Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Int J Mol Sci ; 25(19)2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39408894

RESUMEN

As an important global food crop, rice is damaged by a variety of piercing-sucking pests. Identifying a broad-spectrum promoter induced by the physical signal of sucking pests and applying it to transgenic breeding to mitigate the damage caused by different sucking pests will significantly improve the efficiency of our breeding. This study compared the transcriptome changes in two rice varieties under needle-wounding stress to investigate their differential responses to mechanical damage. The results showed that the insect-susceptible variety TN1 exhibited more differentially expressed genes (DEGs) and greater changes in expression levels after needle treatment, indicating a more active internal gene regulatory network. GO and KEGG enrichment analysis further revealed that TN1 not only exhibited changes in genes related to the extracellular environment, but also mobilized more genes associated with stress response and defense. By screening the differentially expressed genes, we identified two promoters (P1 and P2) with inducible expression characteristics in both the resistant and susceptible rice varieties. These promoters were able to effectively drive the expression of the insect resistance gene OsLecRK1* and enhance the resistance of transgenic plants against the brown planthopper. This study provides promoter resources for the development of insect-resistant transgenic crops.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Oryza/genética , Oryza/parasitología , Plantas Modificadas Genéticamente/genética , Animales , Clonación Molecular/métodos , Hemípteros/genética , Proteínas de Plantas/genética , Transcriptoma , Perfilación de la Expresión Génica
2.
Genes (Basel) ; 15(9)2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39336791

RESUMEN

MicroRNAs (miRNAs) are small, non-coding RNAs that are expressed in a tissue- and temporal-specific manner during development. They have been found to be highly conserved during the evolution of different species. miRNAs regulate the expression of several genes in various organisms, with some regulating the expression of multiple genes with similar or completely unrelated functions. Frequent disease and insect pest infestations severely limit agricultural development. Thus, cultivating resistant crops via miRNA-directed gene regulation in plants, insects, and pathogens is an important aspect of modern breeding practices. To strengthen the application of miRNAs in sustainable agriculture, plant endogenous or exogenous miRNAs have been used for plant breeding. Consequently, the development of biological pesticides based on miRNAs has become an important avenue for future pest control methods. However, selecting the appropriate miRNA according to the desired target traits in the target organism is key to successfully using this technology for pest control. This review summarizes the progress in research on miRNAs in plants and other species involved in regulating plant disease and pest resistance pathways. We also discuss the molecular mechanisms of relevant target genes to provide new ideas for future research on pest and disease resistance and breeding in plants.


Asunto(s)
Resistencia a la Enfermedad , Insectos , MicroARNs , Fitomejoramiento , Enfermedades de las Plantas , MicroARNs/genética , Resistencia a la Enfermedad/genética , Animales , Fitomejoramiento/métodos , Insectos/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/inmunología , Plantas/genética , Plantas/parasitología , Productos Agrícolas/genética , Productos Agrícolas/parasitología , Regulación de la Expresión Génica de las Plantas
3.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39273235

RESUMEN

Ionizing radiation exposure can cause damage to diverse tissues and organs, with the hematopoietic system being the most sensitive. However, limited information is available regarding the radiosensitivity of various hematopoietic cell populations in the bone marrow due to the high heterogeneity of the hematopoietic system. In this study, we observed that granulocyte-macrophage progenitors, hematopoietic stem/progenitor cells, and B cells within the bone marrow showed the highest sensitivity, exhibiting a rapid decrease in cell numbers following irradiation. Nonetheless, neutrophils, natural killer (NK) cells, T cells, and dendritic cells demonstrated a certain degree of radioresistance, with neutrophils exhibiting the most pronounced resistance. By employing single-cell transcriptome sequencing, we investigated the early responsive genes in various cell types following irradiation, revealing that distinct gene expression profiles emerged between radiosensitive and radioresistant cells. In B cells, radiation exposure led to a specific upregulation of genes associated with mitochondrial respiratory chain complexes, suggesting a connection between these complexes and cell radiosensitivity. In neutrophils, radiation exposure resulted in fewer gene alterations, indicating their potential for distinct mechanisms in radiation resistance. Collectively, this study provides insights into the molecular mechanism for the heterogeneity of radiosensitivity among the various bone marrow hematopoietic cell populations.


Asunto(s)
Radiación Ionizante , Análisis de la Célula Individual , Transcriptoma , Animales , Ratones , Análisis de la Célula Individual/métodos , Transcriptoma/efectos de la radiación , Células de la Médula Ósea/efectos de la radiación , Células de la Médula Ósea/metabolismo , Ratones Endogámicos C57BL , Tolerancia a Radiación/genética , Perfilación de la Expresión Génica , Células Madre Hematopoyéticas/efectos de la radiación , Células Madre Hematopoyéticas/metabolismo , Neutrófilos/efectos de la radiación , Neutrófilos/metabolismo
4.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(4): 1071-1077, 2024 Aug.
Artículo en Chino | MEDLINE | ID: mdl-39192400

RESUMEN

OBJECTIVE: To observe the inhibitory effect of dobutamine on proliferation of FLT3-ITD mutated acute myeloid leukemia (AML) cells and explore the feasibility of dobutamine as a monotherapy or in combination with quizartinib for the treatment of this type of AML. METHODS: FLT3-ITD mutant cell lines MOLM13 and MV4-11 were cultured in vitro and divided into control group, dobutamine treatment group, quizartinib treatment group, and dobutamine combined with quizartinib treatment group. Cell viability, ROS levels, and apoptosis rate were detected by CCK-8, Flow cytometry, respectively, as well as the expression of YAP1 protein by Western blot. RESULTS: Both dobutamine and quizartinib inhibited the proliferation of FLT3-ITD mutant AML cell lines. Compared with the control group, the dobutamine group exhibited a significant increase in ROS levels (P < 0.01), an increase in apoptosis rates (P < 0.05), and a decrease in YAP1 protein expression (P < 0.01), and decreased YAP1 expression (P < 0.05). CONCLUSION: Dobutamine as a monotherapy can inhibit theproliferation of FLT3-ITD mutated AML cells, inducing apoptosis. Additionally, the combination of quizartinib enhances the targeted inhibitory effect on FLT3-ITD mutated AML. The mechanism may involve the inhibition of YAP1 protein expression in AML cells of this type, leading to an increase in ROS levels and exerting its anti-tumor effects.


Asunto(s)
Apoptosis , Benzotiazoles , Proliferación Celular , Leucemia Mieloide Aguda , Compuestos de Fenilurea , Tirosina Quinasa 3 Similar a fms , Leucemia Mieloide Aguda/tratamiento farmacológico , Humanos , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Compuestos de Fenilurea/farmacología , Línea Celular Tumoral , Benzotiazoles/farmacología , Mutación , Factores de Transcripción , Supervivencia Celular/efectos de los fármacos , Proteínas Señalizadoras YAP , Proteínas Adaptadoras Transductoras de Señales , Especies Reactivas de Oxígeno/metabolismo
6.
Heliyon ; 10(11): e31371, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38832281

RESUMEN

Objective: The significance of novel anti-tumor pharmaceuticals in the treatment of gynecological tumors is growing, but there is no consensus regarding the optimal drug delivery strategy for gynecological tumors. This study seeks to investigate the treatment models of novel anti-tumor drugs in patients with gynecological cancer in China over the past five years, with a particular emphasis on the trend and rationality of their use. Method: We conducted a cross-sectional analysis of data from a China Medical Association-supervised hospital prescription analysis cooperation initiative. The data was derived from prescriptions written for patients diagnosed with cancer between January 2017 and December 2021. The required information for patients was extracted. Our study included 2308 patients that were diagnosed as gynecological tumors which were treated with novel antineoplastic targeted drugs. Patients were categorized by age and region. Then, the selection, application, and indications of the most essential treatment pharmaceuticals were investigated. We evaluated anti-tumor prescription information based on the recommended drug labeling protocol and the most recent domestic and international guidelines.Excel 2013 and SPSS (version 25; SPSS Inc., Chicago, IL, United States) were utilized to conduct statistical analysis.In addition,we also used Sankey diagram to evalute the relation between novel antineoplastic targeted drugs and corresponding diagnoses. Result: The top three cities for the 2308 patients included in this study were Guangzhou (28.51%), Hangzhou (21.79%), and Beijing (20.06%). In the past five years, the average age of medication patients was 55.61-year-old, with 37.86% of women aged of 51-60. Each patient's primary treatment regimens were statistically analyzed, yielding a total of 16 single-drug and combination-drug primary treatment regimens. Bevacizumab, Olaparib, Trastuzumab, Apatinib, and Arotinib were the top five treatment strategies. The maximum proportion, up to 0.74%, was attributed to the combination of human epidermal growth factor receptor-2 inhibitor (HER2i), including Trastuzumab and Parostuzumab. Vascular endothelial growth factor receptor inhibitor (VEGFRi), including Bevacizumab and Apatinib was the most frequently prescribed medication for outpatients in major cities across the country. According to the 5-year change in time, poly adenosine diphosphate ribose polymerase inhibitor (PARPi) rated first in terms of usage, with Olaparib ranking first with the highest concentration of 33.44% and Niraparib ranking second overall with the fastest growth in 2021. The quantity of VEGFRi variants utilized was the greatest, and their proportion of total usage increased annually. The top five drugs by total drug costs were Bevacizumab, Carelizumab, Olaparib, Trastuzumab, and Apatinib. However, the top five drugs by per capita drug cost were Olaparib + Bevacizumab, Bevacizumab + Sidilimab, Arrotinib + Olaparib, Olaparib, and Patuzumab + Trastuzumab. Conclusion: The incidence rate of gynecological tumor patients rises with age, and the cost of drug treatment has risen annually over the past five years, which is also related to the rising incidence rate of tumors in recent years. Bevacizumab rates first in the drug treatment scheme for the application of novel anti-tumor targeted drugs, which may be related to the widespread use of VEGFRi drugs in gynecological and reproductive tumors. Breast cancer and adenocarcinoma are at the top of the female cancer incidence spectrum, which may explain why HER2i multi-drug combination regimen rates highest among multi-drug combination regimens. Future research may concentrate on how novel anti-tumor targeted drugs can minimize the economic burden and maximize the benefits of patient treatment for patients with gynecological cancer.

7.
Int J Hematol ; 120(2): 157-166, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38814500

RESUMEN

G protein pathway suppressor 2 (GPS2) has been shown to play a pivotal role in human and mouse definitive erythropoiesis in an EKLF-dependent manner. However, whether GPS2 affects human primitive erythropoiesis is still unknown. This study demonstrated that GPS2 positively regulates erythroid differentiation in K562 cells, which have a primitive erythroid phenotype. Overexpression of GPS2 promoted hemin-induced hemoglobin synthesis in K562 cells as assessed by the increased percentage of benzidine-positive cells and the deeper red coloration of the cell pellets. In contrast, knockdown of GPS2 inhibited hemin-induced erythroid differentiation of K562 cells. GPS2 overexpression also enhanced erythroid differentiation of K562 cells induced by cytosine arabinoside (Ara-C). GPS2 induced hemoglobin synthesis by increasing the expression of globin and ALAS2 genes, either under steady state or upon hemin treatment. Promotion of erythroid differentiation of K562 cells by GPS2 mainly relies on NCOR1, as knockdown of NCOR1 or lack of the NCOR1-binding domain of GPS2 potently diminished the promotive effect. Thus, our study revealed a previously unknown role of GPS2 in regulating human primitive erythropoiesis in K562 cells.


Asunto(s)
Diferenciación Celular , Eritropoyesis , Hemina , Leucemia Eritroblástica Aguda , Co-Represor 1 de Receptor Nuclear , Humanos , 5-Aminolevulinato Sintetasa/genética , 5-Aminolevulinato Sintetasa/metabolismo , Células Eritroides/metabolismo , Células Eritroides/citología , Eritropoyesis/genética , Técnicas de Silenciamiento del Gen , Hemina/farmacología , Hemoglobinas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Células K562 , Leucemia Eritroblástica Aguda/patología , Leucemia Eritroblástica Aguda/metabolismo , Leucemia Eritroblástica Aguda/genética , Co-Represor 1 de Receptor Nuclear/metabolismo , Co-Represor 1 de Receptor Nuclear/genética
8.
Food Environ Virol ; 16(3): 297-306, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38582780

RESUMEN

The host-specific infection of Avian Astrovirus (AAstVs) has posed significant challenges to the poultry industry, resulting in substantial economic losses. However, few reports exist on the functional consequences of genome diversity, cross-species infectivity and mechanisms governing virus replication of AAstVs, making it difficult to develop measures to control astrovirus transmission. Reverse genetics technique can be used to study the function of viruses at the molecular level, as well as investigating pathogenic mechanisms and guide vaccine development and disease treatment. Herein, the reverse genetics technique of goose astrovirus GAstV/JS2019 strain was developed based on use of a reconstructed vector including CMV promotor, hammerhead ribozyme (HamRz), hepatitis delta virus ribozyme (HdvRz), and SV40 tail, then the cloned viral genome fragments were connected using Red/ET recombineering. The recombinant rGAstV-JS2019 was readily rescued by transfected the infectious clone plasmid into LMH cells. Importantly, the rescued rGAstV/JS2019 exhibited similar growth kinetics comparable to those of the parental GAstV/JS2019 isolate in cultured cells. Our research results provide an alternative and more effective reverse genetic tool for a detailed understanding of viral replication, pathogenic mechanisms, and molecular mechanisms of evolution.


Asunto(s)
Infecciones por Astroviridae , Avastrovirus , Gansos , Genoma Viral , Enfermedades de las Aves de Corral , Replicación Viral , Animales , Gansos/virología , Infecciones por Astroviridae/virología , Infecciones por Astroviridae/veterinaria , Avastrovirus/genética , Avastrovirus/clasificación , Enfermedades de las Aves de Corral/virología , Genética Inversa/métodos , Línea Celular
9.
Biomolecules ; 14(4)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38672469

RESUMEN

Porcine extraintestinal pathogenic Escherichia coli (ExPEC) is a pathogenic bacterium that causes huge economic losses to the pig farming industry and considerably threatens human health. The quorum sensing (QS) system plays a crucial role in the survival and pathogenesis of pathogenic bacteria. Hence, it is a viable approach to prevent ExPEC infection by compromising the QS system, particularly the LuxS/AI-2 system. In this study, we investigated the effects of baicalin on the LuxS/AI-2 system of ExPEC. Baicalin at concentrations of 25, 50, and 100 µg/mL significantly diminished the survival ability of ExPEC in hostile environments and could inhibit the biofilm formation and autoagglutination ability in ExPEC. Moreover, baicalin dose-dependently decreased the production of AI-2 and down-regulated the expression level of luxS in PCN033. These results suggest that baicalin can weaken the virulence of PCN033 by inhibiting the LuxS/AI-2 system. After the gene luxS was deleted, AI-2 production in PCN033 was almost completely eliminated, similar to the effect of baicalin on the production of AI-2 in PCN033. This indicates that baicalin reduced the production of AI-2 by inhibiting the expression level of luxS in ExPEC. In addition, the animal experiment further showed the potential of baicalin as a LuxS/AI-2 system inhibitor to prevent ExPEC infection. This study highlights the potential of baicalin as a natural quorum-sensing inhibitor for therapeutic applications in preventing ExPEC infection by targeting the LuxS/AI-2 system.


Asunto(s)
Proteínas Bacterianas , Liasas de Carbono-Azufre , Escherichia coli Patógena Extraintestinal , Flavonoides , Homoserina , Homoserina/análogos & derivados , Percepción de Quorum , Percepción de Quorum/efectos de los fármacos , Flavonoides/farmacología , Animales , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Porcinos , Virulencia/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Homoserina/metabolismo , Escherichia coli Patógena Extraintestinal/efectos de los fármacos , Escherichia coli Patógena Extraintestinal/patogenicidad , Escherichia coli Patógena Extraintestinal/genética , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Lactonas/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Enfermedades de los Porcinos/microbiología , Enfermedades de los Porcinos/tratamiento farmacológico
10.
Materials (Basel) ; 17(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38473663

RESUMEN

Chloride ion corrosion has been considered to be one of the main reasons for durability deterioration of reinforced concrete structures in marine or chlorine-containing deicing salt environments. This paper studies the relationship between the amount of fly ash and the durability of concrete, especially the resistance to chloride ion erosion. The heat trend map of total chloride ion factor correlation displayed that the ranking of factor correlations was as follows: sampling depth > cement dosage > fly ash dosage. In order to verify the effect of fly ash dosage on chloride ion resistance, three different machine learning algorithms (RF, GBR, DT) are employed to predict the total chloride content of fly ash proportioned concrete with varying admixture ratios, which are evaluated based on R2, MSE, RMSE, and MAE. The results predicted by the RF model show that the threshold of fly ash admixture in chlorinated salt environments is 30-40%. Replacing part of cement with fly ash in the mixture of concrete below this threshold of fly ash, it could change the phase structure and pore structure, which could improve the permeability of fly ash concrete and reduce the content of free chloride ions in the system. Machine learning modeling using sample data can accurately predict concrete properties, which effectively reduce engineering tests. The development of machine learning models is essential for the decarbonization and intelligence of engineering.

11.
Front Mol Biosci ; 11: 1366753, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38486946

RESUMEN

Introduction: Maintenance hemodialysis is an effective treatment for end-stage renal disease patients. A critical factor contributing to the deterioration and death of maintenance hemodialysis patients is inflammation. Therefore, we focused on two inflammatory markers, serum ferritin and neutrophil-to-lymphocyte ratio, to speculate whether they could predict the prognosis of maintenance hemodialysis patients. Patients and methods: We followed 168 patients with maintenance hemodialysis from July 2019 to July 2022 with the endpoint of all-cause death or follow-up completion. Receiver operating characteristic curves were plotted to assess the values of serum ferritin, neutrophil-to-lymphocyte ratio and serum ferritin combined with neutrophil-to-lymphocyte ratio to predict the outcomes of maintenance hemodialysis patients. Kaplan-Meier survival curves were constructed to compare survival rates over time. Results: Receiver operating characteristic curves demonstrated that the best cut-off value of serum ferritin for predicting the prognosis of maintenance hemodialysis patients was 346.05 µg/L, and that of neutrophil-to-lymphocyte ratio was 3.225. Furthermore, a combination of both had a more excellent predicting value than either index (p < 0.05). Kaplan-Meier survival curve analyses revealed that low serum ferritin levels and low neutrophil-to-lymphocyte ratio had a higher probability of survival than high ferritin levels and high neutrophil-to-lymphocyte ratio, separately. Conclusion: Elevated serum ferritin and neutrophil-to-lymphocyte ratio are closely related to all-cause mortality among maintenance hemodialysis patients, for which they may be predictors of all-cause mortality. Additionally, the combination of the two has a much higher predictor value for the prognosis of maintenance hemodialysis patients.

12.
Phytochemistry ; 220: 114037, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387725

RESUMEN

Five undescribed bisabosqual-type meroterpenoids, bisabosquals E (1) and F (2), stachybisbins J-L (4-6), together with two known ones, were isolated from a novel endophytic fungus KMU22001 within the Stachybotryaceae family. Their structures with absolute configurations were elucidated by detailed interpretation of NMR spectroscopy, mass spectrometry, single-crystal X-ray diffraction and electronic circular dichroism calculations. Compounds 2, 4 and 6 exhibited significant cytotoxicities against five human cancer cell lines with IC50 values ranging from 1.80 ± 0.08 to 17.76 ± 0.97 µM.


Asunto(s)
Antineoplásicos , Delphinium , Humanos , Estructura Molecular , Antineoplásicos/farmacología , Cristalografía por Rayos X , Dicroismo Circular
13.
Front Pharmacol ; 15: 1349121, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38348394

RESUMEN

Objective: Urinary tract infection (UTI) is common in pregnant women. The selection of anti-infection plans during pregnancy must take into account the dual factors of patient pregnancy status and urinary tract infection anti-infection treatment, as well as the efficacy, cost, risk, and potential adverse reactions associated with each method applied to individual patients. Consequently, there are numerous drugs from which to choose; presently, there is no unified conclusion regarding the choice of drug therapy, and there is a lack of long-term drug treatment for UTI during pregnancy. Our objective is to investigate the actual drug treatment patterns of UTI patients during pregnancy in China over the past 5 years, with a particular emphasis on the trend and rationality of antibiotic use in these patients over the past 5 years. Method: We conducted a cross-sectional analysis of data from a China Medical Association-supervised hospital prescription analysis cooperation initiative. From January 2018 to December 2022, the information is extracted from prescriptions/medical orders of patients with UTI during pregnancy. Using a primary anatomical therapeutic chemistry (ATC) classification code and the US Food and Drug Administration (FDA) classification, we quantified the frequency of drug use and drug types. We also calculated the prevalence of the most frequently prescribed antibacterial medications and assessed the efficacy of anti-infection plans based on drug labels and guidelines. Results: Among the 563 patients included in this research, Chengdu (36.59%), Guangzhou (27.72%), and Shanghai (8.70%) were the top three cities. Over the course of 5 years, the average age was 29.60% ± 6.59 years, with approximately 60.21% of women between the ages of 25 and 34. Each patient's primary anti-infection medications were statistically analyzed. Cephalosporins (403, 71.58%), enzyme inhibitors (66, 11.72%), and penicillins (34, 6.04%) were the first few categories, followed by the most commonly used cephalosporins. Cefuroxime, ceftriaxone, and cefdinib, rounded out the top five. Cefoxitin and cefaclor. According to the 5-year change in dosage, cephalosporins have always ranked first. Three of the top five most expensive drugs are cephalosporins, carbapenems, and enzyme inhibitors. Teicoplanin, tigecycline, nifurtel, linezolid, and quinolones ranked among the top five in terms of per-patient drug costs for patients receiving comprehensive treatment drugs. Conclusion: In the 5 years of research, the average age of patients who visit a doctor has not increased substantially, but the opportunity cost of female fertility has increased, which has severely impeded the fulfillment of fertility desires. The selection of medications is generally reasonable, and the dosage of the first-line cephalosporins recommended by the guidelines is relatively high in this study. The dosage of furantoin and fosfomycin, which are more prevalent in urinary tract infections, is however relatively low. In addition, some expensive pharmaceuticals may increase patients' financial burden. On the premise of meeting clinical needs, future research will focus on how to further improve the level of rational drug use in outpatient clinics, attain economical, safe, and effective drug use, and thus reduce the economic burden on patients.

14.
Virol Sin ; 39(2): 264-276, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38272236

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) is a major economically devastating pathogen that has evolved various strategies to evade innate immunity. Downregulation of antiviral interferon largely promotes PRRSV immunoevasion by utilizing cytoplasmic melanoma differentiation-associated gene 5 (MDA5), a receptor that senses viral RNA. In this study, the downregulated transcription and expression levels of porcine MDA5 in PRRSV infection were observed, and the detailed mechanisms were explored. We found that the interaction between P62 and MDA5 is enhanced due to two factors: the phosphorylation modification of the autophagic receptor P62 by the upregulated kinase CK2α and the K63 ubiquitination of porcine MDA5 catalyzed by the E3 ubiquitinase TRIM21 in PRRSV-infected cells. As a result of these modifications, the classic P62-mediated autophagy is triggered. Additionally, porcine MDA5 interacts with the chaperonin containing TCP1 subunit 2 (CCT2), which is enhanced by PRRSV nsp3. This interaction promotes the aggregate formation and autophagic clearance of MDA5-CCT2-nsp3 independently of ubiquitination. In summary, enhanced MDA5 degradation occurs in PRRSV infection via two autophagic pathways: the binding of MDA5 with the autophagy receptor P62 and the aggrephagy receptor CCT2, leading to intense innate immune suppression. The research reveals a novel mechanism of immune evasion in PRRSV infection and provides fundamental insights for the development of new vaccines or therapeutic strategies.


Asunto(s)
Autofagia , Inmunidad Innata , Helicasa Inducida por Interferón IFIH1 , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Línea Celular , Interacciones Huésped-Patógeno/inmunología , Evasión Inmune , Helicasa Inducida por Interferón IFIH1/metabolismo , Helicasa Inducida por Interferón IFIH1/genética , Fosforilación , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Síndrome Respiratorio y de la Reproducción Porcina/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Porcinos , Ubiquitinación , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología , Humanos
15.
Int J Biol Macromol ; 254(Pt 1): 127592, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37913885

RESUMEN

Incorporating zinc oxide nanoparticles (ZnOnps) into collagen is a promising strategy for fabricating biomaterials with excellent antibacterial activity, but modifications are necessary due to the low zinc binding affinity of native collagen, which can cause disturbances to the functions of both ZnOnps and collagen and result in heterogeneous effects. To address this issue, we have developed a genetically encoded zinc-binding collagen-like protein, Zn-eCLP3, which was genetically modified by Scl2 collagen-like protein. Our study found that Zn-eCLP3 has a binding affinity for zinc that is 3-fold higher than that of commercialized type I collagen, as determined by isothermal titration calorimetry (ITC). Using ZnOnps-coordinated Zn-eCLP3 protein and xanthan gum, we prepared a hydrogel that showed significantly stronger antibacterial activity compared to a collagen hydrogel prepared in the same manner. In vitro cytocompatibility tests were conducted to assess the potential of the Zn-eCLP3 hydrogel for wound repair applications. In vivo experiments, which involved an S. aureus-infected mouse trauma model, showed that the application of the Zn-eCLP3 hydrogel resulted in rapid wound regeneration and increased expression of collagen-1α and cytokeratin-14. Our study highlights the potential of Zn-eCLP3 and the hybrid hydrogel for further studies and applications in wound repair.


Asunto(s)
Hidrogeles , Óxido de Zinc , Ratones , Animales , Hidrogeles/farmacología , Hidrogeles/química , Staphylococcus aureus , Colágeno/química , Óxido de Zinc/química , Zinc , Antibacterianos/química
16.
Nat Prod Res ; 38(4): 581-588, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36855227

RESUMEN

The chemical epigenetic modifier 5-azacitidine (5-Aza C), a DNA methyltransferase inhibitor, was used to manipulate the endophytic fungus Penicillium sp. KMU18029. From its rice fermentation extract, a new polyketone compound (3S,4R)-3,4,8-trihydroxy-6-methyl-3,4-dihydronaphthalen-1(2H)-one (1), along with 13 known compounds, 3,4,8-trihydroxy-6-(hydroxymethyl)-3,4-dihydronaphthalen-1(2H)-one (2), decaturin B (3), 15-hydroxydecaturin A (4), oxalicine A (5), pileotin A (6), pyrandecarurin A (7), decaturenol A (8), decaturenoid (9), penisarins A (10), oxaline (11), (4E,8E)-N-D-2'-hydroxyocta-decanoyl-1-O-ß-D-glycopy-ranosyl-9-methyl-4,8-sphingadienine (12), ergosterol (13) and stigma-5-en-3-O-ß-glucoside (14), were separated. Among the known compounds, 2, 7, 12 and 14 were not found in our previous research on this strain. The structure of the new compound was identified by spectroscopic techniques such as HR-ESIMS, 1D NMR, 2D NMR and CD. Furthermore, all the isolated compounds were tested for their antimicrobial activities, and only compounds 1, 2 and 11 showed weak activities against S. aureus, with MICs of 128 µg/mL.


Asunto(s)
Azacitidina , Penicillium , Penicillium/química , Estructura Molecular , Staphylococcus aureus , Espectroscopía de Resonancia Magnética , Epigénesis Genética
17.
Cell Death Dis ; 14(11): 743, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968261

RESUMEN

BRISC (BRCC3 isopeptidase complex) is a deubiquitinating enzyme that has been linked with inflammatory processes, but its role in liver diseases and the underlying mechanism are unknown. Here, we investigated the pathophysiological role of BRISC in acute liver failure using a mice model induced by D-galactosamine (D-GalN) plus lipopolysaccharide (LPS). We found that the expression of BRISC components was dramatically increased in kupffer cells (KCs) upon LPS treatment in vitro or by the injection of LPS in D-GalN-sensitized mice. D-GalN plus LPS-induced liver damage and mortality in global BRISC-null mice were markedly attenuated, which was accompanied by impaired hepatocyte death and hepatic inflammation response. Constantly, treatment with thiolutin, a potent BRISC inhibitor, remarkably alleviated D-GalN/LPS-induced liver injury in mice. By using bone marrow-reconstituted chimeric mice and cell-specific BRISC-deficient mice, we demonstrated that KCs are the key effector cells responsible for protection against D-GalN/LPS-induced liver injury in BRISC-deficient mice. Mechanistically, we found that hepatic and circulating levels of TNF-α, IL-6, MCP-1, and IL-1ß, as well as TNF-α- and MCP-1-producing KCs, in BRISC-deleted mice were dramatically decreased as early as 1 h after D-GalN/LPS challenge, which occurred prior to the elevation of the liver injury markers. Moreover, LPS-induced proinflammatory cytokines production in KCs was significantly diminished by BRISC deficiency in vitro, which was accompanied by potently attenuated NF-κB activation. Restoration of NF-κB activation by two small molecular activators of NF-κB p65 effectively reversed the suppression of cytokines production in ABRO1-deficient KCs by LPS. In conclusion, BRISC is required for optimal activation of NF-κB-mediated proinflammatory cytokines production in LPS-treated KCs and contributes to acute liver injury. This study opens the possibility to develop new strategies for the inhibition of KCs-driven inflammation in liver diseases.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Animales , Ratones , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Macrófagos del Hígado/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Hígado/metabolismo , Inflamación/metabolismo , Galactosamina , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
18.
Ren Fail ; 45(2): 2270061, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37870857

RESUMEN

Diabetic kidney disease (DKD) is a severe complication of diabetes mellitus (DM). The literature on DKD inflammation research has experienced substantial growth. However, there is a lack of bibliometric analyses. This study aimed to examine the existing research on inflammation in DKD by analyzing articles published in the Web of Science Core Collection (WOSCC) over the past 30 years. We conducted a visualization analysis using several software, including CiteSpace and VOSviewer. We found that the literature on inflammation research in DKD has experienced substantial growth, indicating a rising interest in this developing area of study. In this field, Navarro-Gonzalez, JF is the most frequently cited author, Kidney International is the most frequently cited journal, China had the highest number of publications in the field of DKD inflammation, and Monash University emerged as the institution with the most published research. The research area on inflammation in DKD primarily centers around the investigation of 'Glycation end-products', 'chronic kidney disease', and 'diabetic nephropathy'. The emerging research trends in this field will focus on the 'Gut microbiota', 'NLRP3 inflammasome', 'autophagy', 'pyroptosis', 'sglt2 inhibitor', and 'therapeutic target'. Future research on DKD may focus on further exploring the inflammatory response, identifying specific therapeutic targets, studying biomarkers, investigating stem cell therapy and tissue engineering, and exploring gene therapy and gene editing. In summary, this study examines the main areas of study, frontiers, and trends in DKD inflammation, which have significant implications for future research.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Humanos , Nefropatías Diabéticas/etiología , Riñón , Bibliometría , Autofagia , Inflamación
19.
Front Plant Sci ; 14: 1242089, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37636117

RESUMEN

Brown planthopper (Nilaparvata lugens Stål, BPH) is one of the most destructive pests of rice. Non-coding RNA plays an important regulatory role in various biological processes. However, comprehensive identification and characterization of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in BPH-infested rice have not been performed. Here, we performed a genome-wide analysis of lncRNAs and circRNAs in BPH6-transgenic (resistant, BPH6G) and Nipponbare (susceptible, NIP) rice plants before and after BPH feeding (early and late stage) via deep RNA-sequencing. A total of 310 lncRNAs and 129 circRNAs were found to be differentially expressed. To reveal the different responses of resistant and susceptible rice to BPH herbivory, the potential functions of these lncRNAs and circRNAs as competitive endogenous RNAs (ceRNAs) were predicted and investigated using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Dual-luciferase reporter assays revealed that miR1846c and miR530 were targeted by the lncRNAs XLOC_042442 and XLOC_028297, respectively. In responsive to BPH infestation, 39 lncRNAs and 21 circRNAs were predicted to combine with 133 common miRNAs and compete for miRNA binding sites with 834 mRNAs. These mRNAs predictably participated in cell wall organization or biogenesis, developmental growth, single-organism cellular process, and the response to stress. This study comprehensively identified and characterized lncRNAs and circRNAs, and integrated their potential ceRNA functions, to reveal the rice BPH-resistance network. These results lay a foundation for further study on the functions of lncRNAs and circRNAs in the rice-BPH interaction, and enriched our understanding of the BPH-resistance response in rice.

20.
BMC Endocr Disord ; 23(1): 140, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37415174

RESUMEN

BACKGROUND: Diabetic nephropathy (DN) is a chronic condition resulting from microangiopathy in a high-glucose environment. The evaluation of vascular injury in DN has primarily focused on active molecules of VEGF, namely VEGFA and VEGF2(F2R). Notoginsenoside R1 (NGR1), a traditional anti-inflammatory medication, exhibits vascular activity. Therefore, identifying classical drugs with vascular inflammatory protection for the treatment of DN is a valuable pursuit. METHODS: The "Limma" method was employed to analyze the glomerular transcriptome data, while the Spearman algorithm for Swiss target prediction was utilized to analyze the drug targets of NGR1. The molecular docking technique was employed to investigate the relationship between vascular active drug targets, and the COIP experiment was conducted to verify the interaction between fibroblast growth factor 1 (FGF1) and VEGFA in relation to NGR1 and drug targets. RESULTS: According to the Swiss target prediction, the LEU32(b) site of the Vascular Endothelial Growth Factor A (VEGFA) protein, as well as the Lys112(a), SER116(a), and HIS102(b) sites of the Fibroblast Growth Factor 1 (FGF1) protein, are potential binding sites for NGR1 through hydrogen bonding. Additionally, the Co-immunoprecipitation (COIP) results suggest that VEGFA and FGF1 proteins can interact with each other, and NGR1 can impede this interaction. Furthermore, NGR1 can suppress the expression of VEGFA and FGF1 in a high-glucose environment, thereby decelerating podocyte apoptosis. CONCLUSION: The inhibition of the interaction between FGF1 and VEGFA by NGR1 has been observed to decelerate podocyte apoptosis.


Asunto(s)
Podocitos , Factor A de Crecimiento Endotelial Vascular , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor 1 de Crecimiento de Fibroblastos , Simulación del Acoplamiento Molecular , Podocitos/metabolismo , Apoptosis , Glucosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA