Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Nanobiotechnology ; 21(1): 177, 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37268942

RESUMEN

Long-term chronic inflammation after Achilles tendon injury is critical for tendinopathy. Platelet-rich plasma (PRP) injection, which is a common method for treating tendinopathy, has positive effects on tendon repair. In addition, tendon-derived stem cells (TDSCs), which are stem cells located in tendons, play a major role in maintaining tissue homeostasis and postinjury repair. In this study, injectable gelatine methacryloyl (GelMA) microparticles containing PRP laden with TDSCs (PRP-TDSC-GM) were prepared by a projection-based 3D bioprinting technique. Our results showed that PRP-TDSC-GM could promote tendon differentiation in TDSCs and reduce the inflammatory response by downregulating the PI3K-AKT pathway, thus promoting the structural and functional repair of tendons in vivo.


Asunto(s)
Plasma Rico en Plaquetas , Tendinopatía , Ratas , Animales , Hidrogeles/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Tendones , Tendinopatía/terapia , Tendinopatía/metabolismo , Células Madre , Plasma Rico en Plaquetas/metabolismo , Impresión Tridimensional
2.
Redox Biol ; 61: 102635, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36870110

RESUMEN

Glutathione S-transferase P1(GSTP1) is known for its transferase and detoxification activity. Based on disease-phenotype genetic associations, we found that GSTP1 might be associated with bone mineral density through Mendelian randomization analysis. Therefore, this study was performed both in vitro cellular and in vivo mouse model to determine how GSTP1 affects bone homeostasis. In our research, GSTP1 was revealed to upregulate the S-glutathionylation level of Pik3r1 through Cys498 and Cys670, thereby decreasing its phosphorylation, further controlling the alteration of autophagic flux via the Pik3r1-AKT-mTOR axis, and lastly altering osteoclast formation in vitro. In addition, knockdown and overexpression of GSTP1 in vivo also altered bone loss outcomes in the OVX mice model. In general, this study identified a new mechanism by which GSTP1 regulates osteoclastogenesis, and it is evident that the cell fate of osteoclasts is controlled by GSTP1-mediated S-glutathionylation via a redox-autophagy cascade.


Asunto(s)
Glutatión Transferasa , Osteogénesis , Animales , Ratones , Fosforilación , Factores de Transcripción , Autofagia , Oxidación-Reducción
3.
Acta Biomater ; 161: 80-99, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36804538

RESUMEN

The regenerative capabilities including self-renewal, migration and differentiation potentials shift from the embryonic phase to the mature period of endogenous tendon stem/progenitor cells (TSPCs) characterize restricted functions and disabilities following tendon injuries. Recent studies have shown that tendon regeneration and repair rely on multiple specific transcription factors to maintain TSPCs characteristics and functions. Here, we demonstrate Yap, a Hippo pathway downstream effector, is associated with TSPCs phenotype and regenerative potentials through gene expression analysis of tendon development and repair process. Exosomes have been proven an efficient transport platform for drug delivery. In this study, purified exosomes derived from donor platelets are loaded with recombinant Yap1 protein (PLT-Exo-Yap1) via electroporation to promote the stemness and differentiation potentials of TSPCs in vitro. Programmed TSPCs with Yap1 import maintain stemness and functions after long-term passage in vitro. The increased oxidative stress levels of TSPCs are related to the phenotype changes in duplicative senescent processes. The results show that treatment with PLT-Exo-Yap1 significantly protects TSPCs against oxidative stressor-induced stemness loss and senescence-associated secretory phenotype (SASP) through the NF-κB signaling pathway. In addition, we fabricate an Exos-Yap1-functioned GelMA hydrogel with a parallel-aligned substrate structure to enhance TSPCs adhesion, promote cell stemness and force regenerative cells toward the tendon lineage for in vitro and in vivo tendon regeneration. The application of Exos-Yap1 functioned implant assists new tendon-like tissue formation with good mechanical properties and locomotor functions in a full-cut Achilles tendon defect model. Thus, PLT-Exo-Yap1-functionalized GelMA promotes the rejuvenation of TSPCs to facilitate functional tendon regeneration. STATEMENT OF SIGNIFICANCE: This is the first study to explore that the hippo pathway downstream effector Yap is involved in tendon aging and repair processes, and is associated with the regenerative capabilities of TSPCs. In this syudy, Platelet-derived exosomes (PLT-Exos) act as an appropriate carrier platform for the delivery of recombinant Yap1 into TSPCs to regulate Yap activity. Effective Yap1 delivery inhibit oxidative stress-induced senescence associated phenotype of TSPCs by blocking ROS-mediated NF-κb signaling pathway activation. This study emphasizes that combined application of biomimetic scaffolds and Yap1 loaded PLT-Exos can provide structural support and promote rejuvenation of resident cells to assist functional regeneration for Achilles tendon defect, and has the prospect of clinical setting.


Asunto(s)
Tendón Calcáneo , Exosomas , Rejuvenecimiento , FN-kappa B/metabolismo , Plaquetas , Proliferación Celular , Células Madre , Factores de Transcripción/metabolismo , Regeneración
4.
J Nanobiotechnology ; 21(1): 14, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36642728

RESUMEN

Tendon-bone insertion (TBI) injuries, such as anterior cruciate ligament injury and rotator cuff injury, are the most common soft tissue injuries. In most situations, surgical tendon/ligament reconstruction is necessary for treating such injuries. However, a significant number of cases failed because healing of the enthesis occurs through scar tissue formation rather than the regeneration of transitional tissue. In recent years, the therapeutic potential of mesenchymal stem cells (MSCs) has been well documented in animal and clinical studies, such as chronic paraplegia, non-ischemic heart failure, and osteoarthritis of the knee. MSCs are multipotent stem cells, which have self-renewability and the ability to differentiate into a wide variety of cells such as chondrocytes, osteoblasts, and adipocytes. Numerous studies have suggested that MSCs could promote angiogenesis and cell proliferation, reduce inflammation, and produce a large number of bioactive molecules involved in the repair. These effects are likely mediated by the paracrine mechanisms of MSCs, particularly through the release of exosomes. Exosomes, nano-sized extracellular vesicles (EVs) with a lipid bilayer and a membrane structure, are naturally released by various cell types. They play an essential role in intercellular communication by transferring bioactive lipids, proteins, and nucleic acids, such as mRNAs and miRNAs, between cells to influence the physiological and pathological processes of recipient cells. Exosomes have been shown to facilitate tissue repair and regeneration. Herein, we discuss the prospective applications of MSC-derived exosomes in TBI injuries. We also review the roles of MSC-EVs and the underlying mechanisms of their effects on promoting tendon-bone healing. At last, we discuss the present challenges and future research directions.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , MicroARNs , Lesiones del Manguito de los Rotadores , Animales , Exosomas/metabolismo , Tendones/metabolismo , MicroARNs/metabolismo
5.
Am J Sports Med ; 50(14): 3844-3855, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36326437

RESUMEN

BACKGROUND: Anterior cruciate ligament (ACL) injuries and bone tunnel enlargement (BTE) after ACL reconstruction (ACLR) remain frequent issues. Bone dust (BD) produced by tunnel preparation with osteogenic ability and reverse drilling (RD), an easy compaction technique, make it accessible to enhance tendon-bone healing in the clinic. HYPOTHESIS: RD and BD synergistically promote tendon-bone healing by improving peritunnel bone and preventing BTE in femurs. STUDY DESIGN: Controlled laboratory study. METHODS: In total, 96 New Zealand White rabbits underwent ACLR. The semitendinosus tendon was freed before medial parapatellar arthrotomy. After the native ACL was transected, bone tunnels were prepared through the footprint of the native ACL. All animals were randomly assigned to 1 of 4 groups according to different tunnel preparation methods: group 1 (irrigation after extraction drilling [ED]; control group), group 2 (irrigation after RD), group 3 (no irrigation after ED), and group 4 (no irrigation after RD). BD was harvested by irrigating tunnels and was characterized by morphology and size. The specimens underwent microarchitectural, histological, and biomechanical evaluations at 4, 8, and 12 weeks postoperatively. RESULTS: Micro-computed tomography demonstrated more peritunnel bone and less BTE in the femurs of group 4 compared with the other groups. Histologically, BD possessed osteogenic activity in bone tunnels postoperatively. Meanwhile, group 4 regenerated a higher amount of the tendon-bone interface and more peritunnel bone than group 1. Biomechanically, group 4 showed higher failure loads and stiffness than group 1. However, peritunnel bone loss, active osteoclasts, and significant BTE were found in the femurs of group 1 and group 3 at 12 weeks postoperatively, while no strong correlation was found between BTE and inflammatory cytokines. Scanning electron microscopy and particle size analysis suggested that BD produced by ED and RD had no difference in size. CONCLUSION: Tendon-bone healing was facilitated by the synergistic effect of RD and BD in femurs. CLINICAL RELEVANCE: This study provides a more accessible and effective surgical strategy to promote tendon-bone healing after ACLR by increasing peritunnel bone and preventing BTE in femurs.


Asunto(s)
Reconstrucción del Ligamento Cruzado Anterior , Polvo , Animales , Conejos , Proyectos de Investigación , Microtomografía por Rayos X
6.
Front Surg ; 9: 965505, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36189385

RESUMEN

Objective: To investigate whether preoperative lateral anterior tibial subluxation (LATS) measured from magnetic resonance imaging (MRI) can influence tibial insertion and postoperative sagittal alignment after anterior cruciate ligament reconstructions (ACLRs). Methods: 84 patients who underwent single-bundle ACLRs were retrospectively investigated. Among them, 39 patients (LATS of <6 mm) 23 patients (LATS of ≥6 mm and <10 mm) and 22 patients (excessive LATS of ≥10 mm) were defined as group 1, 2 and 3, respectively. LATS, the position of graft insertion into tibia as ratio of anterior-posterior width (AP ratio) and the sagittal graft angle (SGA) were postoperatively assessed from MRI at 2-year follow-up. Following linear regression analyses were employed. Results: The group 3 exhibited the largest preoperative LATS and remained the most postoperative LATS. Moreover, the group 3 possessed the most posteriorly located tunnel insertion with the largest AP ratio and the most vertical graft orientation. Of all included patients, a moderate correlation was demonstrated between pre- and postoperative LATS (r = 0.635). A low correlation was observed between preoperative LATS and AP ratio (r = 0.300) and a moderate correlation was displayed between AP ratio and SGA (r = 0.656). Conclusion: For ACL injuries with excessive LATS (≥10 mm), most posteriorly located tibial insertion was found out, and worse sagittal alignment containing high residual LATS was associated with more vertical graft orientation following ACLRs.

7.
Front Endocrinol (Lausanne) ; 13: 942878, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35923623

RESUMEN

Background: As a valuable blood glucose measurement, HemoglobinA1c (HbA1c) is of great clinical value for diabetes. However, in previous observational studies, studies on its effect on bone mineral density (BMD) have different results. This study aimed to use Mendelian randomization (MR) to assess the effect of HbA1c on bone mineral density and fracture risk, and try to further explore whether this association was achieved through glycemic or non-glycemic factors. Methods: Take HbA1c measurement as exposure, and BMD estimated from quantitative heel ultrasounds (eBMD) and bone fractures as outcomes. Two-Sample MR Analysis was conducted to assess the causal effect of HbA1C on heel BMD and risk fracture. Then, we performed the analysis using two subsets of these variants, one related to glycemic measurement and the other to erythrocyte indices. Results: Genetically increased HbA1C was associated with the lower heel eBMD [odds ratio (OR) 0.91 (95% CI 0.87, 0.96) per %-unit, P = 3 × 10-4(IVW)]. Higher HbA1C was associated with lower heel eBMD when using only erythrocytic variants [OR 0.87 (0.82, 0.93), P=2× 10-5(IVW)]; However, when using only glycemic variants, this casual association does not hold. In further MR analysis, we test the association of erythrocytic traits with heel eBMD. Conclusion: Our study revealed the significant causal effect of HbA1c on eBMD, and this causal link might achieve through non-glycemic pathways (erythrocytic indices).


Asunto(s)
Densidad Ósea , Fracturas Óseas , Glucemia , Densidad Ósea/genética , Fracturas Óseas/genética , Hemoglobina Glucada , Humanos , Análisis de la Aleatorización Mendeliana , Factores de Riesgo
8.
Front Pharmacol ; 13: 854239, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35800437

RESUMEN

Osteoarthritis is a worldwide joint disease caused by abnormal chondrocytic metabolism. However, traditional therapeutic methods aimed at anti-inflammation for early-stage disease are palliative. In the present study, we demonstrated that cepharanthine (CEP), extracted from the plant Stephania cepharantha, exerted protective medicinal efficacy on osteoarthritis for the first time. In our in vitro study, CEP suppressed the elevated expression of matrix metalloproteinases (MMPs), a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) and inducible nitric oxide synthase (iNOS) stimulated by IL-1ß or TNF-α by inhibiting the activation of MAPK and NF-κB signaling pathways, and upregulated the protein expression of aggrecan, collagen II, and Sox9. Also, CEP could reverse the reduced level of cellular autophagy in IL-1ß or TNF-α-induced chondrocytes, indicating that the protective effect of CEP on osteoarthritis was achieved by restoring MAPK/NF-κB-mediated autophagy. Furthermore, in a murine OA model, CEP mitigated cartilage degradation and prevented osteoarthritis in the CEP-treated groups versus the OA group. Hence, our results revealed the therapeutic prospect of CEP for anti-osteoarthritic treatment.

9.
Arthroscopy ; 38(10): 2852-2860, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35550417

RESUMEN

PURPOSE: To investigate whether anterior tibial subluxation obtained from magnetic resonance imaging (MRI) could be a predictor of high-grade rotatory instability for anterior cruciate ligament (ACL) injuries, including acute and chronic cases. METHODS: From September 2016 to August 2018, we retrospectively investigated 163 patients with ACL injuries who subsequently underwent primary ACL reconstruction. Among them, 30 patients with high-grade rotatory instability (grade II/III pivot shift) were included in the high-grade group, and their age and sex were matched 1:2 to low-grade cases (3 months) phases. RESULTS: The high-grade group had a larger anterior tibial subluxation of lateral compartment (8.1 mm vs 5.9 mm; P =.004) than the low-grade group, whereas no significant difference was found in anterior tibial subluxation of medial compartment (P > .05). Moreover, high-grade anterior tibial subluxation of lateral compartment (≥6 mm) was found to be an independent predictor (odds ratio, 12.992; P = .011) associated with concomitant meniscal tears after ACL injuries. Anterior tibial subluxation of lateral compartment demonstrated statistical significance between the two groups when comparing subgroups within 3 months but not beyond 3 months. CONCLUSION: In ACL-injured patients, high-grade anterior tibial subluxation of lateral compartment (≥6 mm) could be a unique predictor of high-grade knee rotatory instability for acute but not chronic injuries. Prolonged time from injury to surgery and lateral meniscus tears were risk factors for high-grade rotatory laxity in chronic patients. LEVEL OF EVIDENCE: Level III, retrospective prognostic trial.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Luxaciones Articulares , Inestabilidad de la Articulación , Lesiones del Ligamento Cruzado Anterior/complicaciones , Lesiones del Ligamento Cruzado Anterior/diagnóstico por imagen , Lesiones del Ligamento Cruzado Anterior/cirugía , Estudios de Casos y Controles , Femenino , Humanos , Luxaciones Articulares/cirugía , Inestabilidad de la Articulación/complicaciones , Inestabilidad de la Articulación/etiología , Articulación de la Rodilla/cirugía , Imagen por Resonancia Magnética , Masculino , Estudios Retrospectivos
10.
Front Immunol ; 12: 707617, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539640

RESUMEN

Objectives: To find out the genetic association between IL6 and autoimmune arthritis. Methods: We performed a two-sample Mendelian randomization (MR) study using multiple genome-wide association studies (GWAS) datasets. Furthermore, a sex-stratified MR study was performed to identify sexual dimorphism in the association between IL6 and autoimmune arthritis. Then, LocusZoom plots were displayed based on the IL6R gene region to present evidence of genetic colocalization between diseases. Results: The MR result denoted a genetic association between the increased level of IL-6 signaling and risk of RA (ß=0.325, 95%CI 0.088, 0.561, p=7.08E-03) and AS (ß=1.240, 95%CI 0.495, 1.980, p=1.1E-03). Accordingly, sIL6R was found to have negatively correlation with the onset of RA (ß=-0.020, 95%CI -0.0320, -0.008, p=1.18E-03) and AS (ß=-0.125, 95%CI -0.177, -0.073, p=2.29E-06). However, no genetic association between IL6/sIL6R and PsA was detected. The gender-stratified MR analysis showed that IL6 was associated with AS in the male population, with RA in the female population, and with PsA in the male population. Additionally, ADAR, a gene identified by a sensitive test, could be the reason for the nonsignificant association between IL6 and PsA in a pooled population. Conclusion: Our findings showed that the overactive IL6 signal pathway led to autoimmune arthritis, especially in RA and AS. Sexual difference was also observed in IL6-intermediate susceptibility to autoimmune arthritis.


Asunto(s)
Artritis Psoriásica/genética , Artritis Reumatoide/genética , Espondiloartritis Axial/genética , Predisposición Genética a la Enfermedad , Interleucina-6/genética , Caracteres Sexuales , Artritis Psoriásica/inmunología , Artritis Reumatoide/inmunología , Espondiloartritis Axial/inmunología , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Análisis de la Aleatorización Mendeliana
11.
Free Radic Biol Med ; 171: 365-378, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34000381

RESUMEN

Overactive osteoclastogenesis is involved in the inflammatory bone loss and could be target for therapy. Here, we applied transcription factor enrichment analysis using public inflammatory osteolysis datasets and identified Nrf2 as the potential therapeutic target. Additionally, in-silico screening was performed to dig out Nrf2-Keap1 PPI inhibitor and Forsythoside-ß was found to be the best-performing PHG compound. We firstly tested the effect of Forsythoside-ß in inflammatory osteoporosis models and found it was able to attenuate the bone loss by inhibiting osteoclastogenesis and activating Nrf2-signaling in vivo. Forsythoside-ß was capable to suppress the differentiation of osteoclast in time and dose-dependent manners in vitro. Further, Forsythoside-ß could inhibit the production of reactive oxygen species and induce Nrf2 nuclear-translocation by interrupting Nrf2-Keap1 PPI. Recently, Nrf2 was identified as the epigenetic regulator modulating levels of miRNA in various diseases. We discovered that Forsythoside-ß could suppress the expression of mir-214-3p, one of most variable miRNAs during osteoclastogenesis. To clarify the undermining mechanism, by utilizing chip-seq dataset, we found that Nrf2 could bind to promoter of mir-214-3p and further regulate this miRNA. Collectively, Forsythoside-ß was able to prevent bone loss through Nrf2-mir-214-3p-Traf3 axis, which could be a promising candidate for treating inflammatory bone loss in the future.


Asunto(s)
MicroARNs , Osteoporosis , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Osteoclastos/metabolismo , Osteoporosis/tratamiento farmacológico , Osteoporosis/genética , Factor 3 Asociado a Receptor de TNF
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA