscriptomics to identify pathways with potential for bio-refinement of lignin-derived aromatic compounds. In addition, the diverse aromatic catabolic pathways of Altererythrobacter ssp. may serve as a source of thermotolerant enzymes for lignin valorization.


Asunto(s)
Ecosistema , Lignina , Genómica , Metagenómica , Humedales
4.
Proc Natl Acad Sci U S A ; 117(41): 25771-25778, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32989155

RESUMEN

Cytochrome P450 enzymes have tremendous potential as industrial biocatalysts, including in biological lignin valorization. Here, we describe P450s that catalyze the O-demethylation of lignin-derived guaiacols with different ring substitution patterns. Bacterial strains Rhodococcus rhodochrous EP4 and Rhodococcus jostii RHA1 both utilized alkylguaiacols as sole growth substrates. Transcriptomics of EP4 grown on 4-propylguaiacol (4PG) revealed the up-regulation of agcA, encoding a CYP255A1 family P450, and the aph genes, previously shown to encode a meta-cleavage pathway responsible for 4-alkylphenol catabolism. The function of the homologous pathway in RHA1 was confirmed: Deletion mutants of agcA and aphC, encoding the meta-cleavage alkylcatechol dioxygenase, grew on guaiacol but not 4PG. By contrast, deletion mutants of gcoA and pcaL, encoding a CYP255A2 family P450 and an ortho-cleavage pathway enzyme, respectively, grew on 4-propylguaiacol but not guaiacol. CYP255A1 from EP4 catalyzed the O-demethylation of 4-alkylguaiacols to 4-alkylcatechols with the following apparent specificities (kcat/KM): propyl > ethyl > methyl > guaiacol. This order largely reflected AgcA's binding affinities for the different guaiacols and was the inverse of GcoAEP4's specificities. The biocatalytic potential of AgcA was demonstrated by the ability of EP4 to grow on lignin-derived products obtained from the reductive catalytic fractionation of corn stover, depleting alkylguaiacols and alkylphenols. By identifying related P450s with complementary specificities for lignin-relevant guaiacols, this study facilitates the design of these enzymes for biocatalytic applications. We further demonstrated that the metabolic fate of the guaiacol depends on its substitution pattern, a finding that has significant implications for engineering biocatalysts to valorize lignin.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Guayacol/metabolismo , Lignina/metabolismo , Rhodococcus/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Biodegradación Ambiental , Sistema Enzimático del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/genética , Guayacol/química , Cinética , Lignina/química , Rhodococcus/química , Rhodococcus/genética , Rhodococcus/metabolismo , Especificidad por Sustrato
5.
Front Microbiol ; 10: 1862, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31481940

RESUMEN

The bacterial catabolism of aromatic compounds has considerable promise to convert lignin depolymerization products to commercial chemicals. Alkylphenols are a key class of depolymerization products whose catabolism is not well-elucidated. We isolated Rhodococcus rhodochrous EP4 on 4-ethylphenol and applied genomic and transcriptomic approaches to elucidate alkylphenol catabolism in EP4 and Rhodococcus jostii RHA1. RNA-Seq and RT-qPCR revealed a pathway encoded by the aphABCDEFGHIQRS genes that degrades 4-ethylphenol via the meta-cleavage of 4-ethylcatechol. This process was initiated by a two-component alkylphenol hydroxylase, encoded by the aphAB genes, which were upregulated ~3,000-fold. Purified AphAB from EP4 had highest specific activity for 4-ethylphenol and 4-propylphenol (~2,000 U/mg) but did not detectably transform phenol. Nevertheless, a ΔaphA mutant in RHA1 grew on 4-ethylphenol by compensatory upregulation of phenol hydroxylase genes (pheA1-3). Deletion of aphC, encoding an extradiol dioxygenase, prevented growth on 4-alkylphenols but not phenol. Disruption of pcaL in the ß-ketoadipate pathway prevented growth on phenol but not 4-alkylphenols. Thus, 4-alkylphenols are catabolized exclusively via meta-cleavage in rhodococci while phenol is subject to ortho-cleavage. A putative genomic island encoding aph genes was identified in EP4 and several other rhodococci. Overall, this study identifies a 4-alkylphenol pathway in rhodococci, demonstrates key enzymes involved, and presents evidence that the pathway is encoded in a genomic island. These advances are of particular importance for wide-ranging industrial applications of rhodococci, including upgrading of lignocellulose biomass.

6.
ISME J ; 13(4): 950-963, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30538276

RESUMEN

The Pacific coastal temperate rainforest (PCTR) is a global hot-spot for carbon cycling and export. Yet the influence of microorganisms on carbon cycling processes in PCTR soil is poorly characterized. We developed and tested a conceptual model of seasonal microbial carbon cycling in PCTR soil through integration of geochemistry, micro-meteorology, and eukaryotic and prokaryotic ribosomal amplicon (rRNA) sequencing from 216 soil DNA and RNA libraries. Soil moisture and pH increased during the wet season, with significant correlation to net CO2 flux in peat bog and net CH4 flux in bog forest soil. Fungal succession in these sites was characterized by the apparent turnover of Archaeorhizomycetes phylotypes accounting for 41% of ITS libraries. Anaerobic prokaryotes, including Syntrophobacteraceae and Methanomicrobia increased in rRNA libraries during the wet season. Putatively active populations of these phylotypes and their biogeochemical marker genes for sulfate and CH4 cycling, respectively, were positively correlated following rRNA and metatranscriptomic network analysis. The latter phylotype was positively correlated to CH4 fluxes (r = 0.46, p < 0.0001). Phylotype functional assignments were supported by metatranscriptomic analysis. We propose that active microbial populations respond primarily to changes in hydrology, pH, and nutrient availability. The increased microbial carbon export observed over winter may have ramifications for climate-soil feedbacks in the PCTR.


Asunto(s)
Microbiología del Suelo , Ciclo del Carbono , Dióxido de Carbono/análisis , Clima , Perfilación de la Expresión Génica , Metano/análisis , Noroeste de Estados Unidos , Bosque Lluvioso , Estaciones del Año , Suelo/química
7.
Front Microbiol ; 8: 2293, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29230199

RESUMEN

Long-term contrasts in agricultural management can shift soil resource availability with potential consequences to microbial carbon (C) use efficiency (CUE) and the fate of C in soils. Isothermal calorimetry was combined with 13C-labeled glucose stable isotope probing (SIP) of 16S rRNA genes to test the hypothesis that organically managed soils would support microbial communities with greater thermodynamic efficiency compared to conventional soils due to a legacy of lower resource availability and a resultant shift toward communities supportive of more oligotrophic taxa. Resource availability was greater in conventionally managed soils, with 3.5 times higher available phosphorus, 5% more nitrate, and 36% more dissolved organic C. The two management systems harbored distinct glucose-utilizing populations of Proteobacteria and Actinobacteria, with a higher Proteobacteria:Actinobacteria ratio (2.4 vs. 0.7) in conventional soils. Organically managed soils also harbored notable activity of Firmicutes. Thermodynamic efficiency indices were similar between soils, indicating that glucose was metabolized at similar energetic cost. However, differentially abundant glucose utilizers in organically managed soils were positively correlated with soil organic matter (SOM) priming and negatively correlated to soil nutrient and carbon availability, respiration, and heat production. These correlation patterns were strongly reversed in the conventionally managed soils indicating clear differentiation of microbial functioning related to soil resource availability. Fresh C addition caused proportionally more priming of SOM decomposition (57 vs. 51%) in organically managed soils likely due to mineralization of organic nutrients to satisfy microbial demands during glucose utilization in these more resource deprived soils. The additional heat released from SOM oxidation may explain the similar community level thermodynamic efficiencies between management systems. Restoring fertility to soils with a legacy of nutrient limitation requires a balanced supply of both nutrients and energy to protect stable SOM from microbial degradation. These results highlight the need to consider managing C for the energy it provides to icritical biological processes that underpin soil health.

8.
Appl Environ Microbiol ; 76(21): 7116-25, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20802070

RESUMEN

The abundance of nifH, nirS, and nirK gene fragments involved in nitrogen (N) fixation and denitrification in thinned second-growth Douglas-fir (Pseudotsuga menziesii subsp. menziesii [Mirb.] Franco) forest soil was investigated by using quantitative real-time PCR. Prokaryotic N cycling is an important aspect of N availability in forest soil. The abundance of universal nifH, Azotobacter sp.-specific nifH (nifH-g1), nirS, and nirK gene fragments in unthinned control and 30, 90, and 100% thinning treatments were compared at two long-term research sites on Vancouver Island, Canada. The soil was analyzed for organic matter (OM), total carbon (C), total N, NH4-N, NO3-N, and phosphorus (P). The soil horizon accounted for the greatest variation in nutrient status, followed by the site location. The 30% thinning treatment was associated with significantly greater nifH-g1 abundance than the control treatment in one site; at the same site, nirS in the mineral soil horizon was significantly reduced by thinning. The abundance of nirS genes significantly correlated with the abundance of nirK genes. In addition, significant correlations were observed between nifH-g1 abundance and C and N in the organic horizon and between nirS and nirK and N in the mineral horizon. Overall, no clear influence of tree thinning on nifH, nirS, and nirK was observed. However, soil OM, C, and N were found to significantly influence N-cycling gene abundance.


Asunto(s)
Agricultura Forestal , Nitrito Reductasas/genética , Nitrorreductasas/genética , Pseudotsuga/microbiología , Microbiología del Suelo , Azotobacter/genética , Azotobacter/metabolismo , ADN Bacteriano/análisis , Genes Bacterianos/genética , Fijación del Nitrógeno/genética , Raíces de Plantas/microbiología , Reacción en Cadena de la Polimerasa , Suelo/análisis
9.
FEMS Microbiol Lett ; 291(2): 175-9, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19076230

RESUMEN

Roundup Ready (RR) soybeans containing recombinant Agrobacterium spp. CP4 5-enol-pyruvyl-shikimate-3-phosphate synthase (cp4 epsps) genes tolerant to the herbicide glyphosate are extensively grown worldwide. The concentration of recombinant DNA from RR soybeans in soil aggregates was studied due to the possibility of genetic transformation of soil bacteria. This study used real-time PCR to examine the concentration of cp4 epsps in four field soil aggregate size classes (>2000 microm, 2000-500 microm, 500-250 microm and <250 microm). Aggregates over 2000 microm in diameter had significantly greater gene concentrations than those with diameters under 2000 microm. The >2000 mum fraction contained between 66.62% and 99.18% of total gene copies, although it only accounted for about 30.00% of the sampled soil. Aggregate formation may facilitate persistence of recombinant DNA.


Asunto(s)
3-Fosfoshikimato 1-Carboxiviniltransferasa/análisis , Proteínas Bacterianas/análisis , ADN de Plantas/análisis , Glycine max/química , Plantas Modificadas Genéticamente/química , Suelo/análisis , 3-Fosfoshikimato 1-Carboxiviniltransferasa/genética , Proteínas Bacterianas/genética , ADN de Plantas/genética , Lectinas/análisis , Lectinas/genética , Tamaño de la Partícula , Proteínas de Plantas/análisis , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Rhizobium/enzimología , Glycine max/genética
10.
J Agric Food Chem ; 56(15): 6339-47, 2008 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-18570434

RESUMEN

Glyphosate-tolerant, Roundup Ready (RR) soybeans account for about 57% of all genetically modified (GM) crops grown worldwide. The entry of recombinant DNA into soil from GM crops has been identified as an environmental concern due to the possibility of their horizontal transfer to soil microorganisms. RR soybeans contain recombinant gene sequences that can be differentiated from wild-type plant and microbial genes in soil by using a sequence-specific molecular beacon and real-time polymerase chain reaction (PCR). A molecular beacon-based real-time PCR system to quantify a wild-type soybean lectin ( le1) gene was designed to compare amounts of endogenous soybean genes to recombinant DNA in soil. Microcosm studies were carried out to develop methodologies for the detection of recombinant DNA from RR soybeans in soil. RR soybean leaf litterbags were imbedded in the soil under controlled environmental conditions (60% water holding capacity, 10/15 degrees C, and 8/16 h day/night) for 30 days. The soybean biomass decomposition was described using a single-phase exponential equation, and the DNA concentration in planta and in soil was quantified using real-time PCR using sequence-specific molecular beacons for the recombinant cp4 epsps and endogenous soybean lectin ( le1) genes. The biomass of RR soybean leaves was 8.6% less than nontransgenic (NT) soybean leaves after 30 days. The pooled half-disappearance time for cp4 epsps and le1 in RR and of le1 in NT soybean leaves was 1.4 days. All genes from leaves were detected in soil after 30 days. This study provides a methodology for monitoring the entry of RR and NT soybean DNA into soil from decomposing plant residues.


Asunto(s)
ADN Recombinante/análisis , Glycine max/genética , Hojas de la Planta/genética , Plantas Modificadas Genéticamente/genética , Reacción en Cadena de la Polimerasa , Suelo/análisis , ADN de Plantas/análisis , Tolerancia a Medicamentos/genética , Glicina/análogos & derivados , Lectinas de Plantas/genética , Proteínas de Soja/genética , Glifosato
11.
Appl Environ Microbiol ; 73(13): 4365-7, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17483262

RESUMEN

We grew plants of nine soybean varieties, six of which were genetically modified to express transgenic cp4-epsps, in the presence of Bradyrhizobium japonicum and arbuscular mycorrhizal fungi. Mycorrhizal colonization and nodule abundance and mass differed among soybean varieties; however, in no case was variation significantly associated with the genetic modification.


Asunto(s)
Glycine max/genética , Glycine max/microbiología , Micorrizas/aislamiento & purificación , 3-Fosfoshikimato 1-Carboxiviniltransferasa/genética , Bradyrhizobium/crecimiento & desarrollo , Bradyrhizobium/aislamiento & purificación , Recuento de Colonia Microbiana , Expresión Génica , Resistencia a los Herbicidas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/microbiología , Glycine max/enzimología , Especificidad de la Especie , Simbiosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA