Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Blood Adv ; 2024 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-39471483

RESUMEN

Current efforts in translational studies in hematology often rely on immunodeficient mouse models for engrafting patient-derived hematopoietic stem and progenitor cells (HSPCs), yet these models often face challenges in effectively engrafting cells from patients with various diseases, such as myelodysplastic syndromes (MDS). In this study, we developed an induced pluripotent stem cell (iPSC)-derived human bone marrow organoid model that closely replicates the bone marrow microenvironment, facilitating the engraftment of MDS patient-derived HSPCs, thereby mirroring the patients' distinct disease characteristics. Specifically, through advanced microscopy, we verified the development of a complex three-dimensional network of endothelial, stromal, and hematopoietic cells within the organoids, resembling the autonomous human marrow microenvironment. Furthermore, we showed that HSPCs derived from the donor bone marrow of normal individuals or patients with MDS can migrate to and proliferate within the organoid's vascular niche while maintaining self-renewal and original genetic profiles. Within the organoids, the differentiation patterns from MDS HSPCs were significantly distinct compared to the multilineage hematopoiesis from normal HSPCs, which can be correlated with the clinical manifestations of the disease. These findings underscore the significance of the organoid model in studying human hematopoiesis and the pathophysiology of hematologic diseases, offering new avenues for personalized medicine and therapeutic interventions.

2.
bioRxiv ; 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39464073

RESUMEN

Deleterious germline DDX41 variants constitute the most common inherited predisposition disorder linked to myeloid neoplasms (MNs). The role of DDX41 in hematopoiesis and how its germline and somatic mutations contribute to MNs remain unclear. Here we show that DDX41 is essential for erythropoiesis but dispensable for the development of other hematopoietic lineages. Using stage-specific Cre models for erythropoiesis, we reveal that Ddx41 knockout in early erythropoiesis is embryonically lethal, while knockout in late-stage terminal erythropoiesis allows mice to survive with normal blood counts. DDX41 deficiency induces a significant upregulation of G-quadruplexes (G4), noncanonical DNA structures that tend to accumulate in the early stages of erythroid precursors. We show that DDX41 co-localizes with G4 on the erythroid genome. DDX41 directly binds to and dissolves G4, which is significantly compromised in MN-associated DDX41 mutants. Accumulation of G4 by DDX41 deficiency induces erythroid genome instability, defects in ribosomal biogenesis, and upregulation of p53. However, p53 deficiency does not rescue the embryonic death of Ddx41 hematopoietic-specific knockout mice. In parallel, genome instability also activates the cGas-Sting pathway, which is detrimental to survival since cGas-deficient and hematopoietic-specific Ddx41 knockout mice are viable without detectable hematologic phenotypes, although these mice continue to show erythroid ribosomal defects and upregulation of p53. These findings are further supported by data from a DDX41 mutated MN patient and human iPSC-derived bone marrow organoids. Our study establishes DDX41 as a G4 dissolver, essential for erythroid genome stability and suppressing the cGAS-STING pathway.

3.
Am J Pathol ; 194(10): 1986-1996, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39069167

RESUMEN

Phosphoinositide 3-kinase (PI3K)-AKT and androgen receptor (AR) pathways are commonly activated in prostate cancers. Their reciprocal regulation makes advanced prostate cancers difficult to treat. The current study shows that pleckstrin-2 (PLEK2), a proto-oncoprotein involved in the activation and stabilization of AKT, connects these two pathways. Genetic evidence provided herein suggests that Plek2 deficiency largely reverted tumorigenesis in Pten prostate-specific knockout mice and that overexpression of PLEK2 promoted the proliferation and colony formation of prostate cancer cells in vitro. In addition, PLEK2 was negatively regulated by AR, AR transcriptionally repressed PLEK2 through binding to the PLEK2 promoter region, and overexpression of AR reduced PLEK2 expression, which inactivated AKT. Conversely, knockdown of AR in prostate cancer cells increased PLEK2 expression and activated the AKT pathway. This reciprocal inhibitory loop can be pharmacologically targeted using the PLEK2 inhibitor. PLEK2 inhibitor dose-dependently inhibited prostate cancer cell proliferation with the inactivation of AKT. Overall, the current study uncovered a crucial role of PLEK2 in prostate cancer proliferation and provided the rationale for targeting PLEK2 to treat prostate cancers.


Asunto(s)
Proliferación Celular , Proteínas de la Membrana , Neoplasias de la Próstata , Proteínas Proto-Oncogénicas c-akt , Receptores Androgénicos , Animales , Humanos , Masculino , Ratones , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Ratones Noqueados , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Androgénicos/metabolismo , Transducción de Señal , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
4.
Circ Res ; 135(3): e39-e56, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38873758

RESUMEN

BACKGROUND: Clearance of damaged mitochondria via mitophagy is crucial for cellular homeostasis. Apart from Parkin, little is known about additional Ub (ubiquitin) ligases that mediate mitochondrial ubiquitination and turnover, particularly in highly metabolically active organs such as the heart. METHODS: In this study, we have combined in silico analysis and biochemical assay to identify CRL (cullin-RING ligase) 5 as a mitochondrial Ub ligase. We generated cardiomyocytes and mice lacking RBX2 (RING-box protein 2; also known as SAG [sensitive to apoptosis gene]), a catalytic subunit of CRL5, to understand the effects of RBX2 depletion on mitochondrial ubiquitination, mitophagy, and cardiac function. We also performed proteomics analysis and RNA-sequencing analysis to define the impact of loss of RBX2 on the proteome and transcriptome. RESULTS: RBX2 and CUL (cullin) 5, 2 core components of CRL5, localize to mitochondria. Depletion of RBX2 inhibited mitochondrial ubiquitination and turnover, impaired mitochondrial membrane potential and respiration, increased cardiomyocyte cell death, and has a global impact on the mitochondrial proteome. In vivo, deletion of the Rbx2 gene in adult mouse hearts suppressed mitophagic activity, provoked accumulation of damaged mitochondria in the myocardium, and disrupted myocardial metabolism, leading to the rapid development of dilated cardiomyopathy and heart failure. Similarly, ablation of RBX2 in the developing heart resulted in dilated cardiomyopathy and heart failure. The action of RBX2 in mitochondria is not dependent on Parkin, and Parkin gene deletion had no impact on the onset and progression of cardiomyopathy in RBX2-deficient hearts. Furthermore, RBX2 controls the stability of PINK1 (PTEN-induced kinase 1) in mitochondria. CONCLUSIONS: These findings identify RBX2-CRL5 as a mitochondrial Ub ligase that regulates mitophagy and cardiac homeostasis in a Parkin-independent, PINK1-dependent manner.


Asunto(s)
Ratones Noqueados , Mitocondrias Cardíacas , Mitofagia , Miocitos Cardíacos , Ubiquitinación , Animales , Humanos , Masculino , Ratones , Células Cultivadas , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/enzimología , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética
5.
bioRxiv ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38464205

RESUMEN

Clearance of damaged mitochondria via mitophagy is crucial for cellular homeostasis. While the role of ubiquitin (Ub) ligase PARKIN in mitophagy has been extensively studied, increasing evidence suggests the existence of PARKIN-independent mitophagy in highly metabolically active organs such as the heart. Here, we identify a crucial role for Cullin-RING Ub ligase 5 (CRL5) in basal mitochondrial turnover in cardiomyocytes. CRL5 is a multi-subunit Ub ligase comprised by the catalytic RING box protein RBX2 (also known as SAG), scaffold protein Cullin 5 (CUL5), and a substrate-recognizing receptor. Analysis of the mitochondrial outer membrane-interacting proteome uncovered a robust association of CRLs with mitochondria. Subcellular fractionation, immunostaining, and immunogold electron microscopy established that RBX2 and Cul5, two core components of CRL5, localizes to mitochondria. Depletion of RBX2 inhibited mitochondrial ubiquitination and turnover, impaired mitochondrial membrane potential and respiration, and increased cell death in cardiomyocytes. In vivo , deletion of the Rbx2 gene in adult mouse hearts suppressed mitophagic activity, provoked accumulation of damaged mitochondria in the myocardium, and disrupted myocardial metabolism, leading to rapid development of dilated cardiomyopathy and heart failure. Similarly, ablation of RBX2 in the developing heart resulted in dilated cardiomyopathy and heart failure. Notably, the action of RBX2 in mitochondria is not dependent on PARKIN, and PARKIN gene deletion had no impact on the onset and progression of cardiomyopathy in RBX2-deficient hearts. Furthermore, RBX2 controls the stability of PINK1 in mitochondria. Proteomics and biochemical analyses further revealed a global impact of RBX2 deficiency on the mitochondrial proteome and identified several mitochondrial proteins as its putative substrates. These findings identify RBX2-CRL5 as a mitochondrial Ub ligase that controls mitophagy under physiological conditions in a PARKIN-independent, PINK1-dependent manner, thereby regulating cardiac homeostasis.

6.
PLoS Genet ; 19(12): e1011084, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38157491

RESUMEN

mDia formin proteins regulate the dynamics and organization of the cytoskeleton through their linear actin nucleation and polymerization activities. We previously showed that mDia1 deficiency leads to aberrant innate immune activation and induces myelodysplasia in a mouse model, and mDia2 regulates enucleation and cytokinesis of erythroblasts and the engraftment of hematopoietic stem and progenitor cells (HSPCs). However, whether and how mDia formins interplay and regulate hematopoiesis under physiological and stress conditions remains unknown. Here, we found that both mDia1 and mDia2 are required for HSPC regeneration under stress, such as serial plating, aging, and reconstitution after myeloid ablation. We showed that mDia1 and mDia2 form hetero-oligomers through the interactions between mDia1 GBD-DID and mDia2 DAD domains. Double knockout of mDia1 and mDia2 in hematopoietic cells synergistically impaired the filamentous actin network and serum response factor-involved transcriptional signaling, which led to declined HSPCs, severe anemia, and significant mortality in neonates and newborn mice. Our data demonstrate the potential roles of mDia hetero-oligomerization and their non-rodent functions in the regulation of HSPCs activity and orchestration of hematopoiesis.


Asunto(s)
Actinas , Proteínas Portadoras , Ratones , Animales , Forminas/genética , Forminas/metabolismo , Actinas/genética , Actinas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Citoesqueleto de Actina/metabolismo , Microtúbulos/metabolismo
7.
iScience ; 25(12): 105554, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36465116

RESUMEN

Mammalian terminal erythropoiesis involves chromatin and nuclear condensation followed by enucleation. Late-stage erythroblasts undergo caspase-mediated nuclear opening that is important for nuclear condensation through partial histone release. It remains unknown the dynamic changes of three-dimensional (3D) genomic organization during terminal erythropoiesis. Here, we used Hi-C to determine the chromatin structural change during primary mouse erythroblast terminal differentiation. We also performed RNA-sequencing and ATAC-sequencing under the same experimental setting to further reveal the genome accessibility and gene expression changes during this process. We found that late-stage terminal erythropoiesis involves global loss of topologically associating domains and establishment of inter-chromosomal interactions of the heterochromatin regions, which are associated with globally increased chromatin accessibility and upregulation of erythroid-related genes.

