Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Clin Cardiol ; 47(6): e24274, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38884329

RESUMEN

BACKGROUND: Atherosclerotic cardiovascular disease (ASCVD) is a group of clinical diseases based on pathology of atherosclerosis that is the leading cause of mortality worldwide. There is a bidirectional interaction between ASCVD and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Alterations in circulating miRNAs levels are involved in the development of ASCVD in patients infected with SARS-CoV-2, however, the correlation between ASCVD co-infection with SARS-CoV-2 and alterations of cardiac-specific miRNAs is not well understood. HYPOTHESIS: The circulating miR-146a and miR-27a are involved in bidirectional interactions between ASCVD and SARS-CoV-2 infections. METHODS: Circulating miR-146a and miR-27a levels were measured in serum and PBMCs deriving from ASCVD patients and controls after SARS-CoV-2 infection by qRT-PCR analysis. The levels of neutralizing antibodies-resistant SARS-CoV-2 in human serum was determined by competitive magnetic particle chemiluminescence method. Interleukin (IL)-6 levels were detected by automatic biochemical analyzer using electrochemiluminescence. RESULTS: Significant downregulation of circulating miR-146a and upregulation of miR-27a in ASCVD patients after infection with SARS-CoV-2 compared with controls were observed, among which the alterations were more evident in ASCVD patients comorbid with hyperlipidemia and diabetes mellitus. Consistently, correlation analysis revealed that serum miR-146a and miR-27a levels were associated with the levels of lipids and glucose, inflammatory response, and immune function in ASCVD patients. Remarkably, SARS-CoV-2 S protein RBD stimulation of PBMCs derived from both ASCVD and controls significantly downregulated miR-146a, upregulated miR-27a expression levels, and promoted IL-6 release in vitro. CONCLUSIONS: The circulating miR-146a and miR-27a are involved in metabolism, inflammation, and immune levels in patients with ASCVD after SARS-CoV-2 infection, laying the foundation for the development of strategies to prevent the risk of SARS-CoV-2 infection in ASCVD patients.


Asunto(s)
Aterosclerosis , COVID-19 , MicroARNs , SARS-CoV-2 , Humanos , COVID-19/sangre , COVID-19/inmunología , COVID-19/complicaciones , MicroARNs/sangre , Masculino , Femenino , Persona de Mediana Edad , Aterosclerosis/sangre , Aterosclerosis/epidemiología , Anciano , Biomarcadores/sangre , MicroARN Circulante/sangre
2.
Theor Appl Genet ; 137(4): 92, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568320

RESUMEN

KEY MESSAGE: A chromosome fragment influencing wheat heading and grain size was identified using mapping of m406 mutant. The study of TaFPF1 in this fragment provides more insights into wheat yield improvement. In recent years, wheat production has faced formidable challenges driven by rapid population growth and climate change, emphasizing the importance of improving specific agronomic traits such as heading date, spike length, and grain size. To identify potential genes for improving these traits, we screened a wheat EMS mutant library and identified a mutant, designated m406, which exhibited a significantly delayed heading date compared to the wild-type. Intriguingly, the mutant also displayed significantly longer spike and larger grain size. Genetic analysis revealed that a single recessive gene was responsible for the delayed heading. Surprisingly, a large 46.58 Mb deletion at the terminal region of chromosome arm 2DS in the mutant was identified through fine mapping and fluorescence in situ hybridization. Thus, the phenotypes of the mutant m406 are controlled by a group of linked genes. This deletion encompassed 917 annotated high-confidence genes, including the previously studied wheat genes Ppd1 and TaDA1, which could affect heading date and grain size. Multiple genes in this region probably contribute to the phenotypes of m406. We further investigated the function of TaFPF1 using gene editing. TaFPF1 knockout mutants showed delayed heading and increased grain size. Moreover, we identified the direct upstream gene of TaFPF1 and investigated its relationship with other important flowering genes. Our study not only identified more genes affecting heading and grain development within this deleted region but also highlighted the potential of combining these genes for improvement of wheat traits.


Asunto(s)
Agricultura , Triticum , Triticum/genética , Hibridación Fluorescente in Situ , Genes Recesivos , Grano Comestible , Cromosomas
3.
Plants (Basel) ; 12(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38005782

RESUMEN

An elite hexaploid triticale Yukuri from Australia was used as a bridge for transferring valuable genes from Secale cereale L. into common wheat for enriching the genetic variability of cultivated wheat. Non-denaturing-fluorescence in situ hybridization (ND-FISH) identified that Yukuri was a secondary triticale with a complete set of rye chromosomes and a 6D(6A) substitution. Seed protein electrophoresis showed that Yukuri had a unique composition of glutenin subunits. A set of Yukuri-derived wheat-rye introgression lines were created from a Yukuri x wheat population, and all lines were identified by ND-FISH with multiple probes and validated by diagnostic molecular marker analysis. A total of 59 wheat-rye introgression lines including modified chromosome structural variations of wheat, and new complex recombinant chromosomes of rye were detected through ND-FISH and Oligo-FISH painting based on oligonucleotide pools derived from wheat-barley genome collinear regions. Wheat lines carrying the 1R chromosome from Yukuri displayed resistance to both stripe rust and powdery mildew, while the lines carrying the 3RL and 7RL chromosome arms showed stripe rust resistance. The chromosome 1R-derived lines were found to exhibit a significant effect on most of the dough-related parameters, and chromosome 5R was clearly associated with increased grain weight. The development of the wheat-rye cytogenetic stocks carrying disease resistances and superior agronomic traits, as well as the molecular markers and FISH probes will promote the introgression of abundant variation from rye into wheat improvement programs.

4.
Plants (Basel) ; 12(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37765432

RESUMEN

As a perennial herb in Triticeae, Elymus dahuricus is widely distributed in Qinghai-Tibetan Plateau and Central Asia. It has been used as high-quality fodders for improving degraded grassland. The genomic constitution of E. dahuricus (2n = 6x = 42) has been revealed as StStHHYY by cytological approaches. However, the universal karyotyping nomenclature system of E. dahuricus is not fully established by traditional fluorescent in situ hybridization (FISH) and genomic in situ hybridization (GISH). In this study, the non-denaturing fluorescent in situ hybridization (ND-FISH) using 14 tandem-repeat oligos could effectively distinguish the entire E. dahuricus chromosomes pairs, while Oligo-FISH painting by bulked oligo pools based on wheat-barley collinear regions combined with GISH analysis, is able to precisely determine the linkage group and sub-genomes of the individual E. dahuricus chromosomes. We subsequently established the 42-chromosome karyotype of E. dahuricus with distinctive chromosomal FISH signals, and characterized a new type of intergenomic rearrangement between 2H and 5Y. Furthermore, the comparative chromosomal localization of the centromeric tandem repeats and immunostaining by anti-CENH3 between cultivated barley (Hordeum vulgare L.) and E. dahuricus suggests that centromere-associated sequences in H subgenomes were continuously changing during the process of polyploidization. The precise karyotyping system based on ND-FISH and Oligo-FISH painting methods will be efficient for describing chromosomal rearrangements and evolutionary networks for polyploid Elymus and their related species.

5.
Front Microbiol ; 14: 1207441, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601369

RESUMEN

Colistin is highly promising against multidrug-resistant and extensively drug-resistant bacteria clinically. Bacteria are resistant to colistin mainly through mcr and chromosome-mediated lipopolysaccharide (LPS) synthesis-related locus variation. However, the current understanding cannot fully explain the resistance mechanism in mcr-negative colistin-resistant strains. Significantly, the contribution of efflux pumps to colistin resistance remains to be clarified. This review aims to discuss the contribution of efflux pumps and their related transcriptional regulators to colistin resistance in various bacteria and the reversal effect of efflux pump inhibitors on colistin resistance. Previous studies suggested a complex regulatory relationship between the efflux pumps and their transcriptional regulators and LPS synthesis, transport, and modification. Carbonyl cyanide 3-chlorophenylhydrazone (CCCP), 1-(1-naphthylmethyl)-piperazine (NMP), and Phe-Arg-ß-naphthylamide (PAßN) all achieved the reversal of colistin resistance, highlighting the role of efflux pumps in colistin resistance and their potential for adjuvant development. The contribution of the efflux pumps to colistin resistance might also be related to specific genetic backgrounds. They can participate in colistin tolerance and heterogeneous resistance to affect the treatment efficacy of colistin. These findings help understand the development of resistance in mcr-negative colistin-resistant strains.

6.
Curr Zool ; 69(2): 156-164, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37092003

RESUMEN

In the coevolutionary interactions between avian brood parasites and their hosts, egg recognition based on color and/or pattern is a common and effective defense to counter parasitism. However, for egg recognition based on size, only a few studies have found affirmative results, and they do not provide unambiguous evidence that egg size recognition in hosts has evolved as an important and specific anti-parasite adaptation against parasite eggs. We studied the brood parasite system between the Asian emerald cuckoo Chrysococcyx maculatus and its host, the chestnut-crowned warbler Phylloscopus castaniceps. The cuckoo parasitizes the warbler using non-mimetic and larger eggs at a parasitism rate of 12.9%. The warbler nests used in this experiment were built in a dark environment with the nest illuminance near 0 lux. Experiments with 2 types of model eggs with colors and patterns resembling cuckoo eggs of different sizes (cuckoo egg size or host egg size) showed that the warblers were able to reject 63.6% of cuckoo model eggs under these dim light conditions. However, model eggs with the same color and pattern similar to the warbler egg size were always accepted. This study provides strong evidence supporting the theory that egg size recognition can be evolved in hosts as a specific anti-parasite adaptation against cuckoos. We suggest that the egg size recognition of the warbler is an outcome of the tradeoff between the costs of violating the parental investment rule and suffering cuckoo parasitism.

7.
Plant Commun ; 4(4): 100567, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-36855304

RESUMEN

Wheat (Triticum aestivum, BBAADD) is an allohexaploid species that originated from two polyploidization events. The progenitors of the A and D subgenomes have been identified as Triticum urartu and Aegilops tauschii, respectively. Current research suggests that Aegilops speltoides is the closest but not the direct ancestor of the B subgenome. However, whether Ae. speltoides has contributed genomically to the wheat B subgenome and which chromosome regions are conserved between Ae. speltoides and the B subgenome remain unclear. Here, we assembled a high-quality reference genome for Ae. speltoides, resequenced 53 accessions from seven species (Aegilops bicornis, Aegilops longissima, Aegilops searsii, Aegilops sharonensis, Ae. speltoides, Aegilops mutica [syn. Amblyopyrum muticum], and Triticum dicoccoides) and revealed their genomic contributions to the wheat B subgenome. Our results showed that centromeric regions were particularly conserved between Aegilops and Triticum and revealed 0.17 Gb of conserved blocks between Ae. speltoides and the B subgenome. We classified five groups of conserved and non-conserved genes between Aegilops and Triticum, revealing their biological characteristics, differentiation in gene expression patterns, and collinear relationships between Ae. speltoides and the wheat B subgenome. We also identified gene families that expanded in Ae. speltoides during its evolution and 789 genes specific to Ae. speltoides. These genes can serve as genetic resources for improvement of adaptability to biotic and abiotic stress. The newly constructed reference genome and large-scale resequencing data for Sitopsis species will provide a valuable genomic resource for wheat genetic improvement and genomic studies.


Asunto(s)
Pan , Triticum , Triticum/genética , Genoma de Planta/genética , Mapeo Cromosómico , Poaceae/genética
8.
Clin Neuropharmacol ; 46(2): 60-65, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36790373

RESUMEN

OBJECTIVES: Intravenous thrombolysis and mechanical endovascular thrombectomy are recommended for patients whose stroke onsets are within the first 6 hours; however, patients beyond this time window have very limited options. Dl-3-n-butylphthalide (NBP) and human urinary kallidinogenase (HUK) have shown potential clinical benefits in the treatment of acute ischemic stroke (AIS) patients. This research aims to investigate the efficacy and safety of NBP combined with HUK in the treatment of ischemic stroke patients. PATIENTS AND METHODS: We reviewed the 215 AIS patients registered in the database of the Fifth Affiliated Hospital of Sun Yat-sen University from April 2019 to October 2020. Among them, 65 patients received NBP sodium chloride injection treatment, 55 patients received HUK treatment, and 95 patients received NBP sodium chloride injection combined with HUK treatment. The recovery of neural function was evaluated by the National Institutes of Health Stroke Scale (NIHSS), and the recovery of daily function was evaluated by the modified Rankin Scale (mRS). The NIHSS and mRS scores after the 7-day treatment, 6-month independency rate (6-month mRS score ≤1), and related factors were compared among the 3 groups. The safety was monitored by recording adverse events. RESULTS: The NIHSS and mRS scores of 7-day and 6-month treatment in the NBP combined with HUK group were lower than the monotherapy ( P < 0.05). In addition, the NBP combined with HUK treatment achieved an independency rate of 82.1%, whereas NBP and HUK treatments achieved only 53.8% and 63.6%, respectively ( P < 0.001). Binary logistic regression showed that NBP combined with HUK therapy treatment could lead to a 5.28 times higher rate of patients' 6-month independency after AIS occurrence. No serious adverse events occurred in both the combined therapy and monotherapy. CONCLUSIONS: Dl-3-n-butylphthalide combined with HUK is safe to treat AIS patients. It can significantly improve the neural function and the 6-month recovery of AIS patients.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Isquemia Encefálica/tratamiento farmacológico , Cloruro de Sodio/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Calicreínas de Tejido/uso terapéutico , Resultado del Tratamiento
9.
Plant J ; 112(6): 1447-1461, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36345647

RESUMEN

Structural chromosome variations (SCVs) are large-scale genomic variations that can be detected by fluorescence in situ hybridization (FISH). SCVs have played important roles in the genome evolution of wheat (Triticum aestivum L.), but little is known about their genetic effects. In this study, a total of 543 wheat accessions from the Chinese wheat mini-core collection and the Shanxi Province wheat collection were used for chromosome analysis using oligonucleotide probe multiplex FISH. A total of 139 SCVs including translocations, pericentric inversions, presence/absence variations (PAVs), and copy number variations (CNVs) in heterochromatin were identified at 230 loci. The distribution frequency of SCVs varied between ecological regions and between landraces and modern cultivars. Structural analysis using SCVs as markers clearly divided the landraces and modern cultivars into different groups. There are very clear instances illustrating alien introgression and wide application of foreign germplasms improved the chromosome diversity of Chinese modern wheat cultivars. A genome-wide association study (GWAS) identified 29 SCVs associated with 12 phenotypic traits, and five (RT4AS•4AL-1DS/1DL•1DS-4AL, Mg2A-3, Mr3B-10, Mr7B-13, and Mr4A-7) of them were further validated using a doubled haploid population and advanced sib-lines, implying the potential value of these SCVs. Importantly, the number of favored SCVs that were associated with agronomic trait improvement was significantly higher in modern cultivars compared to landraces, indicating positive selection in wheat breeding. This study demonstrates the significant effects of SCVs during wheat breeding and provides an efficient method of mining favored SCVs in wheat and other crops.


Asunto(s)
Estudio de Asociación del Genoma Completo , Triticum , Triticum/genética , Estudio de Asociación del Genoma Completo/métodos , Fitomejoramiento , Hibridación Fluorescente in Situ , Variaciones en el Número de Copia de ADN , Cromosomas de las Plantas/genética
10.
Front Plant Sci ; 13: 1035784, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36299784

RESUMEN

Rye 6R-derived stripe rust resistance gene Yr83 in wheat background was physically mapped to fraction length (FL) 0.87-1.00 on the long arm by non-denaturing-fluorescence in situ hybridization (ND-FISH), Oligo-FISH painting and 6R-specific PCR markers.Stripe rust resistance gene Yr83 derived from chromosome 6R of rye (Secale cereale) "Merced" has displayed high resistance to both Australian and Chinese wheat stripe rust isolates. With the aim to physically map Yr83 to a more precise region, new wheat- 6R deletion and translocation lines were produced from derived progenies of the 6R(6D) substitution line. The non-denaturing fluorescence in situ hybridization (ND-FISH) patterns of 6R were established to precisely characterize the variations of 6R in different wheat backgrounds. Comparative ND-FISH analysis localized the breakpoints of 6RL chromosomes relative to Oligo-pSc200 and Oligo-pSc119.2 rich sites in deletion lines. Molecular marker and resistance analyses confirmed that Yr83 is physically located at the fraction length (FL) 0.87-1.00 of 6RL and covers the corresponding region of 806-881 Mb in the reference genome of Lo7. Oligo-FISH painting demonstrated that the region carrying Yr83 is syntenic to the distal end of long arm of homoeologous group 7 of the Triticeae genome. The developed wheat-6R lines carrying the Yr83 gene will be useful for breeding for rust resistance.

11.
Plants (Basel) ; 11(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36145797

RESUMEN

Wheat (Triticum aestivum L.) is rich in tandem repeats, and this is helpful in studying its karyotypic evolution. Some tandem repeats have not been assembled into the wheat genome sequence. Alignment using the blastn tool in the B2DSC web server indicated that the genomic sequence of 5B chromosome (IWGSC RefSeq v2.1) does not contain the tandem repeat pTa-275, and the tandem repeat (GA)26 distributed throughout the whole 5B chromosome. The nondenaturing fluorescence in situ hybridization (ND-FISH) using the oligonucleotide (oligo) probes derived from pTa-275 and (GA)26 indicated that one signal band of pTa-275 and two signal bands of (GA)26 appeared on the 5B chromosome of Chinese Spring wheat, indicating the aggregative distribution patterns of the two kinds of tandem repeats. Single-copy FISH indicated that the clustering region of pTa-275 and the two clustering regions of (GA)26 were located in ~160-201 Mb, ~153-157 Mb, and ~201-234 Mb intervals, respectively. Using ND-FISH and single-copy FISH technologies, the translocation breakpoint on the 5BS portion of the translocation T7BS.7BL-5BS, which exists widely in north-western European wheat cultivars, was located in the region from 157,749,421 bp to 158,555,080 bp (~0.8 Mb), and this region mainly contains retrotransposons, and no gene was found. The clustering regions of two kinds of tandem repeats on wheat chromosome 5B were determined and this will be helpful to improve the future sequence assembly of this chromosome. The sequence characteristics of the translocation breakpoint on the translocation T7BS.7BL-5BS obtained in this study are helpful to understand the mechanism of wheat chromosome translocation.

12.
Front Plant Sci ; 13: 1006281, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147230

RESUMEN

Thinopyrum intermedium (JJJsJsStSt, 2n = 6x = 42), a member of tertiary gene pool of hexaploid wheat (Triticum aestivum L., AABBDD, 2n = 6x = 42), provides several beneficial genes for wheat improvement. In this study, line CH51 was developed from the BC1F8 progeny of a partial wheat-Th. intermedium amphiploid TAI8335 (2n = 56) and wheat cultivar (cv.) Jintai 170. Somatic metaphase chromosome counting showed that CH51 had stable 42 chromosomes. Genomic in situ hybridization (GISH) analysis showed that CH51 had 40 wheat chromosomes and two Th. intermedium chromosomes involving translocation between Js- and St-genome chromosomes. Non-denaturing fluorescence in situ hybridization (ND-FISH) analysis revealed that CH51 lacked a pair of wheat chromosome 6B. Wheat 55K SNP array analysis verified that chromosome 6B had the highest percentage of missing SNP loci in both CH51 and Chinese Spring (CS) nullisomic 6B-tetrasomic 6D (CS-N6BT6D) and had the highest percentage of polymorphic SNP loci between CH51 and cv. Jintai 170. We identified that CH51 was a wheat-Th. intermedium T6StS.6JsL (6B) disomic substitution line. Disease resistance assessment showed that CH51 exhibited high levels of resistance to the prevalent Chinese leaf rust and stripe rust races in the field. Therefore, the newly developed line CH51 can be utilized as a potential germplasm in wheat disease resistance breeding.

13.
Plants (Basel) ; 11(16)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36015412

RESUMEN

Thinopyrum intermedium possesses many desirable agronomic traits that make it a valuable genetic source for wheat improvement. The precise identification of individual chromosomes of allohexaploid Th. intermedium is a challenge due to its three sub-genomic constitutions with complex evolutionary ancestries. The non-denaturing fluorescent in situ hybridization (ND-FISH) using tandem-repeat oligos, including Oligo-B11 and Oligo-pDb12H, effectively distinguished the St, J and JS genomes, while Oligo-FISH painting, based on seven oligonucleotide pools derived from collinear regions between barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.), was able to identify each linkage group of the Th. intermedium chromosomes. We subsequently established the first karyotype of Th. intermedium with individual chromosome recognition using sequential ND-FISH and Oligo-FISH painting. The chromosome constitutions of 14 wheat-Th. intermedium partial amphiploids and addition lines were characterized. Distinct intergenomic chromosome rearrangements were revealed among Th. intermedium chromosomes in these amphiploids and addition lines. The precisely defined karyotypes of these wheat-Th. intermedium derived lines may be helpful for further study on chromosome evolution, chromatin introgression and wheat breeding programs.

14.
Front Plant Sci ; 13: 928014, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845635

RESUMEN

It was reported that the chromosome 6R of rye (Secale cereale L.) carries stripe rust resistance gene Yr83, and the region with the candidate resistance gene(s) still needs to be narrowed down. This study confirmed that the chromosome 6RLAr derived from rye AR106BONE contains stripe rust resistance gene(s). A wheat-rye T6BS.6RLAr translocation chromosome, a wheat-rye small-segment translocation T6RLAr-6AS.6AL, and three kinds of deleted T6BS.6RLAr translocations, T6BS.6RLAr-1, T6BS.6RLAr-2, and T6BS.6RLAr-3, were identified. Translocations T6BS.6RLAr, T6BS.6RLAr-2, and T6RLAr-6AS.6AL were highly resistant to stripe rust and T6BS.6RLAr-1 and T6BS.6RLAr-3 were highly susceptible. The molecular markers specific to 6RL determined that the three regions of the 6RLAr arm from 732,999,830 bp to the telomere, from 735,010,030 to 848,010,414 bp, and from 848,011,262 bp to the telomere were deleted from T6BS.6RLAr-1, T6BS.6RLAr-2, and T6BS.6RLAr-3, respectively. T6BS.6RLAr-2 and T6RLAr-6AS.6AL contained the segment that was deleted in T6BS.6RLAr-3. Therefore, it can be concluded that about 37 Mb segment from 848,011,262 bp to the telomere carried stripe rust resistance gene(s), and it was smaller than that with the Yr83 gene. Gene annotation indicated that about 37 Mb region contains 43 potential resistance genes, and 42 of them are nucleotide-binding site and leucine-rich repeat (NBS-LRR)-like resistance protein genes. The results in this study narrowed down the size of the region with candidate stripe rust resistance gene(s) on the 6RL arm, and the T6RLAr-6AS.6AL is a promising small-segment translocation for improvement of wheat cultivars.

15.
J Anal Methods Chem ; 2022: 3998338, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35392281

RESUMEN

Simple, rapid, and accurate detection of myoinositol (MI) concentration in blood is crucial in diagnosing polycystic ovary syndrome, neurological disorders, and cancer. A novel electrochemical detection (IED) method was established to quantify MI in human serum using a disposable unmodified screen-printed carbon electrode (SPCE) for the first time. MI was detected indirectly by the reaction product of myoinositol dehydrogenase (IDH) and cofactor ß-nicotinamide adenine dinucleotide (NAD+). Good linear calibration curves were obtained at the concentration range from 5.0 µM to 500.0 µM (R 2 = 0.9981) with the lower limits of detection (LOD) and quantification (LOQ) of 1.0 µM and 2.5 µM, respectively. Recoveries were calculated at three spiked concentrations, and the values were between 90.3 and 106%, with relative standard deviation values of 3.2-6.2% for intraday precision and 7.1-9.0% for interday precision. The SPCE-electrochemical biosensor is simple, accurate, and without modification, showing great potential for point-of-care testing (POCT) of serum MI in clinical samples.

16.
Curr Protoc ; 2(2): e364, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35157369

RESUMEN

We developed seven oligonucleotide (oligo) pools based on single-copy sequences, targeting chromosomes 1 to 7 of barley (Hordeum vulgare L.) and wheat (Triticum aestivum) for chromosomal Oligo-FISH painting methods. The probes were applied to high-throughput karyotyping for the Triticeae tribe of over 350 species including 30 genera such as Triticum, Hordeum, Secale, Aegilops, Thinopyrum, and Dasypyrum, as well as several wheat alien-derived lines. In combination with other nondenaturing FISH (ND-FISH) procedures using tandem-repeat oligos, the newly developed Oligo-FISH painting technique provides an efficient tool for the identification of individual chromosomes with homologous linkage groups to establish standard karyotypes, particularly with any wild Triticeae species having nonsequenced genomes for chromosome evolutionary analysis. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Oligo-pool probe development Basic Protocol 2: Nondenaturing FISH Basic Protocol 3: Oligo-FISH painting.


Asunto(s)
Aegilops , Cromosomas de las Plantas , Cromosomas de las Plantas/genética , Pintura , Secale/genética , Triticum/genética
17.
Plant Dis ; 106(9): 2447-2454, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35196099

RESUMEN

Thinopyrum intermedium (JJJsJsStSt, 2n = 6x = 42), a wild relative of common wheat, possesses many desirable agronomic genes for wheat improvement. The production of wheat-Thinopyrum intermedium introgression lines is a key step for transferring these beneficial genes into wheat. In this study, we characterized three wheat-Thinopyrum intermedium introgression lines TA3681, TA5566, and TA5567 using non-denaturing fluorescence in situ hybridization, genomic in situ hybridization, PCR-based landmark unique gene, and intron targeting markers. Our results showed that TA3681 is a wheat-Thinopyrum intermedium 1St disomic addition line, TA5566 is a wheat-Thinopyrum intermedium non-Robertsonian translocation line carrying two pairs of 3A-7Js translocation chromosomes, and that TA5567 is a wheat-Thinopyrum intermedium non-Robertsonian translocation line carrying a pair of 3A-7Js translocation chromosomes. We developed 13, 36, and 15 Thinopyrum intermedium chromosome-specific markers for detecting the introgressed Thinopyrum chromosomes in TA3681, TA5566, and TA5567, respectively. Stem rust assessment revealed that TA3681 exhibited a high level of seedling resistance to Chinese-prevalent Puccinia graminis f. sp. tritici pathotypes, and both TA5566 and TA5567 were highly resistant to Australian P. graminis f. sp. tritici pathotypes, indicating that Thinopyrum intermedium chromosomes 1St and 7Js might carry new stem rust resistance genes. Therefore, the new identified introgression lines may be useful for improving wheat stem rust resistance.


Asunto(s)
Basidiomycota , Cromosomas de las Plantas , Australia , Basidiomycota/genética , Cromosomas de las Plantas/genética , Hibridación Fluorescente in Situ , Poaceae/genética , Translocación Genética
18.
PLoS One ; 17(1): e0262748, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35045128

RESUMEN

OBJECTIVE: Hemolysis, icterus, and lipemia (HIL) of blood samples have been a concern in hospitals because they reflect pre-analytical processes' quality control. However, very few studies investigate the influence of patients' gender, age, and department, as well as sample-related turnaround time, on the incidence rate of HIL in fasting serum biochemistry specimens. METHODS: A retrospective, descriptive study was conducted to investigate the incidence rate of HIL based on the HIL index in 501,612 fasting serum biochemistry specimens from January 2017 to May 2018 in a tertiary university hospital with 4,200 beds in Sichuan, southwest China. A subgroup analysis was conducted to evaluate the differences in the HIL incidence rate by gender, age and department of patients, and turnaround time of specimens. RESULTS: The incidence rate of hemolysis, lipemia and icterus was 384, 53, and 612 per 10,000 specimens. The male patients had a significantly elevated incidence of hemolysis (4.13% vs. 3.54%), lipemia (0.67% vs. 0.38%), and icterus (6.95% vs. 5.43%) than female patients. Hemolysis, lipemia, and icterus incidence rate were significantly associated with the male sex with an odds ratio (OR) of 1.174 [95% confidence interval (CI), 1.140-1.208], 1.757 (95%CI: 1.623-1.903), and 1.303 (95%CI: 1.273-1.333), respectively, (P<0.05). The hospitalized patients had a higher incidence of hemolysis (4.03% vs. 3.54%), lipemia (0.63% vs. 0.36%), and icterus (7.10% vs. 4.75%) than outpatients (P<0.001). Specimens with relatively longer transfer time and/or detection time had a higher HIL incidence (P<0.001). The Pediatrics had the highest incidence of hemolysis (16.2%) with an adjusted OR (AOR) of 4.93 (95%CI, 4.59-5.29, P<0.001). The Neonatology department had the highest icterus incidence (30.1%) with an AOR of 4.93 (95%CI: 4.59-5.29, P<0.001). The Neonatology department (2.32%) and Gastrointestinal Surgery (2.05%) had the highest lipemia incidence, with an AOR of 1.17 (95%CI: 0.91-1.51) and 4.76 (95%CI: 4.70-5.53), both P-value <0.001. There was an increasing tendency of hemolysis and icterus incidence for children under one year or adults aged more than 40. CONCLUSION: Evaluation of HIL incidence rate and HIL-related influence factors in fasting serum biochemistry specimens are impartment to interpret the results more accurately and provide better clinical services to patients.


Asunto(s)
Ayuno/metabolismo , Hemólisis/fisiología , Hiperlipidemias/metabolismo , Ictericia/metabolismo , Fenómenos Fisiológicos Sanguíneos , China , Ayuno/sangre , Ayuno/fisiología , Femenino , Pruebas Hematológicas , Humanos , Hiperlipidemias/sangre , Hiperlipidemias/fisiopatología , Incidencia , Ictericia/sangre , Ictericia/fisiopatología , Masculino , Estudios Retrospectivos , Manejo de Especímenes/métodos
19.
Plants (Basel) ; 12(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36616156

RESUMEN

Thinopyrum intermedium (2n = 6x = 42, JJJSJSStSt) has been hybridized extensively with common wheat and proven to be a valuable germplasm source for improving disease resistance and yield potential of wheat. A novel disease-resistant wheat-Th. intermedium double substitution line X479, carrying 1St(1B) and 4St-4JS (4B), was identified using multi-color non-denaturing fluorescence in situ hybridization (ND-FISH). With the aim of transferring Thinopyrum-specific chromatin to wheat, a total of 573 plants from F2 and F3 progenies of X479 crossed with wheat cultivar MY11 were developed and characterized using sequential ND-FISH with multiple probes. Fifteen types of wheat-Thinopyrum translocation chromosomes were preferentially transmitted in the progenies, and the homozygous wheat-1St, and wheat-4JSL translocation lines were identified using ND-FISH, Oligo-FISH painting and CENH3 immunostaining. The wheat-4JSL translocation lines exhibited high levels of resistance to stripe rust prevalent races in field screening. The gene for stripe rust resistance was found to be physically located on FL0-0.60 of the 4JSL, using deletion lines and specific DNA markers. The new wheat-Th. intermedium translocation lines can be exploited as useful germplasms for wheat improvement.

20.
Front Plant Sci ; 12: 708551, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34381484

RESUMEN

Aegilops sharonensis, a wild relative of wheat, harbors diverse disease and insect resistance genes, making it a potentially excellent gene source for wheat improvement. In this study, we characterized and evaluated six wheat-A. sharonensis derivatives, which included three disomic additions, one disomic substitution + monotelosomic addition and two disomic substitution + disomic additions. A total of 51 PLUG markers were developed and used to allocate the A. sharonensis chromosomes in each of the six derivatives to Triticeae homoeologous groups. A set of cytogenetic markers specific for A. sharonensis chromosomes was established based on FISH using oligonucleotides as probes. Molecular cytogenetic marker analysis confirmed that these lines were a CS-A. sharonensis 2Ssh disomic addition, a 4Ssh disomic addition, a 4Ssh (4D) substitution + 5SshL monotelosomic addition, a 6Ssh disomic addition, a 4Ssh (4D) substitution + 6Ssh disomic addition and a 4Ssh (4D) substitution + 7Ssh disomic addition line, respectively. Disease resistance investigations showed that chromosome 7Ssh of A. sharonensis might harbor a new powdery mildew resistance gene, and therefore it has potential for use as resistance source for wheat breeding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA