RESUMEN
Multi-view stereo based on learning is a critical task in three-dimensional reconstruction, enabling the effective inference of depth maps and the reconstruction of fine-grained scene geometry. However, the results obtained by current popular 3D reconstruction methods are not precise, and achieving high-accuracy scene reconstruction remains challenging due to the pervasive impact of feature extraction and the poor correlation between cost and volume. In addressing these issues, we propose a cascade deep residual inference network to enhance the efficiency and accuracy of multi-view stereo depth estimation. This approach builds a cost-volume pyramid from coarse to fine, generating a lightweight, compact network to improve reconstruction results. Specifically, we introduce the omni-dimensional dynamic atrous spatial pyramid pooling (OSPP), a multiscale feature extraction module capable of generating dense feature maps with multiscale contextual information. The feature maps encoded by the OSPP module can generate dense point clouds without consuming significant memory. Furthermore, to alleviate the issue of feature mismatch in cost volume regularization, we propose a normalization-based 3D attention module. The 3D attention module aggregates crucial information within the cost volume across the dimensions of channel, spatial, and depth. Through extensive experiments on benchmark datasets, notably DTU, we found that the OD-MVSNet model outperforms the baseline model by approximately 1.4% in accuracy loss, 0.9% in completeness loss, and 1.2% in overall loss, demonstrating the effectiveness of our module.
Asunto(s)
Imagenología Tridimensional , Imagenología Tridimensional/métodos , Algoritmos , Redes Neurales de la Computación , Procesamiento de Imagen Asistido por Computador/métodos , HumanosRESUMEN
In recent years, immunization with the S2 live-attenuated vaccine has been recognized as the most economical and effective strategy for preventing brucellosis in Inner Mongolia, China. However, there are still challenges related to vaccine toxicity and the inability to distinguish between vaccine immunization and natural infection. Therefore, in this study, we developed a digital droplet polymerase chain reaction (ddPCR) assay based on single-nucleotide polymorphism (SNP) loci to identify wild Brucella strains and S2 vaccine strains. The assay demonstrated excellent linearity (R2> 0.99) with a lower detection limit of 10 copies/µL for both wild and vaccine strains. Additionally, the ddPCR assay outperformed the real-time fluorescent quantitative PCR (qPCR) assay in screening 50 clinical samples. We have established an effective and highly sensitive ddPCR assay for Brucella, providing an efficient method for detecting and differentiating wild strains of Brucella from the S2 vaccine strain.
Asunto(s)
Vacuna contra la Brucelosis , Brucella , Brucelosis , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Brucella/genética , Brucella/clasificación , Brucella/aislamiento & purificación , Humanos , Vacuna contra la Brucelosis/genética , Vacuna contra la Brucelosis/inmunología , Brucelosis/diagnóstico , Brucelosis/prevención & control , Brucelosis/microbiología , Reacción en Cadena de la Polimerasa/métodos , Sensibilidad y Especificidad , China , Vacunas Atenuadas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , ADN Bacteriano/genéticaRESUMEN
Although 3D reconstruction has been widely used in many fields as a key component of environment perception, existing technologies still have the potential for further improvement in 3D scene reconstruction. We propose an improved reconstruction algorithm based on the MVSNet network architecture. To glean richer pixel details from images, we suggest deploying a DE module integrated with a residual framework, which supplants the prevailing feature extraction mechanism. The DE module uses ECA-Net and dilated convolution to expand the receptive field range, performing feature splicing and fusion through the residual structure to retain the global information of the original image. Moreover, harnessing attention mechanisms refines the 3D cost volume's regularization process, bolstering the integration of information across multi-scale feature volumes, consequently enhancing depth estimation precision. When assessed our model using the DTU dataset, findings highlight the network's 3D reconstruction scoring a completeness (comp) of 0.411 mm and an overall quality of 0.418 mm. This performance is higher than that of traditional methods and other deep learning-based methods. Additionally, the visual representation of the point cloud model exhibits marked advancements. Trials on the Blended MVS dataset signify that our network exhibits commendable generalization prowess.
RESUMEN
Undruggable targets typically refer to a class of therapeutic targets that are difficult to target through conventional methods or have not yet been targeted, but are of great clinical significance. According to statistics, over 80% of disease-related pathogenic proteins cannot be targeted by current conventional treatment methods. In recent years, with the advancement of basic research and new technologies, the development of various new technologies and mechanisms has brought new perspectives to overcome challenging drug targets. Among them, targeted protein degradation technology is a breakthrough drug development strategy for challenging drug targets. This technology can specifically identify target proteins and directly degrade pathogenic target proteins by utilizing the inherent protein degradation pathways within cells. This new form of drug development includes various types such as proteolysis targeting chimera (PROTAC), molecular glue, lysosome-targeting Chimaera (LYTAC), autophagosome-tethering compound (ATTEC), autophagy-targeting chimera (AUTAC), autophagy-targeting chimera (AUTOTAC), degrader-antibody conjugate (DAC). This article systematically summarizes the application of targeted protein degradation technology in the development of degraders for challenging drug targets. Finally, the article looks forward to the future development direction and application prospects of targeted protein degradation technology.
Asunto(s)
Autofagia , Proteolisis , Proteolisis/efectos de los fármacos , Humanos , Autofagia/efectos de los fármacos , Proteínas/metabolismo , Lisosomas/metabolismo , Desarrollo de Medicamentos/métodos , Terapia Molecular Dirigida/métodos , AnimalesRESUMEN
We have developed a Ti catalyst that carries out the anti-Markovnikov reduction of a wide range of epoxides; [BH4]- is used as both the electron and the hydrogen atom source. It requires only mild conditions and accommodates a broad range of epoxide substrates. The Ti catalyst is readily available and is environmentally friendly.
RESUMEN
The rate constants kH (kD) have been determined at 27 °C for H· (D·) transfer from CpCr(CO)3H(D) to the C=C bonds of various enamides. This process leads to the formation of α-amino radicals. Vinyl enamides with N-alkyl and N-phenyl substituents have proven to be good H· acceptors, with rate constants close to those of styrene and methyl methacrylate. A methyl substituent on the incipient radical site decreases kH by a factor of 4; a methyl substituent on the carbon that will receive the H· decreases kH by a factor of 380. The measured kH values indicate that these α-amino radicals can be used for the cyclization of enamides to pyrrolidines. A vanadium hydride, HV(CO)4(dppe), has proven more effective at the cyclization of enamides than Cr or Co hydrides-presumably because the weakness of the V-H bond leads to faster H· transfer. The use of the vanadium hydride is operationally simple, employs mild reaction conditions, and has a broad substrate scope. Calculations have confirmed that H· transfer is the slowest step in these cyclization reactions.
RESUMEN
The cell cycle is a complex process that involves DNA replication, protein expression, and cell division. Dysregulation of the cell cycle is associated with various diseases. Cyclin-dependent kinases (CDKs) and their corresponding cyclins are major proteins that regulate the cell cycle. In contrast to inhibition, a new approach called proteolysis-targeting chimeras (PROTACs) and molecular glues can eliminate both enzymatic and scaffold functions of CDKs and cyclins, achieving targeted degradation. The field of PROTACs and molecular glues has developed rapidly in recent years. In this article, we aim to summarize the latest developments of CDKs and cyclin protein degraders. The selectivity, application, validation and the current state of each CDK degrader will be overviewed. Additionally, possible methods are discussed for the development of degraders for CDK members that still lack them. Overall, this article provides a comprehensive summary of the latest advancements in CDK and cyclin protein degraders, which will be helpful for researchers working on this topic.
Asunto(s)
Quinasas Ciclina-Dependientes , Ciclinas , Humanos , Ciclo Celular/fisiología , División Celular , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/genética , Ciclinas/metabolismoRESUMEN
We evaluated the diagnostic value of droplet-based digital PCR (dd-PCR) by comparing it with the quantitative real-time PCR (RT-qPCR) for detecting Brucella DNA, 487 whole blood and serum samples collected from suspected human brucellosis, respectively. Sensitivity and specificity were 88.14% and 100% for RT-qPCR; 97.12% and 100% for dd-PCR. The positive rate detected by RT-qPCR and dd-PCR based on the nucleic acid extracted by simultaneous extraction method in serum and blood cells were 56.49% and 62.22%, respectively, which is higher than the commercial kit in 47.74% and 52.77%. Additionally, 32 false-negative samples of chronic patients analyzed by serological tests were positive in the detection from the blood cell nucleic acid. dd-PCR could be considered a valuable tool for detecting Brucella DNA, particularly in false-negative test results. The simultaneous extraction method is complementary to dd-PCR in diagnosing human brucellosis cases at different disease stages, especially in chronic and relapsed stages.
Asunto(s)
Brucelosis , Ácidos Nucleicos , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Brucelosis/diagnóstico , Sensibilidad y Especificidad , ADNRESUMEN
Pyrazole is a five-membered heterocycle bearing two adjacent nitrogen atoms. Both pharmaceutical agents and natural products with pyrazole as a nucleus have exhibited a broad spectrum of biological activities. In the last few decades, more than 40 pyrazole-containing drugs have been approved by the FDA for the treatment of a broad range of clinical conditions including celecoxib (anti-inflammatory), CDPPB (antipsychotic), difenamizole (analgesic), etc. Owing to the unique physicochemical properties of the pyrazole core, pyrazole-containing drugs may exert better pharmacokinetics and pharmacological effects compared with drugs containing similar heterocyclic rings. The purpose of this paper is to provide an overview of all the existing drugs bearing a pyrazole nucleus that have been approved or in clinical trials, involving their pharmacological activities and SAR studies.
RESUMEN
Amide bond replacement with planar isosteric chalcogen analogues has an important implication for the properties of the N-C(X) linkage in structural chemistry, biochemistry and organic synthesis. Herein, we report the first higher chalcogen derivatives of non-planar twisted amides. The synthesis of twisted thioamide in a versatile system has been accomplished by direct thionation without cleavage of the σ N-C bond. The synthesis of twisted selenoamide has been accomplished by selenation with Woollins' reagent. The structures of higher chalcogen analogues of non-planar amides were unambiguously confirmed by X-ray crystallography. Reactivity studies were conducted to determine the effect of isologous N-C(O) to N-C(X) replacement on the properties of the amide linkage. Computational studies were employed to evaluate structural and energetic parameters of amide bond alteration in higher chalcogen amides. The study provides the first experimental evidence on the effect of chalcogen isologues on the structural and electronic properties of the non-planar amide N-C(X) linkage.
Asunto(s)
Amidas , Calcógenos , Amidas/química , Calcógenos/química , Cristalografía por Rayos X , Tioamidas/químicaRESUMEN
OBJECTIVE: Adenosquamous carcinoma is a rare subtype of non-small cell lung cancer characterized by aggressive behavior, with combination of adenocarcinoma and squamous cell carcinoma components. The clinicopathological characteristics and prognosis of resectable adenosquamous carcinoma are incompletely understood and this study aimed to depict those in a large population. METHODS: A total of 805 adenosquamous carcinoma, 7875 squamous cell carcinoma and 23 957 adenocarcinoma patients who underwent lobectomy or sublobectomy were queried from the Surveillance, Epidemiology, and End Results database (2010-17). Clinicopathological characteristics of adenosquamous carcinoma patients were compared with those of squamous cell carcinoma and adenocarcinoma patients. Prognostic factors were identified by univariable and multivariable Cox regression analyses. Propensity score matching was applied to reduce confounding effects. RESULTS: Adenosquamous carcinoma was associated with higher pleural invasion incidence and poorer differentiation compared with squamous cell carcinoma or adenocarcinoma (P values < 0.001). The independent risk factors of cancer-specific survival of adenosquamous carcinoma patients were increasing age, male sex, invading through visceral pleura, poor differentiation and higher stage. Stage IB adenosquamous carcinoma patients whose tumor invaded through visceral pleura had significantly worse survival than those not (P = 0.003). Adenosquamous carcinoma patients had worse survival compared with squamous cell carcinoma (5-year-survival: 64.55 vs. 69.09%, P = 0.003) and adenocarcinoma (5-year-survival: 64.55 vs. 76.79%, P < 0.001) patients before match. And this difference persisted after match. CONCLUSIONS: Resectable adenosquamous carcinoma patients had higher pleural invasion incidence, poorer differentiation and worse survival compared with squamous cell carcinoma and adenocarcinoma patients. Visceral pleural invasion status and differentiation grade were vital prognostic factors of adenosquamous carcinoma patients on the basis of stage.
Asunto(s)
Adenocarcinoma , Carcinoma Adenoescamoso , Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Adenocarcinoma/patología , Carcinoma Adenoescamoso/cirugía , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/patología , Humanos , Pulmón/patología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/cirugía , Masculino , Estadificación de Neoplasias , PronósticoRESUMEN
BACKGROUND: Pulmonary sclerosing pneumocytoma is a kind of rare benign pulmonary tumor with potential malignancy. The clinical features, risk factors for prognosis, and optimal treatment have not been identified yet. This study aimed to investigate the clinical features and prognosis of pulmonary sclerosing pneumocytoma. METHODS: We retrospectively performed a review of pulmonary sclerosing pneumocytoma patients in West China Hospital from 2009 to 2019. The basic characteristics, treatment regimens, operation detail, postoperative variables, and follow-up time were recorded for each case. Differences in features between patients undergoing lobectomy and segmentectomy were compared. We also performed a case review and summarized reported clinical features in former studies. RESULTS: Altogether 61 pulmonary sclerosing pneumocytoma patients were retrospectively reviewed. Fifty-six patients were female and 5 were male. The patients' median age was 51 (23-73). Seven (11.48%) patients had smoking history. Twenty tumors were located in the right lung [upper lobe (n = 7), middle (n = 2), and lower (n = 11)] and 41 in the left [upper (n = 12) and lower (n = 29)]. The median tumor size was 2 (0.9-7) cm. Thirty-six (59.02%) patients underwent sublobectomy (segmentectomy or wedge resection) whereas 25 (40.98%) underwent lobectomy. All patients recovered uneventfully, and no perioperative mortality was identified. Sublobectomy showed a trend towards reduced chest tube duration and shorter postoperative hospital stays compared with lobectomy. CONCLUSIONS: The findings showed good prognosis of pulmonary sclerosing pneumocytoma and proved its benign characteristics. Sublobectomy showed advanced efficacy regarding chest tube duration and postoperative hospital stay compared with lobectomy.
Asunto(s)
Neoplasias Pulmonares , Hemangioma Esclerosante Pulmonar , Femenino , Humanos , Pulmón/patología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/cirugía , Masculino , Persona de Mediana Edad , Pronóstico , Hemangioma Esclerosante Pulmonar/patología , Hemangioma Esclerosante Pulmonar/cirugía , Estudios RetrospectivosRESUMEN
Thioamides are 'single-atom' isosteres of amide bonds that have found broad applications in organic synthesis, biochemistry and drug discovery. In this New Talent themed issue, we present a general strategy for activation of N-C(S) thioamide bonds by ground-state-destabilization. This concept is outlined in the context of a full study on transamidation of thioamides with nucleophilic amines, and relies on (1) site-selective N-activation of the thioamide bond to decrease resonance and (2) highly chemoselective nucleophilic acyl addition to the thioamide CîS bond. The follow-up collapse of the tetrahedral intermediate is favored by the electronic properties of the amine leaving group. The ground-state-destabilization concept of thioamides enables weakening of the N-C(S) bond and rationally modifies the properties of valuable thioamide isosteres for the development of new methods in organic synthesis. We fully expect that in analogy to the burgeoning field of destabilized amides introduced by our group in 2015, the thioamide bond ground-state-destabilization activation concept will find broad applications in various facets of chemical science, including metal-free, metal-catalyzed and metal-promoted reaction pathways.
Asunto(s)
Aminas , Tioamidas , Amidas/química , Tioamidas/químicaRESUMEN
Thioamides represent highly valuable isosteric in the strictest sense "single-atom substitution" analogues of amides that have found broad applications in chemistry and biology. A long-standing challenge is the direct transamidation of thioamides, a process which would convert one thioamide bond (R-C(S)-NR1 R2 ) into another (R-C(S)-NR3 N4 ). Herein, we report the first general method for the direct transamidation of thioamides by highly chemoselective N-C(S) transacylation. The method relies on site-selective N-tert-butoxycarbonyl activation of 2° and 1° thioamides, resulting in ground-state-destabilization of thioamides, thus enabling to rationally manipulate nucleophilic addition to the thioamide bond. This method showcases a remarkably broad scope including late-stage functionalization (>100 examples). We further present extensive DFT studies that provide insight into the chemoselectivity and provide guidelines for the development of transamidation methods of the thioamide bond.
Asunto(s)
Tioamidas , Elementos de Transición , Amidas , Tioamidas/químicaRESUMEN
IPr (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) represents the most important NHC (NHC = N-heterocyclic carbene) ligand throughout the field of homogeneous catalysis. Herein, we report the synthesis, catalytic activity, and full structural and electronic characterization of novel, sterically-bulky, easily-accessible NHC ligands based on the hash peralkylation concept, including IPr#, Np# and BIAN-IPr#. The new ligands have been commercialized in collaboration with Millipore Sigma: IPr#HCl, 915653; Np#HCl; 915912; BIAN-IPr#HCl, 916420, enabling broad access of the academic and industrial researchers to new ligands for reaction optimization and screening. In particular, the synthesis of IPr# hinges upon cost-effective, modular alkylation of aniline, an industrial chemical that is available in bulk. The generality of this approach in ligand design is demonstrated through facile synthesis of BIAN-IPr# and Np#, two ligands that differ in steric properties and N-wingtip arrangement. The broad activity in various cross-coupling reactions in an array of N-C, O-C, C-Cl, C-Br, C-S and C-H bond cross-couplings is demonstrated. The evaluation of steric, electron-donating and π-accepting properties as well as coordination chemistry to Au(i), Rh(i) and Pd(ii) is presented. Given the tremendous importance of NHC ligands in homogenous catalysis, we expect that this new class of NHCs will find rapid and widespread application.
RESUMEN
The vector tracking loop (VTL) has high tracking accuracy and a superior ability to track weak signals in GNSS. However, traditional VTL architecture is established on continuous Code Division Multiple Access (CDMA) signal and is incompatible with pseudolite positioning systems (PLPS) because PLPS generally adopts a pseudo-random pulsing CDMA signal structure to mitigate the near-far effect. Therefore, this paper proposes an optimized VTL architecture for pseudo-random pulsing CDMA signals. To avoid estimation biases in PLPS, the proposed VTL adopts irregular update periods (IUP) pre-filters which adjust the update cycles according to the active timeslot intervals. Meanwhile, as the active timeslots of different pseudolites do not overlap, the sampling time of the navigation filter inputs is inconsistent and time-varying, causing jitter degradation. Thus, the proposed VTL predicts the measurements so that they can be sampled at the same time, which improves tracking accuracy. Simulation is carried out to evaluate the performance of the proposed VTL. The results suggest that the proposed VTL outperforms the traditional pre-filter-based VTL and IUP pre-filter-based VTL.
Asunto(s)
Simulación por Computador , Frecuencia Cardíaca , Fenómenos FísicosRESUMEN
A series of alkoxylated isobenzofuranones were conveniently synthesized from the reaction of 2-(1-arylvinyl)benzoic acids with PhI(OR)2, generated in situ from the reaction of iodosobenzene (PhIO) with alkyl alcohols. This hypervalent iodine mediated one-pot transformation is postulated to undergo a cascade reaction involving lactonization, 1,2-aryl migration and alkoxylation processes. The organocatalytic and chiral organoiodine-catalyzed asymmetric reactions of the current transformation were also probed.
RESUMEN
A best evidence topic in thoracic surgery was written according to a structured protocol. The question addressed was whether metformin improved the efficacy of standard epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) treatment for patients with epidermal growth factor receptor (EGFR)-mutated advanced non-small-cell lung cancer. A total of 99 papers were found using the reported search, of which 4 represented the best evidence to answer this clinical question. The authors, journal, publication date, country, study type, treatment regimen, relevant outcomes and results of these papers are tabulated. We concluded that the addition of metformin to EGFR-TKI might improve the survival of patients with EGFR-mutated non-small-cell lung cancer and diabetes mellitus type 2. However, for non-diabetic non-small-cell lung cancer patients with EGFR mutation, the efficiency of additional metformin in EGFR-TKI treatment remains unclear because of the conflicting results of only 2 available studies.
Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Metformina/uso terapéutico , Afatinib/administración & dosificación , Afatinib/uso terapéutico , Antineoplásicos/administración & dosificación , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Quimioterapia Combinada , Receptores ErbB/genética , Clorhidrato de Erlotinib/administración & dosificación , Clorhidrato de Erlotinib/uso terapéutico , Medicina Basada en la Evidencia , Gefitinib/administración & dosificación , Gefitinib/uso terapéutico , Humanos , Masculino , Metformina/administración & dosificación , Persona de Mediana Edad , Mutación , Inhibidores de Proteínas Quinasas/uso terapéuticoRESUMEN
A highly efficient method for chemoselective synthesis of biaryl ketones by arylation of Weinreb amides (N-methoxy-N-methylamides) with functionalized Grignard reagents is reported. This protocol offers rapid entry to functionalized biaryl ketones after Mg/halide exchange with i-PrMgCl·LiCl under operationally-simple and practical reaction conditions. The scope of the method is highlighted in >40 examples, including bioactive compounds and pharmaceutical derivatives. Collectively, this transition-metal-free approach offers a major advantage over the recently established cross-coupling of amides by oxidative addition of N-C(O) bonds. Considering the utility of amide acylation reactions in modern synthesis, we expect that this method will be of broad interest.