RESUMEN
The naked mole-rat (Heterocephalus glaber) has fascinated zoologists for at least half a century. It has also generated considerable biomedical interest not only because of its extraordinary longevity, but also because of unusual protective features (e.g. its tolerance of variable oxygen availability), which may be pertinent to several human disease states, including ischemia/reperfusion injury and neurodegeneration. A recent article entitled 'Surprisingly long survival of premature conclusions about naked mole-rat biology' described 28 'myths' which, those authors claimed, are a 'perpetuation of beautiful, but falsified, hypotheses' and impede our understanding of this enigmatic mammal. Here, we re-examine each of these 'myths' based on evidence published in the scientific literature. Following Braude et al., we argue that these 'myths' fall into four main categories: (i) 'myths' that would be better described as oversimplifications, some of which persist solely in the popular press; (ii) 'myths' that are based on incomplete understanding, where more evidence is clearly needed; (iii) 'myths' where the accumulation of evidence over the years has led to a revision in interpretation, but where there is no significant disagreement among scientists currently working in the field; (iv) 'myths' where there is a genuine difference in opinion among active researchers, based on alternative interpretations of the available evidence. The term 'myth' is particularly inappropriate when applied to competing, evidence-based hypotheses, which form part of the normal evolution of scientific knowledge. Here, we provide a comprehensive critical review of naked mole-rat biology and attempt to clarify some of these misconceptions.
Asunto(s)
Longevidad , Ratas Topo , Animales , BiologíaRESUMEN
Performing large-scale plasma proteome profiling is challenging due to limitations imposed by lengthy preparation and instrument time. We present a fully automated multiplexed proteome profiling platform (AutoMP3) using the Hamilton Vantage liquid handling robot capable of preparing hundreds to thousands of samples. To maximize protein depth in single-shot runs, we combined 16-plex Tandem Mass Tags (TMTpro) with high-field asymmetric waveform ion mobility spectrometry (FAIMS Pro) and real-time search (RTS). We quantified over 40 proteins/min/sample, doubling the previously published rates. We applied AutoMP3 to investigate the naked mole-rat plasma proteome both as a function of the circadian cycle and in response to ultraviolet (UV) treatment. In keeping with the lack of synchronized circadian rhythms in naked mole-rats, we find few circadian patterns in plasma proteins over the course of 48 h. Furthermore, we quantify many disparate changes between mice and naked mole-rats at both 48 h and one week after UV exposure. These species differences in plasma protein temporal responses could contribute to the pronounced cancer resistance observed in naked mole-rats. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE [1] partner repository with the dataset identifier PXD022891.