RESUMEN
By means of highly accurate ab initio and dynamical calculations, we identify a suitable laser cooling candidate that contains a transition metal element, namely zinc monohydride (ZnH). The internally contracted multireference configuration interaction method is employed to compute the five lowest-lying Λ-S states of ZnH with the spin-orbit coupling effects included, and very good agreement is obtained between our calculated and experimental spectroscopic data. Our findings show that the position of crossing point of the A2Π and B2Σ+ states of ZnH is above the v' = 2 vibrational level of the A2Π state indicating that the crossings with higher electronic states will have no effect on laser cooling. Hence, we construct a feasible laser-cooling scheme for ZnH using five lasers based on the A2Π1/2 â X2Σ+ 1/2 transition, which features a large vibrational branching ratio R 00 (0.8458), a large number of scattered photons (9.8 × 103) and an extremely short radiative lifetime (64 ns). The present work demonstrates the importance of electronic state crossings and spin-orbit couplings in the study of molecular laser cooling.
RESUMEN
Rapid changes in lifestyle and the increasingly hectic pace of life have led to a rise in chronic diseases, such as obesity, inflammatory bowel disease, liver disease, and cancer, posing significant threats to public health. In response to these challenges, precision nutrition (PN) has emerged as a secure and effective intervention aiming at human health and well-being. Bioactive compounds (bioactives), including carotenoids, polyphenols, vitamins, and polyunsaturated fatty acids, exhibit a range of beneficial properties, e.g., antioxidant and anti-inflammatory effects. These properties make them promising candidates for preventing or treating chronic diseases and promoting human health. However, bioactives might have different challenges when incorporated into food matrices and oral administration, including low water solubility, poor physiochemical stability, and low absorption efficiency. This limits them to achieve the health benefits in the body. Numerous strategies have been developed and utilized to encapsulate and deliver bioactives. Micellar delivery systems, due to their unique core-shell structure, play a pivotal role in improving the stability, solubility, and bioavailability of these bioactives. Moreover, through innovative design strategies, micellar delivery systems can be tailored to offer targeted and controlled release, thus maximizing the potential of bioactives in PN applications. This chapter reveals details about the preparation methods and properties of micelles and highlights the strategies to modulate the properties of polymeric micelles. Afterwards, the application of polymeric micelles in the delivery of bioactives and the corresponding PN, including controlled release, organ-targeting ability, and nutritional intervention for chronic disease are summarized.
Asunto(s)
Sistemas de Liberación de Medicamentos , Micelas , Humanos , Medicina de Precisión , Disponibilidad Biológica , Fitoquímicos/químicaRESUMEN
Globally, early childhood caries (ECC) is a significant public health concern, necessitating effective prediction and prevention strategies. This study aimed to explore variations in the oral microbiome of saliva from pre-school Han and Uyghur children during ECC development and establish a predictive model based on temporal oral microbiome changes. Saliva samples were collected from a single kindergarten every three months over six months. Forty-four pre-school children provided 132 samples, categorized into six groups: (1) HEF (healthy pre-school Han children), (2) HEO (Han children with caries), (3) HEP (Han children with progressive caries), (4) WEF (healthy pre-school Uyghur children), (5) WEO (Uyghur children with caries), and (6) WEP (Uyghur children with progressive caries). Illumina Miseq sequencing identified oral microbiome differences between groups and time points. The Random Forest (RF) algorithm established ECC prediction models. The T1HEO group exhibited significantly higher Chaol index, observed species index, PD whole tree index, and Shannon index than the T2HEO group (p < 0.01). Similarly, the T1WEO group had significantly higher Chaol index, observed species index, and PD whole tree index than the T2WEO group (p < 0.05). The AUROC value for the ECC prediction model based on temporal oral flora changes was 0.517 (95% CI: 0.275-0.759) for pre-school Han children and 0.896 (95% CI: 0.78-1.00) for pre-school Uyghur children. In the onset of caries in pre-school Han children, bacterial species richness and community diversity in saliva declined, paralleled by a decrease in bacterial species richness in pre-school Uyghur children's oral saliva. The ECC prediction model grounded on temporal oral microflora changes exhibited robust predictive power, particularly for pre-school Uyghur children, potentially leading to more effective ECC prevention measures.
Asunto(s)
Caries Dental , Etnicidad , Microbiota , Boca , Saliva , Preescolar , Femenino , Humanos , Masculino , China , Caries Dental/microbiología , Boca/microbiología , Saliva/microbiología , Factores de TiempoRESUMEN
A bacterium Gymnodinialimonas sp. 57CJ19, was isolated from the intertidal sediments of Aoshan Bay, and further assays showed that it has the ability to degrade the antibacterial preservative 4-hydroxybenzoate. The complete genome sequence was sequenced, and phylogenomic analyses indicated that strain 57CJ19 represents a potential novel species in the genus Gymnodinialimonas (family Rhodobacteraceae). Its genome contains a 3,861,607-bp circular chromosome with 61.25% G + C content. Gene prediction revealed 3716 protein-encoding genes, 41 tRNA genes, 3 rrn operons, and 3 non-coding RNA genes. Functional annotation revealed a complete metabolic pathway for 4-hydroxybenzoate. The genome sequence of strain 57CJ19 provides new insights into the potential and underlying genomic basis of aromatic compound pollutant degradation by marine bacteria.
Asunto(s)
Genoma Bacteriano , Sedimentos Geológicos , Rhodobacteraceae , Sedimentos Geológicos/microbiología , Rhodobacteraceae/genética , Rhodobacteraceae/metabolismo , Parabenos/metabolismo , Secuenciación Completa del Genoma , Filogenia , Biodegradación AmbientalRESUMEN
Nationwide estimates of the impact of common modifiable risk factors on mortality remain crucial. We aim to assess the influence of social determinants, lifestyle, and metabolic factors on mortality in 174,004 adults aged ≥40 years from the China Cardiometabolic Disease and Cancer Cohort (4C) Study. We reveal that 17 modifiable factors are independently associated with mortality, accounting for 64.8% of all-cause mortality, 77.4% of cardiovascular mortality, and 44.8% of cancer mortality. Low education emerges as the leading factor for both all-cause and cancer mortality, while hypertension is predominant for cardiovascular mortality. Moreover, low gross domestic product per capita and high ambient particulate matter with a diameter of <2.5 µm (PM2.5) air pollution account for 7.8% and 4.3% for all-cause mortality, respectively, using a different method. Gender-specific analyses reveal distinct patterns, with women's mortality primarily associated with social determinants and men exhibiting stronger associations with lifestyle factors. Targeted health interventions are essential to mitigate mortality risks effectively in China.
Asunto(s)
Estilo de Vida , Humanos , Masculino , Femenino , China/epidemiología , Persona de Mediana Edad , Estudios Prospectivos , Adulto , Anciano , Factores de Riesgo , Determinantes Sociales de la Salud , Neoplasias/mortalidad , Enfermedades Cardiovasculares/mortalidad , Pueblos del Este de AsiaRESUMEN
In order to investigate the electrical response characteristics of anthracite coal reservoirs and their correlation with water saturation, salinity, and porosity, the complex resistivity of Zhaogu No. 2 mine anthracite coal was measured across a frequency range of 1 Hz to 100 kHz. The experimental findings indicate that as water saturation, salinity, and porosity increase, the amplitude of both the real and imaginary components of the complex resistance of the coal sample gradually decreases, leading to a decrease in the dispersion degree and an increase in the interface polarization frequency. By analyzing the experimental data and studying the polarization mechanism of coal in a sodium chloride solution, this study proposed an enhanced model that integrates the aspects of the Cole-Cole model and the Warburg model to overcome the limitations of the traditional first-order model, which can fit only single-peak curves. The second-order series Cole-Cole model not only delves into microscopic mechanisms underlying the low-frequency polarization effect of coal samples but also provides a highly accurate fit for complex resistivity dispersion curves under varying conditions. This research offers both an experimental foundation and a theoretical framework for leveraging the electrical properties of anthracite coal reservoirs in assessing the pore structure and permeability of coal seams.
RESUMEN
Glycerol, an abundant by-product of biodiesel production, represented a promising carbon source for enhancing nutrient removal from low C/N ratio wastewater. This study discovered a novel approach to initiate glycerol-driven denitrifying phosphorus removal (DPR) in situ by creating a short-term microaerobic environment within the aerobic zone. This approach facilitated the in-situ conversion of glycerol, which was subsequently utilized by denitrifying phosphate accumulating organisms (DPAOs) for DPR. The feasibility and stability of glycerol-driven DPR were validated in a continuous-flow pilot-scale reactor. Anaerobic phosphorus release increased from 1.0 mg/L/h to 2.5 mg/L/h, with fermentation bacteria and related functional genes showing significant increases. The stable stage exhibited 92.8% phosphorus removal efficiency and 55.5% DPR percentage. The microaerobic environment enhanced fermentation bacteria enrichment, crucial for glycerol-driven DPR stability. The collaborative interaction between fermentation bacteria and phosphate accumulating organisms (PAOs) played a key role in sustaining glycerol-driven DPR stability. These findings provide a robust theoretical foundation for applying glycerol-driven DPR in established wastewater treatment plants.
Asunto(s)
Desnitrificación , Glicerol , Fósforo , Aguas Residuales , Fósforo/metabolismo , Glicerol/metabolismo , Eliminación de Residuos Líquidos/métodos , Reactores Biológicos , Fermentación , Bacterias/metabolismoRESUMEN
BACKGROUND: Pancreatic cancer is a leading cause of cancer-related death globally. Risk factors for pancreatic cancer include common genetic variants and potentially heavy alcohol consumption. We assessed if genetic variants modify the association between heavy alcohol consumption and pancreatic cancer risk. METHODS: We conducted a genome-wide interaction analysis of single-nucleotide polymorphisms (SNP) by heavy alcohol consumption (more than three drinks per day) for pancreatic cancer in European ancestry populations from genome-wide association studies. Our analysis included 3,707 cases and 4,167 controls from case-control studies and 1,098 cases and 1,162 controls from cohort studies. Fixed-effect meta-analyses were conducted. RESULTS: A potential novel region of association on 10p11.22, lead SNP rs7898449 (interaction P value (Pinteraction) = 5.1 × 10-8 in the meta-analysis; Pinteraction = 2.1 × 10-9 in the case-control studies; Pinteraction = 0.91 in the cohort studies), was identified. An SNP correlated with this lead SNP is an expression quantitative trait locus for the neuropilin 1 gene. Of the 17 genomic regions with genome-wide significant evidence of association with pancreatic cancer in prior studies, we observed suggestive evidence that heavy alcohol consumption modified the association for one SNP near LINC00673, rs11655237 on 17q25.1 (Pinteraction = 0.004). CONCLUSIONS: We identified a novel genomic region that may be associated with pancreatic cancer risk in conjunction with heavy alcohol consumption located near an expression quantitative trait locus for neuropilin 1, a protein that plays an important role in the development and progression of pancreatic cancer. IMPACT: This work can provide insights into the etiology of pancreatic cancer, particularly in heavy drinkers.
Asunto(s)
Consumo de Bebidas Alcohólicas , Estudio de Asociación del Genoma Completo , Neoplasias Pancreáticas , Polimorfismo de Nucleótido Simple , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/epidemiología , Neoplasias Pancreáticas/etiología , Estudios de Casos y Controles , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/genética , Consumo de Bebidas Alcohólicas/epidemiología , Factores de Riesgo , Predisposición Genética a la Enfermedad , Masculino , Femenino , Persona de Mediana EdadRESUMEN
Nasal vaccine is a non-invasive vaccine that activates systemic and mucosal immunity in the presence of an adjuvant, thereby enhancing immune function. In this work, chitosan/oligochitosan/tween 80 (CS-COS-T80) co-stabilized emulsion was designed and further used as the nasal adjuvant. CS-COS-T80 emulsion exhibited outstanding stability under pH 6-8 with uniformly dispersed droplets and nano-scale particle size (<0.25 µm), and maintained stable at 4 °C for 150-day storage. Addition of model antigen ovalbumin (OVA) had no effect on the stability of CS-COS-T80 emulsion. In vivo nasal immunity indicated that CS-COS-T80 emulsion prolonged the retention time of OVA in the nasal cavity (from 4 to 8 h to >12 h), as compared to T80-emulsion. CS-COS-T80 emulsion produced a stronger mucosal immune response to OVA, with secretory IgA levels 5-fold and 2-fold higher than those of bare OVA and commercial adjuvant MF59, respectively. Compared to MF59, CS-COS-T80 induced a stronger humoral immune response and a mixed Th1/Th2 immune response of OVA after immunization. Furthermore, in the presence of CS-COS-T80 emulsion, the secretion of IL-4 and IFN-γ and the activation of splenocyte memory T-cell differentiation increased from 173.98 to 210.21 pg/mL and from 75.46 to 104.01 pg/mL, respectively. Therefore, CS-COS-T80 emulsion may serve as a promising adjuvant platform.
Asunto(s)
Adyuvantes Inmunológicos , Quitosano , Emulsiones , Inmunidad Mucosa , Mucosa Nasal , Ovalbúmina , Quitosano/química , Animales , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/química , Inmunidad Mucosa/efectos de los fármacos , Ratones , Ovalbúmina/inmunología , Ovalbúmina/química , Mucosa Nasal/inmunología , Femenino , Administración Intranasal , Ratones Endogámicos BALB C , Citocinas/metabolismo , Tamaño de la Partícula , OligosacáridosRESUMEN
There is still a paucity of fundamental understanding about the reaction of ammonia decomposition over TiO2, especially the role of water. Herein, FPMD and DFT calculations were used to address this concern. The results reveal that ammonia decomposition in pure ammonia causes the hydroxylation of the surfaces and reduction of the proton acceptor sites, making proton transfer (PT) difficult, increasing the distances between the NH3 and Obr sites and changing the adsorption configurations of NH3, which are not favourable for accepting protons from NH3 dissociation. When water is introduced, the local hydrogen bonding environment, consisting of NH3 and H2O with the H2O dynamically close to the ObrH, promotes the increase of the positive charge of H atoms from 0.133 to 1.47 e, which increases the ObrH bond dipole moment from 1.136 to 1.400 Debye, resulting in the shortening of the H-bond distances between NH3 and ObrH (1.858 vs. 1.945 Å of only NH3) and enlarging the ObrH bonds (0.980 vs. 1.120 Å). This reduces the activation energy barriers of ObrH deprotonation and causes the surfaces to have low hydroxyl coverage from 0.425 to 0.382 eV. Our study reveals the role of water and provides new insights into ammonia decomposition on TiO2.
RESUMEN
Motivation: Data reuse is a common and vital practice in molecular biology and enables the knowledge gathered over recent decades to drive discovery and innovation in the life sciences. Much of this knowledge has been collated into molecular biology databases, such as UniProtKB, and these resources derive enormous value from sharing data among themselves. However, quantifying and documenting this kind of data reuse remains a challenge. Results: The article reports on a one-day virtual workshop hosted by the UniProt Consortium in March 2023, attended by representatives from biodata resources, experts in data management, and NIH program managers. Workshop discussions focused on strategies for tracking data reuse, best practices for reusing data, and the challenges associated with data reuse and tracking. Surveys and discussions showed that data reuse is widespread, but critical information for reproducibility is sometimes lacking. Challenges include costs of tracking data reuse, tensions between tracking data and open sharing, restrictive licenses, and difficulties in tracking commercial data use. Recommendations that emerged from the discussion include: development of standardized formats for documenting data reuse, education about the obstacles posed by restrictive licenses, and continued recognition by funding agencies that data management is a critical activity that requires dedicated resources. Availability and implementation: Summaries of survey results are available at: https://docs.google.com/forms/d/1j-VU2ifEKb9C-sW6l3ATB79dgHdRk5v_lESv2hawnso/viewanalytics (survey of data providers) and https://docs.google.com/forms/d/18WbJFutUd7qiZoEzbOytFYXSfWFT61hVce0vjvIwIjk/viewanalytics (survey of users).
RESUMEN
PURPOSE: Pancreatic cancer (PC) is a deadly disease most often diagnosed in late stages. Identification of high-risk subjects could both contribute to preventative measures and help diagnose the disease at earlier timepoints. However, known risk factors, assessed independently, are currently insufficient for accurately stratifying patients. We use large-scale data from the UK Biobank (UKB) to identify genetic variant-smoking interaction effects and show their importance in risk assessment. METHODS: We draw data from 15,086,830 genetic variants and 315,512 individuals in the UKB. There are 765 cases of PC. Crucially, robust resampling corrections are used to overcome well-known challenges in hypothesis testing for interactions. Replication analysis is conducted in two independent cohorts totaling 793 cases and 570 controls. Integration of functional annotation data and construction of polygenic risk scores (PRS) demonstrate the additional insight provided by interaction effects. RESULTS: We identify the genome-wide significant variant rs77196339 on chromosome 2 (per minor allele odds ratio in never-smokers, 2.31 [95% CI, 1.69 to 3.15]; per minor allele odds ratio in ever-smokers, 0.53 [95% CI, 0.30 to 0.91]; P = 3.54 × 10-8) as well as eight other loci with suggestive evidence of interaction effects (P < 5 × 10-6). The rs77196339 region association is validated (P < .05) in the replication sample. PRS incorporating interaction effects show improved discriminatory ability over PRS of main effects alone. CONCLUSION: This study of genome-wide germline variants identified smoking to modify the effect of rs77196339 on PC risk. Interactions between known risk factors can provide critical information for identifying high-risk subjects, given the relative inadequacy of models considering only main effects, as demonstrated in PRS. Further studies are necessary to advance toward comprehensive risk prediction approaches for PC.
Asunto(s)
Predisposición Genética a la Enfermedad , Neoplasias Pancreáticas , Humanos , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Fumar/genética , Fumar/efectos adversos , Factores de Riesgo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Células GerminativasRESUMEN
Bioinspired photoactive composites, in terms of photodynamic inactivation, cost-effectiveness, and biosafety, are promising alternatives to antibiotics for combating bacterial infections while avoiding antibacterial resistance. However, the weak bacterial membrane affinity of the photoactive substrate and the lack of synergistic antibacterial effect remain crucial shortcomings for their antibacterial applications. Herein, we developed a hydrophobic film from food antioxidant lauryl gallate covalently functionalized chitosan (LG-g-CS conjugates) through a green radical-induced grafting reaction that utilizes synergistic bacteria capture, contact-killing, and photodynamic inactivation activities to achieve enhanced bactericidal and biofilm elimination capabilities. Besides, the grafting reaction mechanism between LG and CS in the ascorbic acid (AA)/H2O2 redox system was further proposed. The LG-g-CS films feature hydrophobic side chains and photoactive phenolic hydroxyl groups, facilitating dual bactericidal activities through bacteria capture and contact-killing via strong hydrophobic and electrostatic interactions with bacterial membranes as well as blue light (BL)-driven photodynamic bacterial eradication through the enhanced generation of reactive oxygen species. As a result, the LG-g-CS films efficiently capture and immobilize bacteria and exhibit excellent photodynamic antibacterial activity against model bacteria (Escherichia coli and Staphylococcus aureus) and their biofilms under BL irradiation. Moreover, LG-g-CS films could significantly promote the healing process of S. aureus-infected wounds. This research demonstrates a new strategy for designing and fabricating sustainable bactericidal and biofilm-removing materials with a high bacterial membrane affinity and photodynamic activity.
Asunto(s)
Antiinfecciosos , Quitosano , Ácido Gálico/análogos & derivados , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Quitosano/química , Peróxido de Hidrógeno/farmacología , Antiinfecciosos/química , Antibacterianos/química , Cicatrización de Heridas , Escherichia coli , BiopelículasRESUMEN
The accurate online detection of laser welding penetration depth has been a critical problem to which the industry has paid the most attention. Aiming at the laser welding process of TC4 titanium alloy, a multi-sensor monitoring system that obtained the keyhole/molten pool images and laser-induced plasma spectrum was built. The influences of laser power on the keyhole/molten pool morphologies and plasma thermo-mechanical characteristics were investigated. The results showed that there were significant correlations among the variations of the keyhole-molten pool, plasma spectrum, and penetration depth. The image features and spectral features were extracted by image processing and dimension-reduction methods, respectively. Moreover, several penetration depth prediction models based on single-sensor features and multi-sensor features were established. The mean square error of the neural network model built by multi-sensor features was 0.0162, which was smaller than that of the model built by single-sensor features. The established high-precision model provided a theoretical basis for real-time feedback control of the penetration depth in the laser welding process.
RESUMEN
A pilot-scale continuous-flow modified anaerobic-anoxic-oxic (MAAO) process examined the impact of external carbon sources (acetate, glucose, acetate/propionate) on ammonium assimilation, denitrifying phosphorus removal (DPR), and microbial community. Acetate exhibited superior efficacy in promoting the combined process of ammonia assimilation and DPR, enhancing both to 50.0 % and 60.0 %, respectively. Proteobacteria and Bacteroidota facilitated ammonium assimilation, while denitrifying phosphorus-accumulating organisms (DPAOs) played a key role in nitrogen (N) and phosphorus (P) removal. Denitrifying glycogen-accumulating organisms (DGAOs) aided N removal in the anoxic zone, ensuring stable N and P removal and recovery. Acetate/propionate significantly enhanced DPR (77.7 %) and endogenous denitrification (37.9 %). Glucose favored heterotrophic denitrification (29.6 %) but had minimal impact on ammonium assimilation. These findings provide valuable insights for wastewater treatment plants (WWTPs) seeking efficient N and P removal and recovery from low-strength wastewater.
Asunto(s)
Compuestos de Amonio , Aguas Residuales , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos , Anaerobiosis , Fósforo , Carbono , Propionatos , Desnitrificación , Reactores Biológicos/microbiología , Nitrógeno , Acetatos , GlucosaRESUMEN
BACKGROUND AND AIMS: Despite the substantial impact of environmental factors, individuals with a family history of liver cancer have an increased risk for HCC. However, genetic factors have not been studied systematically by genome-wide approaches in large numbers of individuals from European descent populations (EDP). APPROACH AND RESULTS: We conducted a 2-stage genome-wide association study (GWAS) on HCC not affected by HBV infections. A total of 1872 HCC cases and 2907 controls were included in the discovery stage, and 1200 HCC cases and 1832 controls in the validation. We analyzed the discovery and validation samples separately and then conducted a meta-analysis. All analyses were conducted in the presence and absence of HCV. The liability-scale heritability was 24.4% for overall HCC. Five regions with significant ORs (95% CI) were identified for nonviral HCC: 3p22.1, MOBP , rs9842969, (0.51, [0.40-0.65]); 5p15.33, TERT , rs2242652, (0.70, (0.62-0.79]); 19q13.11, TM6SF2 , rs58542926, (1.49, [1.29-1.72]); 19p13.11 MAU2 , rs58489806, (1.53, (1.33-1.75]); and 22q13.31, PNPLA3 , rs738409, (1.66, [1.51-1.83]). One region was identified for HCV-induced HCC: 6p21.31, human leukocyte antigen DQ beta 1, rs9275224, (0.79, [0.74-0.84]). A combination of homozygous variants of PNPLA3 and TERT showing a 6.5-fold higher risk for nonviral-related HCC compared to individuals lacking these genotypes. This observation suggests that gene-gene interactions may identify individuals at elevated risk for developing HCC. CONCLUSIONS: Our GWAS highlights novel genetic susceptibility of nonviral HCC among European descent populations from North America with substantial heritability. Selected genetic influences were observed for HCV-positive HCC. Our findings indicate the importance of genetic susceptibility to HCC development.
Asunto(s)
Carcinoma Hepatocelular , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Neoplasias Hepáticas , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Carcinoma Hepatocelular/genética , Estudios de Casos y Controles , Sitios Genéticos , Neoplasias Hepáticas/genética , América del Norte/epidemiología , Polimorfismo de Nucleótido Simple , Población Blanca/genética , Pueblos de América del NorteRESUMEN
AIMS: To assess the excess risk of cardiovascular disease (CVD) associated with different criteria for metabolic health, and the interplay of body size, insulin sensitivity and metabolic health with CVD risk. MATERIALS AND METHODS: We conducted a prospective study involving 115 638 participants from the China Cardiometabolic Disease and Cancer Cohort (4C) Study. Metabolic health was defined using three different definitions: (1) insulin sensitivity defined by homeostatic model assessment of insulin resistance index; (2) absence of metabolic syndrome according to the National Cholesterol Education Program Adult Treatment Panel III criteria; and (3) simultaneous absence of metabolic abnormalities (diabetes, hypertension, dyslipidaemia). The primary endpoint was a composite of incident CVD events comprising the first occurrence of myocardial infarction, stroke, heart failure, or cardiovascular death. RESULTS: During a mean 3.61-year follow-up period, obese individuals with insulin sensitivity (multivariable-adjusted hazard ratio [HR] 1.69, 95% confidence interval [CI] 1.37-2.08), or without metabolic syndrome (HR 1.46, 95% CI 1.13-1.89) still exhibited increased CVD risks, when compared to their normal-weight counterparts. Otherwise, those with obesity but simultaneous absence of metabolic abnormalities demonstrated similar CVD risk compared to normal-weight individuals (HR 0.91, 95% CI 0.53-1.59). CVD risk increased with the number of abnormalities across body mass index categories, regardless of insulin sensitivity. CONCLUSIONS: This study emphasizes the need for refined definitions of metabolic health and advocates for meticulous screening for metabolic abnormalities to reduce cardiovascular risks, even in individuals with normal weight and insulin sensitivity.
Asunto(s)
Tamaño Corporal , Enfermedades Cardiovasculares , Resistencia a la Insulina , Síndrome Metabólico , Obesidad , Humanos , Masculino , Femenino , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , China/epidemiología , Persona de Mediana Edad , Estudios Prospectivos , Adulto , Síndrome Metabólico/epidemiología , Síndrome Metabólico/complicaciones , Obesidad/complicaciones , Obesidad/epidemiología , Factores de Riesgo , Anciano , Neoplasias/epidemiología , Estudios de Cohortes , Estudios de Seguimiento , Pueblos del Este de AsiaRESUMEN
Nutrient removal from sewage is transitioning to nutrient recovery. However, biological treatment technologies to remove and recover nutrients from domestic sewage are still under investigation. This study delved into the integration of ammonium assimilation with denitrifying phosphorus removal (DPR) as a method for efficient nutrient management in sewage treatment. Results indicated this approach eliminated over 80 % of the nitrogen in the influent, simultaneously recovering over 60 % of the nitrogen as the activated sludge through ammonia assimilation, and glycerol facilitated this process. The nitrification/denitrifying phosphorus removal ensured the stability of both nitrogen and phosphorus removal. The phosphorus removal rate exceeded 96 %, and the DPR rate reached over 90 %. Network analysis highlighted a stable community structure with Proteobacteria and Bacteroidota driving ammonium assimilation. The synergistic effect of fermentation bacteria, denitrifying glycogen-accumulating organisms, and denitrifying phosphorus-accumulating organisms contributed to the stability of nitrogen and phosphorus removal. This approach offers a promising method for sustainable nutrient management in sewage treatment.
Asunto(s)
Compuestos de Amonio , Purificación del Agua , Aguas del Alcantarillado , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Desnitrificación , Fósforo , Reactores Biológicos , Nitrificación , Nutrientes , NitrógenoRESUMEN
The response of vegetation to climate change and human activities has attracted considerable attention. However, quantitative studies on the effects of climate change and human activities on dryland vegetation in different seasons remain unclear. This study investigated the impacts of precipitation, temperature, soil water storage (SWS) (top [0-7 cm], shallow [7-28 cm], and middle [28-100 cm] layers), vapor pressure deficit (VPD), and afforestation on vegetation as well as their relative contribution rates during the rainy season ([RS], June to September), dry season ([DS], November to April), transition season ([TS], May and October), and all year period (AY) in China's drylands from 2001 to 2020 using the first-difference method. Areas with precipitation and SWS showing significant positive correlation with dryland vegetation (p < 0.05) were found to be larger in RS than in DS and TS, and the positive effect of SWS increased with soil depth in the 0-28 cm interval. Increasing VPD induced a significant negative effect on vgetation during RS but it was not predominant in DS and TS. Afforestation showed an extremely significant positive correlated with dryland vegetation across >60 % of China's dryland areas (p < 0.01), but this improvement was found to be limited to regions with the highest afforestation area. Moreover, dryland vegetation dynamics were driven by afforestation in all seasons, with contribution rates of 64.23 %-71.46 %. The effects of SWS and VPD on vegetation driven by precipitation and temperature exceeded the direct effects of precipitation and temperature. Among climatic factors, VPD showed a major regulating effect on dryland vegetation at the top and shallow soil layers in almost all seasons, whereas the relative contribution rate of SWS increased with soil layer. The findings can provide a scientific reference for the sustainable development and protection of drylands under global warming.