8.
J Clin Invest ; 132(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35900794

RESUMEN

Myelodysplastic syndromes (MDS) are age-related myeloid neoplasms with increased risk of progression to acute myeloid leukemia (AML). The mechanisms of transformation of MDS to AML are poorly understood, especially in relation to the aging microenvironment. We previously established an mDia1/miR-146a double knockout (DKO) mouse model phenocopying MDS. These mice develop age-related pancytopenia with oversecretion of proinflammatory cytokines. Here, we found that most of the DKO mice underwent leukemic transformation at 12-14 months of age. These mice showed myeloblast replacement of fibrotic bone marrow and widespread leukemic infiltration. Strikingly, depletion of IL-6 in these mice largely rescued the leukemic transformation and markedly extended survival. Single-cell RNA sequencing analyses revealed that DKO leukemic mice had increased monocytic blasts that were reduced with IL-6 knockout. We further revealed that the levels of surface and soluble IL-6 receptor (IL-6R) in the bone marrow were significantly increased in high-risk MDS patients. Similarly, IL-6R was also highly expressed in older DKO mice. Blocking of IL-6 signaling significantly ameliorated AML progression in the DKO model and clonogenicity of CD34-positive cells from MDS patients. Our study establishes a mouse model of progression of age-related MDS to AML and indicates the clinical significance of targeting IL-6 signaling in treating high-risk MDS.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Animales , Médula Ósea , Interleucina-6/genética , Leucemia Mieloide Aguda/genética , Ratones , Síndromes Mielodisplásicos/genética , Transducción de Señal , Microambiente Tumoral
9.
Curr Opin Hematol ; 29(3): 137-143, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35441599

RESUMEN

PURPOSE OF REVIEW: The differentiation from colony forming unit-erythroid (CFU-E) cells to mature enucleated red blood cells is named terminal erythropoiesis in mammals. Apart from enucleation, several unique features during these developmental stages include proteome remodeling and organelle clearance that are important to achieve hemoglobin enrichment. Here, we review the recent advances in the understanding of novel regulatory mechanisms in these processes, focusing on the master regulators that link these major events during terminal erythropoiesis. RECENT FINDINGS: Comprehensive proteomic studies revealed a mismatch of protein abundance to their corresponding transcript abundance, which indicates that the proteome remodeling is regulated in a complex way from transcriptional control to posttranslational modifications. Key regulators in organelle clearance were also found to play critical roles in proteome remodeling. SUMMARY: These studies demonstrate that the complexity of terminal erythropoiesis is beyond the conventional transcriptomic centric perspective. Posttranslational modifications such as ubiquitination are critical in terminal erythroid proteome remodeling that is also closely coupled with organelle clearance.


Asunto(s)
Eritropoyesis , Proteoma , Animales , Diferenciación Celular , Eritroblastos/metabolismo , Humanos , Mamíferos/metabolismo , Orgánulos/metabolismo , Proteoma/metabolismo , Proteómica
10.
Acta Pharmacol Sin ; 43(1): 50-63, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33785860

RESUMEN

Harmine is a ß-carboline alkaloid isolated from Banisteria caapi and Peganum harmala L with various pharmacological activities, including antioxidant, anti-inflammatory, antitumor, anti-depressant, and anti-leishmanial capabilities. Nevertheless, the pharmacological effect of harmine on cardiomyocytes and heart muscle has not been reported. Here we found a protective effect of harmine on cardiac hypertrophy in spontaneously hypertensive rats in vivo. Further, harmine could inhibit the phenotypes of norepinephrine-induced hypertrophy in human embryonic stem cell-derived cardiomyocytes in vitro. It reduced the enlarged cell surface area, reversed the increased calcium handling and contractility, and downregulated expression of hypertrophy-related genes in norepinephrine-induced hypertrophy of human cardiomyocytes derived from embryonic stem cells. We further showed that one of the potential underlying mechanism by which harmine alleviates cardiac hypertrophy relied on inhibition of NF-κB phosphorylation and the stimulated inflammatory cytokines in pathological ventricular remodeling. Our data suggest that harmine is a promising therapeutic agent for cardiac hypertrophy independent of blood pressure modulation and could be a promising addition of current medications for cardiac hypertrophy.


Asunto(s)
Cardiomegalia/tratamiento farmacológico , Harmina/farmacología , Sustancias Protectoras/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Administración Oral , Animales , Banisteriopsis/química , Cardiomegalia/inducido químicamente , Cardiomegalia/patología , Relación Dosis-Respuesta a Droga , Harmina/administración & dosificación , Estructura Molecular , Miocitos Cardíacos/efectos de los fármacos , Norepinefrina/antagonistas & inhibidores , Peganum/química , Sustancias Protectoras/administración & dosificación , Ratas , Ratas Wistar , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Relación Estructura-Actividad
11.
EBioMedicine ; 71: 103575, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34488017

RESUMEN

BACKGROUND: Human sinoatrial cardiomyocytes are essential building blocks for cell therapies of conduction system disorders. However, current differentiation protocols for deriving nodal cardiomyocytes from human pluripotent stem cells (hPSCs) are very inefficient. METHODS: By employing the hPSCs to cardiomyocyte (CM) in vitro differentiation system and generating E2A-knockout hESCs using CRISPR/Cas9 gene editing technology, we analyze the functions of E2A in CM differentiation. FINDINGS: We found that knockout of the transcription factor E2A substantially increased the proportion of nodal-like cells in hESC-derived CMs. The E2A ablated CMs displayed smaller cell size, increased beating rates, weaker contractile force, and other functional characteristics similar to sinoatrial node (SAN) cells. Transcriptomic analyses indicated that ion channel-encoding genes were up-regulated in E2A ablated CMs. E2A directly bounded to the promoters of genes key to SAN development via conserved E-box motif, and promoted their expression. Unexpect enhanced activity of NOTCH pathway after E2A ablation could also facilate to induct ventricle workingtype CMs reprogramming into SAN-like cells. INTERPRETATION: Our study revealed a new role for E2A during directed cardiac differentiation of hESCs and may provide new clues for enhancing induction efficiency of SAN-like cardiomyocytes from hPSCs in the future. FUNDING: This work was supported by the NSFC (No.82070391, N.S.; No.81870175 and 81922006, P.L.), the National Key R&D Program of China (2018YFC2000202, N.S.; 2017YFA0103700, P.L.), the Haiju program of National Children's Medical Center EK1125180102, and Innovative research team of high-level local universities in Shanghai and a key laboratory program of the Education Commission of Shanghai Municipality (ZDSYS14005).


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Células Madre Embrionarias Humanas/citología , Miocitos Cardíacos/citología , Potenciales de Acción , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células Cultivadas , Células Madre Embrionarias Humanas/metabolismo , Humanos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Ratones , Ratones SCID , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal
12.
Exp Cell Res ; 400(1): 112493, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33485843

RESUMEN

Most cancer deaths are due to the colonization of tumor cells in distant organs. More evidence indicates that overexpression of RACGAP1 plays a critical role in cancer metastasis. However, the underlying mechanism still remains poorly understood. Here we found that RACGAP1 promoted breast cancer metastasis through regulating mitochondrial quality control. Overexpression of RACGAP1 in breast cancer cells led to the fragmentation of mitochondria, increased mitophagy intensity, mitochondrial turnover, and aerobic glycolysis ATP production. We showed that RACGAP1 promoted mitochondrial fission through recruiting ECT2 during anaphase and subsequently had activated ERK-DRP1 pathway. We further demonstrated the phosphorylation of RACGAP1 is essential for its ability of binding with ECT2 and its downstream effects. RACGAP1 overexpression also increased the expression of PGC-1a, a key mitochondrial biogenesis regulator, presumably by the increased mitophagy intensity induced by RACGAP1. PGC-1a increased the enrichment of DNMT1 in mitochondria, mitochondrial DNMT1 augmented mitochondrial DNA methylation and upregulated mitochondrial genome transcription. Our data indicated that RACGAP1 simultaneously facilitated mitophagy and mitochondrial biogenesis through regulating DRP1 phosphorylation and PGC-1a expression, eventually improved mitochondrial quality control in breast cancer cells. Our study provided a new angle in understanding the RACGAP1-overexpression related malignancy in breast cancer patients.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/secundario , Proteínas Activadoras de GTPasa/metabolismo , Regulación Neoplásica de la Expresión Génica , Mitocondrias/patología , Proteínas Proto-Oncogénicas/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proliferación Celular , Femenino , Proteínas Activadoras de GTPasa/genética , Humanos , Ratones , Ratones Desnudos , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Mitofagia , Biogénesis de Organelos , Fosforilación Oxidativa , Proteínas Proto-Oncogénicas/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Mol Oncol ; 15(2): 543-559, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33252198

RESUMEN

Long non-coding RNAs (lncRNAs) are emerging as key molecules in various cancers, yet their potential roles in the pathogenesis of breast cancer are not fully understood. Herein, using microarray analysis, we revealed that the lncRNA RACGAP1P, the pseudogene of Rac GTPase activating protein 1 (RACGAP1), was up-regulated in breast cancer tissues. Its high expression was confirmed in 25 pairs of breast cancer tissues and 8 breast cell lines by qRT-PCR. Subsequently, we found that RACGAP1P expression was positively correlated with lymph node metastasis, distant metastasis, TNM stage, and shorter survival time in 102 breast cancer patients. Then, in vitro and in vivo experiments were designed to investigate the biological function and regulatory mechanism of RACGAP1P in breast cancer cell lines. Overexpression of RACGAP1P in MDA-MB-231 and MCF7 breast cell lines increased their invasive ability and enhanced their mitochondrial fission. Conversely, inhibition of mitochondrial fission by Mdivi-1 could reduce the invasive ability of RACGAP1P-overexpressing cell lines. Furthermore, the promotion of mitochondrial fission by RACGAP1P depended on its competitive binding with miR-345-5p against its parental gene RACGAP1, leading to the activation of dynamin-related protein 1 (Drp1). In conclusion, lncRNA RACGAP1P promotes breast cancer invasion and metastasis via miR-345-5p/RACGAP1 pathway-mediated mitochondrial fission.


Asunto(s)
Neoplasias de la Mama/metabolismo , MicroARNs/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales , ARN Largo no Codificante/metabolismo , ARN Neoplásico/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , MicroARNs/genética , Mitocondrias/genética , Mitocondrias/patología , Invasividad Neoplásica , ARN Largo no Codificante/genética , ARN Neoplásico/genética
14.
Protein Cell ; 11(9): 661-679, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32277346

RESUMEN

Dysregulation of circadian rhythms associates with cardiovascular disorders. It is known that deletion of the core circadian gene Bmal1 in mice causes dilated cardiomyopathy. However, the biological rhythm regulation system in mouse is very different from that of humans. Whether BMAL1 plays a role in regulating human heart function remains unclear. Here we generated a BMAL1 knockout human embryonic stem cell (hESC) model and further derived human BMAL1 deficient cardiomyocytes. We show that BMAL1 deficient hESC-derived cardiomyocytes exhibited typical phenotypes of dilated cardiomyopathy including attenuated contractility, calcium dysregulation, and disorganized myofilaments. In addition, mitochondrial fission and mitophagy were suppressed in BMAL1 deficient hESC-cardiomyocytes, which resulted in significantly attenuated mitochondrial oxidative phosphorylation and compromised cardiomyocyte function. We also found that BMAL1 binds to the E-box element in the promoter region of BNIP3 gene and specifically controls BNIP3 protein expression. BMAL1 knockout directly reduced BNIP3 protein level, causing compromised mitophagy and mitochondria dysfunction and thereby leading to compromised cardiomyocyte function. Our data indicated that the core circadian gene BMAL1 is critical for normal mitochondria activities and cardiac function. Circadian rhythm disruption may directly link to compromised heart function and dilated cardiomyopathy in humans.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Cardiomiopatía Dilatada/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias Cardíacas/metabolismo , Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción ARNTL/genética , Animales , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Línea Celular , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/patología , Proteínas Mitocondriales/genética
15.
Aging (Albany NY) ; 9(12): 2647-2665, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29283886

RESUMEN

Accumulated evidence indicates that circadian genes regulate cell damage and senescence in most mammals. Endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) regulate longevity in many organisms. However, the specific mechanisms of the relationship between the circadian clock and the two stress processes in organisms are poorly understood. Here, we show that Clock-mediated Pdia3 expression is required to sustain reactive oxidative reagents and ER stress. First, ER stress and ROS are strongly activated in the liver tissue of Clock∆19 mutant mice, which exhibit a significant aging phenotype. Next, transcription of Pdia3 is mediated by the circadian gene Clock, but this process is affected by the Clock∆19 mutant due to the low affinity of the E-box motif in the promoter. Finally, ablation of Pdia3 with siRNA causes ER stress with sustained phosphorylation of PERK and eIF1α, resulting in exaggerated up-regulation of UPR target genes and increased apoptosis as well as ROS. Moreover, the combined effects result in an imbalance of cell homeostasis and ultimately lead to cell damage and senescence. Taken together, this study identified the circadian gene Clock as a regulator of ER stress and senescence, which will provide a reference for the clinical prevention of aging.


Asunto(s)
Proteínas CLOCK/genética , Senescencia Celular/genética , Estrés del Retículo Endoplásmico/genética , Proteína Disulfuro Isomerasas/genética , Animales , Femenino , Regulación de la Expresión Génica/genética , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Proteína Disulfuro Isomerasas/biosíntesis
16.
Biomed Res Int ; 2016: 5438589, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27631008

RESUMEN

Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice) by altering exposure to light. C57 BL/6J mice (C57 mice) and ApoE-KO mice (ApoE-KO mice) exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1) levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation.


Asunto(s)
Aterosclerosis/metabolismo , Proteínas CLOCK/biosíntesis , Iluminación/efectos adversos , Metabolismo de los Lípidos , Placa Aterosclerótica/metabolismo , Animales , Apolipoproteínas E/deficiencia , Aterosclerosis/genética , Aterosclerosis/patología , Proteínas CLOCK/genética , Masculino , Ratones , Ratones Noqueados , Placa Aterosclerótica/genética , Placa Aterosclerótica/patología
17.
IUBMB Life ; 68(7): 557-68, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27194636

RESUMEN

Circadian genes control most of the physiological functions including cell cycle. Cell proliferation is a critical factor in the differentiation of progenitor cells. However, the role of Clock gene in the regulation of cell cycle via wingless-type (Wnt) pathway and the relationship between Clock and adipogenesis are unclear. We found that the circadian locomotor output cycles kaput (Clock) regulated the proliferation and the adipogenesis of 3T3-L1 preadipocytes. We found that Clock attenuation inhibited the viability of 3T3-L1 preadipocytes in the cell counting kit 8. The expression of c-Myc and Cyclin D1 decreased dramatically in 3T3-L1 when Clock was silenced with short interfering RNA and was also decreased in fat tissue and adipose tissue-derived stem cells of Clock(Δ19) mice. Clock directly controls the expression of the components of Wnt signal transduction pathway, which was verified by serum shock, chromatin immunoprecipitation, Western blot, and quantitative real-time polymerase chain reaction (qRT-PCR). Furthermore, IWR-1, a Wnt signal pathway inhibitor, inhibited the cell cycle promotion by CLOCK, which was detected by cell viability assay, flow cytometry, and qRT-PCR. Therefore, CLOCK transcription control of Wnt signaling promotes cell cycle progression in 3T3-L1 preadipocytes. Clock inhibited the adipogenesis on day 2 in 3T3-L1 cells via Oil Red O staining and qRT-PCR detection and probably related to cellular differentiation. These data provide evidence that the circadian gene Clock regulates the proliferation of preadipocytes and affects adipogenesis. © 2016 IUBMB Life, 68(7):557-568, 2016.


Asunto(s)
Adipogénesis/genética , Proteínas CLOCK/genética , Proliferación Celular/genética , Proteínas Proto-Oncogénicas c-myc/genética , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Diferenciación Celular/genética , Supervivencia Celular/genética , Ciclina D1/genética , Regulación de la Expresión Génica , Ratones , PPAR gamma/genética , PPAR gamma/metabolismo , Células Madre/metabolismo , Vía de Señalización Wnt/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA