Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Int Immunopharmacol ; 139: 112665, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39002523

RESUMEN

BACKGROUND: Immunotherapy has revolutionized the treatment of various types of tumors, but there has been no breakthrough in the treatment of gliomas. The aim of this study is to discover valuable immunotherapy target in glioma, analyze its expression in glioma and the related microenvironment, explore potential immunotherapy strategies, and propose new possibilities for the treatment of gliomas. METHODS: Immunohistochemistry (IHC) and multiplex fluorescence immunohistochemistry (mIHC) were used to analyze the expression of common immune markers and checkpoints in 187 glioma patients from Sun Yat-sen University Caner Center (SYSUCC). Bioinformatics analysis was used to examine the expression of TIM-3 in different macrophages using the Chinese Glioma Genome Atlas (CGGA) single-cell sequencing database. The Kaplan-Meier curve was used to predict the prognostic value of samples with high TIM-3 and CD68 expression. The R package was used to analyze the somatic mutation status and the sensitivity of small molecule inhibitors in TIM-3/CD68 double-high expression samples. RESULTS: TIM-3 is a relatively highly expressed immune checkpoint in glioma. Unlike other tumors, TIM-3 is mainly expressed on macrophages in the glioma microenvironment. TIM-3/CD68 double-high expression suggests poor survival in glioma and may be a new upgrade marker in both IDH-mutant glioma and IDH-wildtype low-grade glioma (LGG) glioma (P < 0.01). Exploring the combination of TIM-3 inhibitors and p38 MAPK inhibitor may be a potential treatment direction for TIM-3/CD68 double high expression gliomas in the future. CONCLUSIONS: The combination of TIM-3 and CD68 holds significant importance as a potential target for both prognosis and therapeutic intervention in glioma.

2.
Sci Transl Med ; 16(752): eadl5931, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896605

RESUMEN

Clinical treatment of acute myeloid leukemia (AML) largely relies on intensive chemotherapy. However, the application of chemotherapy is often hindered by cardiotoxicity. Patient sequence data revealed that angiotensin II receptor type 1 (AGTR1) is a shared target between AML and cardiovascular disease (CVD). We found that inhibiting AGTR1 sensitized AML to chemotherapy and protected the heart against chemotherapy-induced cardiotoxicity in a human AML cell-transplanted mouse model. These effects were regulated by the AGTR1-Notch1 axis in AML cells and cardiomyocytes from mice. In mouse cardiomyocytes, AGTR1 was hyperactivated by AML and chemotherapy. AML leukemogenesis increased the expression of the angiotensin-converting enzyme and led to increased production of angiotensin II, the ligand of AGTR1, in an MLL-AF9-driven AML mouse model. In this model, the AGTR1-Notch1 axis regulated a variety of genes involved with cell stemness and chemotherapy resistance. AML cell stemness was reduced after Agtr1a deletion in the mouse AML cell transplant model. Mechanistically, Agtr1a deletion decreased γ-secretase formation, which is required for transmembrane Notch1 cleavage and release of the Notch1 intracellular domain into the nucleus. Using multiomics, we identified AGTR1-Notch1 signaling downstream genes and found decreased binding between these gene sequences with Notch1 and chromatin enhancers, as well as increased binding with silencers. These findings describe an AML/CVD association that may be used to improve AML treatment.


Asunto(s)
Cardiotoxicidad , Modelos Animales de Enfermedad , Leucemia Mieloide Aguda , Receptor de Angiotensina Tipo 1 , Receptor Notch1 , Animales , Humanos , Ratones , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Cardiotoxicidad/metabolismo , Cardiotoxicidad/patología , Línea Celular Tumoral , Corazón/efectos de los fármacos , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 1/genética , Receptor Notch1/metabolismo , Transducción de Señal/efectos de los fármacos
3.
J Neurosci ; 44(27)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38789262

RESUMEN

We previously showed that orexin neurons are activated by hypoxia and facilitate the peripheral chemoreflex (PCR)-mediated hypoxic ventilatory response (HVR), mostly by promoting the respiratory frequency response. Orexin neurons project to the nucleus of the solitary tract (nTS) and the paraventricular nucleus of the hypothalamus (PVN). The PVN contributes significantly to the PCR and contains nTS-projecting corticotropin-releasing hormone (CRH) neurons. We hypothesized that in male rats, orexin neurons contribute to the PCR by activating nTS-projecting CRH neurons. We used neuronal tract tracing and immunohistochemistry (IHC) to quantify the degree that hypoxia activates PVN-projecting orexin neurons. We coupled this with orexin receptor (OxR) blockade with suvorexant (Suvo, 20 mg/kg, i.p.) to assess the degree that orexin facilitates the hypoxia-induced activation of CRH neurons in the PVN, including those projecting to the nTS. In separate groups of rats, we measured the PCR following systemic orexin 1 receptor (Ox1R) blockade (SB-334867; 1 mg/kg) and specific Ox1R knockdown in PVN. OxR blockade with Suvo reduced the number of nTS and PVN neurons activated by hypoxia, including those CRH neurons projecting to nTS. Hypoxia increased the number of activated PVN-projecting orexin neurons but had no effect on the number of activated nTS-projecting orexin neurons. Global Ox1R blockade and partial Ox1R knockdown in the PVN significantly reduced the PCR. Ox1R knockdown also reduced the number of activated PVN neurons and the number of activated tyrosine hydroxylase neurons in the nTS. Our findings suggest orexin facilitates the PCR via nTS-projecting CRH neurons expressing Ox1R.


Asunto(s)
Hormona Liberadora de Corticotropina , Neuronas , Antagonistas de los Receptores de Orexina , Receptores de Orexina , Orexinas , Ratas Sprague-Dawley , Núcleo Solitario , Animales , Masculino , Hormona Liberadora de Corticotropina/metabolismo , Orexinas/metabolismo , Ratas , Neuronas/metabolismo , Neuronas/fisiología , Neuronas/efectos de los fármacos , Núcleo Solitario/metabolismo , Núcleo Solitario/fisiología , Núcleo Solitario/efectos de los fármacos , Antagonistas de los Receptores de Orexina/farmacología , Receptores de Orexina/metabolismo , Hipoxia/metabolismo , Triazoles/farmacología , Azepinas/farmacología , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/fisiología
4.
BMC Endocr Disord ; 24(1): 45, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622616

RESUMEN

BACKGROUND: Headache is a common occurrence after endoscopic endonasal surgery (EES) for pituitary adenomas and significantly impacts the quality of life of patients. This study aims to investigate the effectiveness of nasal irrigation in relieving postoperative headache after EES. METHODS: A retrospective analysis was conducted on a cohort of 101 patients (Cohort I) who underwent EES for pituitary adenomas to explore the risk factors associated with postoperative headache. Another cohort of 72 patients (Cohort II) who received adjuvant nasal irrigation following surgery was enrolled for further analysis. The Headache Impact Test (HIT-6) was used to score the severity of headache, and patients with a HIT score > 55 were classified as having headache. RESULTS: In Cohort I, 21.78% of patients experienced headache one month after EES, which decreased to 5.94% at the three-month follow-up. Multivariate analysis revealed that postoperative nasal sinusitis (OR = 3.88, 95%CI 1.16-13.03, p = 0.028) and Hardy's grade C-D (OR = 10.53, 95%CI 1.02-109.19, p = 0.049) independently predicted the presence of postoperative headache at one month. At the three-month follow-up, patients with sinusitis had higher HIT-6 scores compared to those without sinusitis (44.43 ± 9.78 vs. 39.72 ± 5.25, p = 0.017). In Cohort II, the incidence of sinusitis at three months was significantly lower than that in Cohort I (p = 0.028). Importantly, both the incidence of headache and HIT-6 scores in Cohort II were significantly lower than those in Cohort I at the one- and three-month follow-ups. CONCLUSIONS: Postoperative sinusitis is an independent risk factor for the development of headache following EES for pituitary adenomas. Prophylactic nasal irrigation helps relieve postoperative headache, possibly by preventing the occurrence of sinusitis.


Asunto(s)
Neoplasias Hipofisarias , Sinusitis , Humanos , Neoplasias Hipofisarias/cirugía , Estudios Retrospectivos , Calidad de Vida , Resultado del Tratamiento , Endoscopía/efectos adversos , Cefalea/etiología , Cefalea/prevención & control , Lavado Nasal (Proceso)
5.
CNS Neurosci Ther ; 30(4): e14724, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38615365

RESUMEN

BACKGROUND: Depression is a serious mental disorder and the most prevalent cause of disability and suicide worldwide. Chronic unpredictable mild stress (CUMS) can lead to a significant acceleration of depression development. Quercetin (Que) is a flavonoid compound with a wide range of pharmacological effects. Recent studies have shown that quercetin can improve CUMS-induced depression-like behavior, but the mechanism of its improvement is still unclear. α2δ-1 is a regulatory subunit of voltage-gated calcium channel, which can interact with N-methyl-D-aspartate receptor (NMDAR) to form a complex. OBJECTIVE: In this study, we found that Que could inhibit the increase of α2δ-1 and NMDAR expression in rat hypothalamus induced by CUMS. In pain, chronic hypertension and other studies have shown that α2δ-1 interacts with the NMDAR to form a complex, which subsequently affects the expression level of NMDAR. Consequently, the present study aimed to investigate the antidepressant effect of Que in vivo and in vitro and to explore its mechanism of action in terms of the interaction between α2δ-1 and NMDAR. METHODS: Rats were randomly exposed to two stressors every day for 4 weeks to establish a CUMS rat model, then sucrose preference test (SPT), forced swimming test (FST), tail suspension test (TST), and open field test (OFT) were performed to detect the behavior of CUMS rats, so as to evaluate whether the CUMS rat model was successfully established and the improvement effect of Que on CUMS-induced depression-like behavior in rats. Experimental techniques such as serum enzyme-linked immunosorbent assay (ELISA), immunofluorescence, Western blot, and co-immunoprecipitation, as well as in vitro experiments, were used to investigate the mechanisms by which Que exerts its antidepressant effects. RESULTS: Behavioral and ELISA test results showed that Que could produce a reduction in the excitability of the hypothalamic-pituitary-adrenal (HPA) axis in CUMS rats and lead to significant improvements in their depressive behavior. Western blot, immunofluorescence, and co-immunoprecipitation experiments showed that Que produced a decrease in NMDAR1 and α2δ-1 expression levels and interfered with α2δ-1 and NMDAR1 binding. In addition, the neural regulation mechanism of Que on antidepressant effect in PC12 cells knocked out α2δ-1 gene was further verified. Cellular experiments demonstrated that Que led to a reversal of up-regulation of NMDAR1 and α2δ-1 expression levels in corticosterone-injured PC12 cells, while Que had no effects on NMDAR1 expression in PC12 cells with the α2δ-1 gene knockout. CONCLUSIONS: Que has a good antidepressant effect and can significantly improve the depression-like behavior caused by CUMS. It exerts antidepressant effects by inhibiting the expression level of α2δ-1, interfering with the interaction between α2δ-1 and NMDAR, and then reducing the excitability of the HPA axis.


Asunto(s)
Quercetina , Receptores de N-Metil-D-Aspartato , Humanos , Animales , Ratas , Quercetina/farmacología , Quercetina/uso terapéutico , Depresión/tratamiento farmacológico , Depresión/etiología , Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Antidepresivos/farmacología , Antidepresivos/uso terapéutico
6.
CNS Neurosci Ther ; 30(1): e14495, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37849438

RESUMEN

AIMS: Glioma is characterized by an immunosuppressed environment and a poor prognosis. The accumulation of Amyloid ß (Aß) leads to an active environment during the early stages of Alzheimer's disease (AD). Aß is also present in glioma tissues; however, the biological and translational implications of Aß in glioma are elusive. METHODS: Immunohistochemical (IHC) staining, Kaplan-Meier (KM) survival analysis and Cox regression analysis on a cohort of 79 patients from our institution were performed to investigate the association between Aß and the malignancy of glioma. Subsequently, the potential of oligomer-Aß42 (OAß42) to inhibit glioma growth was investigated in vivo and in vitro. Immunofluorescence staining and phagocytosis assays were performed to evaluate the activation of microglia. Finally, RNA-seq was utilized to identify the predominant signaling involved in this process and in vitro studies were performed to validate them. RESULTS: A positive correlation between Aß and a favorable prognosis was observed in glioma. Furthermore, OAß42 suppressed glioma growth by enhancing the phagocytic activity of microglia. Insulin-like growth factor 1 (IGF-1) secreted by OAß42-activated microglia was essential in the engulfment process. CONCLUSION: Our study proved an anti-glioma effect of Aß, and microglia could serve as a cellular target for treating glioma with OAß42.


Asunto(s)
Enfermedad de Alzheimer , Glioma , Humanos , Animales , Ratones , Péptidos beta-Amiloides/metabolismo , Microglía , Enfermedad de Alzheimer/metabolismo , Fagocitosis , Glioma/metabolismo , Ratones Transgénicos
7.
Health Inf Sci Syst ; 11(1): 58, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38028959

RESUMEN

As medical treatments continue to advance rapidly, minimally invasive surgery (MIS) has found extensive applications across various clinical procedures. Accurate identification of medical instruments plays a vital role in comprehending surgical situations and facilitating endoscopic image-guided surgical procedures. However, the endoscopic instrument detection poses a great challenge owing to the narrow operating space, with various interfering factors (e.g. smoke, blood, body fluids) and inevitable issues (e.g. mirror reflection, visual obstruction, illumination variation) in the surgery. To promote surgical efficiency and safety in MIS, this paper proposes a cross-layer aggregated attention detection network (CLAD-Net) for accurate and real-time detection of endoscopic instruments in complex surgical scenarios. We propose a cross-layer aggregation attention module to enhance the fusion of features and raise the effectiveness of lateral propagation of feature information. We propose a composite attention mechanism (CAM) to extract contextual information at different scales and model the importance of each channel in the feature map, mitigate the information loss due to feature fusion, and effectively solve the problem of inconsistent target size and low contrast in complex contexts. Moreover, the proposed feature refinement module (RM) enhances the network's ability to extract target edge and detail information by adaptively adjusting the feature weights to fuse different layers of features. The performance of CLAD-Net was evaluated using a public laparoscopic dataset Cholec80 and another set of neuroendoscopic dataset from Sun Yat-sen University Cancer Center. From both datasets and comparisons, CLAD-Net achieves the AP0.5 of 98.9% and 98.6%, respectively, that is better than advanced detection networks. A video for the real-time detection is presented in the following link: https://github.com/A0268/video-demo.

8.
Sci Rep ; 13(1): 17675, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853008

RESUMEN

The dorsal root ganglia (DRG) project spinal afferent axons to the stomach. However, the distribution and morphology of spinal afferent axons in the stomach have not been well characterized. In this study, we used a combination of state-of-the-art techniques, including anterograde tracer injection into the left DRG T7-T11, avidin-biotin and Cuprolinic Blue labeling, Zeiss M2 Imager, and Neurolucida to characterize spinal afferent axons in flat-mounts of the whole rat stomach muscular wall. We found that spinal afferent axons innervated all regions with a variety of distinct terminal structures innervating different gastric targets: (1) The ganglionic type: some axons formed varicose contacts with individual neurons within myenteric ganglia. (2) The muscle type: most axons ran in parallel with the longitudinal and circular muscles and expressed spherical varicosities. Complex terminal structures were observed within the circular muscle layer. (3) The ganglia-muscle mixed type: some individual varicose axons innervated both myenteric neurons and the circular muscle, exhibiting polymorphic terminal structures. (4) The vascular type: individual varicose axons ran along the blood vessels and occasionally traversed the vessel wall. This work provides a foundation for future topographical anatomical and functional mapping of spinal afferent axon innervation of the stomach under normal and pathophysiological conditions.


Asunto(s)
Neuronas , Estómago , Ratas , Animales , Estómago/inervación , Axones , Músculos , Ganglios Espinales/anatomía & histología
9.
Front Cell Infect Microbiol ; 13: 1142387, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37274312

RESUMEN

Background: Substantial sex differences exist in atherosclerosis. Excessive reactive oxygen species (ROS) formation could lead to endothelial dysfunction which is critical to atherosclerosis development and progression. Helicobacter pylori (H. pylori) infection has been shown to attenuate endothelial function via exosomes-mediated ROS formation. We have demonstrated that H. pylori infection selectively increases atherosclerosis risk in males with unknown mechanism(s). The present study was to test the hypothesis that H. pylori infection impaired endothelial function selectively in male mice through exosome-mediated ROS formation. Methods and results: Age-matched male and female C57BL/6 mice were infected with CagA+ H. pylori to investigate sex differences in H. pylori infection-induced endothelial dysfunction. H. pylori infection attenuated acetylcholine (ACh)-induced endothelium-dependent aortic relaxation without changing nitroglycerine-induced endothelium-independent relaxation in male but not female mice, associated with increased ROS formation in aorta compared with controls, which could be reversed by N-acetylcysteine treatment. Treatment of cultured mouse brain microvascular endothelial cells with exosomes from H. pylori infected male, not female, mice significantly increased intracellular ROS production and impaired endothelial function with decreased migration, tube formation, and proliferation, which could be prevented with N-acetylcysteine treatment. Conclusions: H. pylori infection selectively impairs endothelial function in male mice due to exosome-mediated ROS formation.


Asunto(s)
Aterosclerosis , Exosomas , Infecciones por Helicobacter , Helicobacter pylori , Masculino , Femenino , Animales , Ratones , Especies Reactivas de Oxígeno , Células Endoteliales , Acetilcisteína , Infecciones por Helicobacter/complicaciones , Ratones Endogámicos C57BL , Aterosclerosis/complicaciones , Endotelio
10.
J Neurosci ; 43(24): 4513-4524, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37160364

RESUMEN

Corticotropin-releasing hormone (CRH) is a neuropeptide regulating neuroendocrine and autonomic function. CRH mRNA and protein levels in the hypothalamic paraventricular nucleus (PVN) are increased in primary hypertension. However, the role of CRH in elevated sympathetic outflow in primary hypertension remains unclear. CRHR1 proteins were distributed in retrogradely labeled PVN presympathetic neurons with an increased level in the PVN tissue in adult spontaneously hypertensive rats (SHRs) compared with age-matched male Wistar-Kyoto (WKY) rats. CRH induced a more significant increase in the firing rate of PVN-rostral ventrolateral medulla (RVLM) neurons and sympathoexcitatory response in SHRs than in WKY rats, an effect that was blocked by preapplication of NMDA receptors (NMDARs) antagonist AP5 and PSD-95 inhibitor, Tat-N-dimer. Blocking CRHRs with astressin or CRHR1 with NBI35965 significantly decreased the firing rate of PVN-RVLM output neurons and reduced arterial blood pressure (ABP) and renal sympathetic nerve activity (RSNA) in SHRs but not in WKY, whereas blocking CRHR2 with antisauvagine-30 did not. Furthermore, Immunocytochemistry staining revealed that CRHR1 colocalized with NMDARs in PVN presympathetic neurons. Blocking CRHRs significantly decreased the NMDA currents in labeled PVN neurons. PSD-95-bound CRHR1 and PSD-95-bound GluN2A in the PVN were increased in SHRs. These data suggested that the upregulation of CRHR1 in the PVN is critically involved in the hyperactivity of PVN presympathetic neurons and elevated sympathetic outflow in primary hypertension.SIGNIFICANCE STATEMENT Our study found that corticotropin-releasing hormone receptor (CRHR)1 protein levels were increased in the paraventricular nucleus (PVN), and CRHR1 interacts with NMDA receptors (NMDARs) through postsynaptic density protein (PSD)-95 in the PVN neurons in primary hypertension. The increased CRHR1 and CRHR1-NMDAR-PSD-95 complex in the PVN contribute to the hyperactivity of the PVN presympathetic neurons and elevated sympathetic vasomotor tone in hypertension in SHRs. Thus, the antagonism of CRHR1 decreases sympathetic outflow and blood pressure in hypertension. These findings determine a novel role of CRHR1 in elevated sympathetic vasomotor tone in hypertension, which is useful for developing novel therapeutics targeting CRHR1 to treat elevated sympathetic outflow in primary hypertension. The CRHR1 receptor antagonists, which are used to treat health consequences resulting from chronic stress, are candidates to treat primary hypertension.


Asunto(s)
Hipertensión Esencial , Hipertensión , Receptores de N-Metil-D-Aspartato , Animales , Masculino , Ratas , Hormona Adrenocorticotrópica , Hormona Liberadora de Corticotropina/metabolismo , Hipertensión Esencial/metabolismo , Hipertensión/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Hormonas Liberadoras de Hormona Hipofisaria/metabolismo , Hormonas Liberadoras de Hormona Hipofisaria/farmacología , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptores de N-Metil-D-Aspartato/metabolismo , Sistema Nervioso Simpático/fisiología
11.
Front Physiol ; 14: 1166246, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37064887

RESUMEN

Introduction: Melatonin (5-methoxy-N-acetyl-tryptamine) is a circadian hormone synthesized and secreted by the pineal gland. In addition to regulating circadian rhythms of many physiological functions, melatonin is involved in regulating autonomic nervous function and blood pressure. Hypothalamus paraventricular nucleus (PVN), receiving melatonin projections from the superchiasmatic nucleus, is a critical brain region to regulate neuroendocrine and cardiovascular function. Here, we determined the synaptic mechanisms involved in the effect of melatonin on the sympathetic outflow and blood pressure. Methods and Results: Microinjection of melatonin into the PVN produced a depressor effect and decreased renal sympathetic nerve activity (RSNA). While microinjection of luzindole, a non-selective melatonin receptor antagonist, into the PVN did not change melatonin-induced sympathoinhibition, GABAA receptor antagonist bicuculline eliminated melatonin-induced sympathoinhibition. Furthermore, melatonin decreased firing rate of retrogradely labeled PVN neurons which project to the rostral ventrolateral medulla (RVLM), an effect was not altered by luzindole but eliminated by bicuculline. Melatonin significantly increased the amplitude of spontaneous and evoked GABAergic inhibitory synaptic currents, as well as GABA-induced currents. Conclusion: These data suggest that melatonin in the PVN suppresses sympathetic vasomotor tone through enhancing GABAA receptor activity. This study provides novel information for understanding the cellular mechanisms involved in the effect of melatonin on regulating blood pressure and sympathetic output.

12.
Cardiovasc Res ; 119(8): 1751-1762, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37041718

RESUMEN

AIMS: Chronic stress is a well-known risk factor for the development of hypertension. However, the underlying mechanisms remain unclear. Corticotropin-releasing hormone (CRH) neurons in the central nucleus of the amygdala (CeA) are involved in the autonomic responses to chronic stress. Here, we determined the role of CeA-CRH neurons in chronic stress-induced hypertension. METHODS AND RESULTS: Borderline hypertensive rats (BHRs) and Wistar-Kyoto (WKY) rats were subjected to chronic unpredictable stress (CUS). Firing activity and M-currents of CeA-CRH neurons were assessed, and a CRH-Cre-directed chemogenetic approach was used to suppress CeA-CRH neurons. CUS induced a sustained elevation of arterial blood pressure (ABP) and heart rate (HR) in BHRs, while in WKY rats, CUS-induced increases in ABP and HR quickly returned to baseline levels after CUS ended. CeA-CRH neurons displayed significantly higher firing activities in CUS-treated BHRs than unstressed BHRs. Selectively suppressing CeA-CRH neurons by chemogenetic approach attenuated CUS-induced hypertension and decreased elevated sympathetic outflow in CUS-treated BHRs. Also, CUS significantly decreased protein and mRNA levels of Kv7.2 and Kv7.3 channels in the CeA of BHRs. M-currents in CeA-CRH neurons were significantly decreased in CUS-treated BHRs compared with unstressed BHRs. Blocking Kv7 channel with its blocker XE-991 increased the excitability of CeA-CRH neurons in unstressed BHRs but not in CUS-treated BHRs. Microinjection of XE-991 into the CeA increased sympathetic outflow and ABP in unstressed BHRs but not in CUS-treated BHRs. CONCLUSIONS: CeA-CRH neurons are required for chronic stress-induced sustained hypertension. The hyperactivity of CeA-CRH neurons may be due to impaired Kv7 channel activity, which represents a new mechanism involved in chronic stress-induced hypertension.


Asunto(s)
Núcleo Amigdalino Central , Hipertensión , Ratas , Animales , Hormona Liberadora de Corticotropina/metabolismo , Núcleo Amigdalino Central/metabolismo , Ratas Endogámicas WKY , Hipertensión/metabolismo , Neuronas/metabolismo
13.
Comput Biol Med ; 159: 106878, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37060774

RESUMEN

BACKGROUND: Glioblastoma (GBM) is a remarkable heterogeneous tumor with few non-invasive, repeatable, and cost-effective prognostic biomarkers reported. In this study, we aim to explore the association between radiomic features and prognosis and genomic alterations in GBM. METHODS: A total of 180 GBM patients (training cohort: n = 119; validation cohort 1: n = 37; validation cohort 2: n = 24) were enrolled and underwent preoperative MRI scans. From the multiparametric (T1, T1-Gd, T2, and T2-FLAIR) MR images, the radscore was developed to predict overall survival (OS) in a multistep postprocessing workflow and validated in two external validation cohorts. The prognostic accuracy of the radscore was assessed with concordance index (C-index) and Brier scores. Furthermore, we used hierarchical clustering and enrichment analysis to explore the association between image features and genomic alterations. RESULTS: The MRI-based radscore was significantly correlated with OS in the training cohort (C-index: 0.70), validation cohort 1 (C-index: 0.66), and validation cohort 2 (C-index: 0.74). Multivariate analysis revealed that the radscore was an independent prognostic factor. Cluster analysis and enrichment analysis revealed that two distinct phenotypic clusters involved in distinct biological processes and pathways, including the VEGFA-VEGFR2 signaling pathway (q-value = 0.033), JAK-STAT signaling pathway (q-value = 0.049), and regulation of MAPK cascade (q-value = 0.0015/0.025). CONCLUSIONS: Radiomic features and radiomics-derived radscores provided important phenotypic and prognostic information with great potential for risk stratification in GBM.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Imagen por Resonancia Magnética/métodos , Medición de Riesgo , Estudios Retrospectivos
14.
JAMA Netw Open ; 6(1): e2253285, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36705923

RESUMEN

Importance: High-grade gliomas (HGGs) constitute the most common and aggressive primary brain tumor, with 5-year survival rates of 30.9% for grade 3 gliomas and 6.6% for grade 4 gliomas. The add-on efficacy of interferon alfa is unclear for the treatment of HGG. Objectives: To compare the therapeutic efficacy and toxic effects of the combination of temozolomide and interferon alfa and temozolomide alone in patients with newly diagnosed HGG. Design, Setting, and Participants: This multicenter, randomized, phase 3 clinical trial enrolled 199 patients with newly diagnosed HGG from May 1, 2012, to March 30, 2016, at 15 Chinese medical centers. Follow-up was completed July 31, 2021, and data were analyzed from September 13 to November 24, 2021. Eligible patients were aged 18 to 75 years with newly diagnosed and histologically confirmed HGG and had received no prior chemotherapy, radiotherapy, or immunotherapy for their HGG. Interventions: All patients received standard radiotherapy concurrent with temozolomide. After a 4-week break, patients in the temozolomide with interferon alfa group received standard temozolomide combined with interferon alfa every 28 days. Patients in the temozolomide group received standard temozolomide. Main Outcomes and Measures: The primary end point was 2-year overall survival (OS). Secondary end points were 2-year progression-free survival (PFS) and treatment tolerability. Results: A total of 199 patients with HGG were enrolled, with a median follow-up time of 66.0 (95% CI, 59.1-72.9) months. Seventy-nine patients (39.7%) were women and 120 (60.3%) were men, with ages ranging from 18 to 75 years and a median age of 46.9 (95% CI, 45.3-48.7) years. The median OS of patients in the temozolomide plus interferon alfa group (26.7 [95% CI, 21.6-31.7] months) was significantly longer than that in the standard group (18.8 [95% CI, 16.9-20.7] months; hazard ratio [HR], 0.64 [95% CI, 0.47-0.88]; P = .005). Temozolomide plus interferon alfa also significantly improved median OS in patients with O6-methylguanine-DNA methyltransferase (MGMT) unmethylation (24.7 [95% CI, 20.5-28.8] months) compared with temozolomide (17.4 [95% CI, 14.1-20.7] months; HR, 0.57 [95% CI, 0.37-0.87]; P = .008). Seizure and influenzalike symptoms were more common in the temozolomide plus interferon alfa group, with 2 of 100 (2.0%) and 5 of 100 (5.0%) patients with grades 1 and 2 toxic effects, respectively (P = .02). Finally, results suggested that methylation level at the IFNAR1/2 promoter was a marker of sensitivity to temozolomide plus interferon alfa. Conclusions and Relevance: Compared with the standard regimen, temozolomide plus interferon alfa treatment could prolong the survival time of patients with HGG, especially the MGMT promoter unmethylation variant, and the toxic effects remained tolerable. Trial Registration: ClinicalTrials.gov Identifier: NCT01765088.


Asunto(s)
Neoplasias Encefálicas , Glioma , Femenino , Humanos , Masculino , Persona de Mediana Edad , Antineoplásicos Alquilantes/uso terapéutico , Antineoplásicos Alquilantes/efectos adversos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Dacarbazina/uso terapéutico , Glioma/tratamiento farmacológico , Interferón-alfa/uso terapéutico , Temozolomida/uso terapéutico , Adolescente , Adulto Joven , Adulto , Anciano
15.
Arterioscler Thromb Vasc Biol ; 43(1): 92-108, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36412197

RESUMEN

BACKGROUND: Hematopoietic stem cell (HSC) therapy has shown promise for tissue regeneration after ischemia. Therefore, there is a need to understand mechanisms underlying endogenous HSCs activation in response to ischemic stress and coordination of angiogenesis and repair. SHP-1 plays important roles in HSC quiescence and differentiation by regulation of TGF-ß1 signaling. TGF-ß1 promotes angiogenesis by stimulating stem cells to secrete growth factors to initiate the formation of blood vessels and later aid in their maturation. We propose that SHP-1 responds to ischemia stress in HSC and progenitor cells (HSPC) via regulation of TGF-ß1. METHODS: A mouse hind limb ischemia model was used. Local blood perfusion in the limbs was determined using laser doppler perfusion imaging. The number of positive blood vessels per square millimeter, as well as blood vessel diameter (µm) and area (µm2), were calculated. Hematopoietic cells were analyzed using flow cytometry. The bone marrow transplantation assay was performed to measure HSC reconstitution. RESULTS: After femoral artery ligation, TGF-ß1 was initially decreased in the bone marrow by day 3 of ischemia, followed by an increase on day 7. This pattern was opposite to that in the peripheral blood, which is concordant with the response of HSC to ischemic stress. In contrast, SHP-1 deficiency in HSC is associated with irreversible activation of HSPCs in the bone marrow and increased circulating HSPCs in peripheral blood following limb ischemia. In addition, there was augmented auto-induction of TGF-ß1 and sustained inactivation of SHP-1-Smad2 signaling, which impacted TGF-ß1 expression in HSPCs in circulation. Importantly, restoration of normal T GF-ß1 oscillations helped in the recovery of limb repair and function. CONCLUSIONS: HSPC-SHP-1-mediated regulation of TGF-ß1 in both bone marrow and peripheral blood is required for a normal response to ischemic stress.


Asunto(s)
Células Madre Hematopoyéticas , Factor de Crecimiento Transformador beta1 , Ratones , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Células Madre Hematopoyéticas/metabolismo , Isquemia , Extremidad Inferior
16.
J Comp Neurol ; 531(2): 188-216, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36385363

RESUMEN

Nociceptive afferents innervate the stomach and send signals centrally to the brain and locally to stomach tissues. Nociceptive afferents can be detected with a variety of different markers. In particular, substance P (SP) is a neuropeptide and is one of the most commonly used markers for nociceptive nerves in the somatic and visceral organs. However, the topographical distribution and morphological structure of SP-immunoreactive (SP-IR) axons and terminals in the whole stomach have not yet been fully determined. In this study, we labeled SP-IR axons and terminals in flat mounts of the ventral and dorsal halves of the stomach of mice. Flat-mount stomachs, including the longitudinal and circular muscular layers and the myenteric ganglionic plexus, were processed with SP primary antibody followed by fluorescent secondary antibody and then scanned using confocal microscopy. We found that (1) SP-IR axons and terminals formed an extensive network of fibers in the muscular layers and within the ganglia of the myenteric plexus of the whole stomach. (2) Many axons that ran in parallel with the long axes of the longitudinal and circular muscles were also immunoreactive for the vesicular acetylcholine transporter (VAChT). (3) SP-IR axons formed very dense terminal varicosities encircling individual neurons in the myenteric plexus; many of these were VAChT immunoreactive. (4) The regional density of SP-IR axons and terminals in the muscle and myenteric plexus varied in the following order from high to low: antrum-pylorus, corpus, fundus, and cardia. (5) In only the longitudinal and circular muscles, the regional density of SP-IR axon innervation from high to low were: antrum-pylorus, corpus, cardia, and fundus. (6) The innervation patterns of SP-IR axons and terminals in the ventral and dorsal stomach were comparable. Collectively, our data provide for the first time a map of the distribution and morphology of SP-IR axons and terminals in the whole stomach with single-cell/axon/synapse resolution. This work will establish an anatomical foundation for functional mapping of the SP-IR axon innervation of the stomach and its pathological remodeling in gastrointestinal diseases.


Asunto(s)
Axones , Sustancia P , Ratones , Animales , Sustancia P/metabolismo , Axones/metabolismo , Plexo Mientérico , Neuronas/metabolismo , Estómago/inervación , Proteínas de Transporte Vesicular de Acetilcolina
17.
J Clin Invest ; 132(24)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36519542

RESUMEN

Chronic pain often leads to depression, increasing patient suffering and worsening prognosis. While hyperactivity of the anterior cingulate cortex (ACC) appears to be critically involved, the molecular mechanisms underlying comorbid depressive symptoms in chronic pain remain elusive. T cell lymphoma invasion and metastasis 1 (Tiam1) is a Rac1 guanine nucleotide exchange factor (GEF) that promotes dendrite, spine, and synapse development during brain development. Here, we show that Tiam1 orchestrates synaptic structural and functional plasticity in ACC neurons via actin cytoskeleton reorganization and synaptic N-methyl-d-aspartate receptor (NMDAR) stabilization. This Tiam1-coordinated synaptic plasticity underpins ACC hyperactivity and drives chronic pain-induced depressive-like behaviors. Notably, administration of low-dose ketamine, an NMDAR antagonist emerging as a promising treatment for chronic pain and depression, induces sustained antidepressant-like effects in mouse models of chronic pain by blocking Tiam1-mediated maladaptive synaptic plasticity in ACC neurons. Our results reveal Tiam1 as a critical factor in the pathophysiology of chronic pain-induced depressive-like behaviors and the sustained antidepressant-like effects of ketamine.


Asunto(s)
Dolor Crónico , Ketamina , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T , Animales , Ratones , Antidepresivos/farmacología , Dolor Crónico/tratamiento farmacológico , Depresión/tratamiento farmacológico , Depresión/genética , Ketamina/farmacología , Plasticidad Neuronal , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T/genética , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T/metabolismo
18.
J Neurosurg ; : 1-10, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36461822

RESUMEN

OBJECTIVE: The aim of this study was to build a convolutional neural network (CNN)-based prediction model of glioblastoma (GBM) molecular subtype diagnosis and prognosis with multimodal features. METHODS: In total, 222 GBM patients were included in the training set from Sun Yat-sen University Cancer Center (SYSUCC) and 107 GBM patients were included in the validation set from SYSUCC, Xuanwu Hospital Capital Medical University, and the First Hospital of Jilin University. The multimodal model was trained with MR images (pre- and postcontrast T1-weighted images and T2-weighted images), corresponding MRI impression, and clinical patient information. First, the original images were segmented using the Multimodal Brain Tumor Image Segmentation Benchmark toolkit. Convolutional features were extracted using 3D residual deep neural network (ResNet50) and convolutional 3D (C3D). Radiomic features were extracted using pyradiomics. Report texts were converted to word embedding using word2vec. These three types of features were then integrated to train neural networks. Accuracy, precision, recall, and F1-score were used to evaluate the model performance. RESULTS: The C3D-based model yielded the highest accuracy of 91.11% in the prediction of IDH1 mutation status. Importantly, the addition of semantics improved precision by 11.21% and recall in MGMT promoter methylation status prediction by 14.28%. The areas under the receiver operating characteristic curves of the C3D-based model in the IDH1, ATRX, MGMT, and 1-year prognosis groups were 0.976, 0.953, 0.955, and 0.976, respectively. In external validation, the C3D-based model showed significant improvement in accuracy in the IDH1, ATRX, MGMT, and 1-year prognosis groups, which were 88.30%, 76.67%, 85.71%, and 85.71%, respectively (compared with 3D ResNet50: 83.51%, 66.67%, 82.14%, and 70.79%, respectively). CONCLUSIONS: The authors propose a novel multimodal model integrating C3D, radiomics, and semantics, which had a great performance in predicting IDH1, ATRX, and MGMT molecular subtypes and the 1-year prognosis of GBM.

19.
Biochem Pharmacol ; 206: 115318, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36283445

RESUMEN

Hypertension is a prevalent health problem inducing many organ damages. The pathogenesis of hypertension involves a complex integration of different organ systems including the brain. The elevated sympathetic nerve activity is closely related to the etiology of hypertension. Ion channels are critical regulators of neuronal excitability. Several mechanisms have been proposed to contribute to hypothalamic-driven elevated sympathetic activity, including altered ion channel function. Recent findings indicate one of the voltage-gated potassium channels, Kv7 channels (M channels), plays a vital role in regulating cardiovascular-related neurons activity, and the expression of Kv7 channels is downregulated in hypertension. This review highlights recent findings that the Kv7 channels in the brain, blood vessels, and kidneys are emerging targets involved in the pathogenesis of hypertension, suggesting new therapeutic targets for treating drug-resistant, neurogenic hypertension.


Asunto(s)
Hipertensión , Neuronas , Humanos , Hipertensión/etiología , Hipertensión/metabolismo , Hipotálamo/metabolismo , Canales Iónicos/metabolismo , Neuronas/metabolismo , Canales de Potasio
20.
Front Pharmacol ; 13: 942769, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059970

RESUMEN

The human ether-á-go-go-related gene (hERG) encodes the pore-forming subunit (Kv11.1), conducting a rapidly delayed rectifier K+ current (I Kr). Reduction of I Kr in pathological cardiac hypertrophy (pCH) contributes to increased susceptibility to arrhythmias. However, practical approaches to prevent I Kr deficiency are lacking. Our study investigated the involvement of ubiquitin ligase Nedd4-2-dependent ubiquitination in I Kr reduction and sought an intervening approach in pCH. Angiotensin II (Ang II) induced a pCH phenotype in guinea pig, accompanied by increased incidences of sudden death and higher susceptibility to arrhythmias. Patch-clamp recordings revealed a significant I Kr reduction in pCH cardiomyocytes. Kv11.1 protein expression was decreased whereas its mRNA level did not change. In addition, Nedd4-2 protein expression was increased in pCH, accompanied by an enhanced Nedd4-2 and Kv11.1 binding detected by immunoprecipitation analysis. Cardiac-specific overexpression of inactive form of Nedd4-2 shortened the prolonged QT interval, reversed I Kr reduction, and decreased susceptibility to arrhythmias. A synthesized peptide containing the PY motif in Kv11.1 C-terminus binding to Nedd4-2 and a cell-penetrating sequence antagonized Nedd4-2-dependent degradation of the channel and increased the surface abundance and function of hERG channel in HEK cells. In addition, in vivo administration of the PY peptide shortened QT interval and action potential duration, and enhanced I Kr in pCH. We conclude that Nedd4-2-dependent ubiquitination is critically involved in I Kr deficiency in pCH. Pharmacological suppression of Nedd4-2 represents a novel approach for antiarrhythmic therapy in pCH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA