Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
J Cell Biol ; 223(11)2024 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-39283311

RESUMEN

Autophagy plays a crucial role in cancer cell survival by facilitating the elimination of detrimental cellular components and the recycling of nutrients. Understanding the molecular regulation of autophagy is critical for developing interventional approaches for cancer therapy. In this study, we report that migfilin, a focal adhesion protein, plays a novel role in promoting autophagy by increasing autophagosome-lysosome fusion. We found that migfilin is associated with SNAP29 and Vamp8, thereby facilitating Stx17-SNAP29-Vamp8 SNARE complex assembly. Depletion of migfilin disrupted the formation of the SNAP29-mediated SNARE complex, which consequently blocked the autophagosome-lysosome fusion, ultimately suppressing cancer cell growth. Restoration of the SNARE complex formation rescued migfilin-deficiency-induced autophagic flux defects. Finally, we found depletion of migfilin inhibited cancer cell proliferation. SNARE complex reassembly successfully reversed migfilin-deficiency-induced inhibition of cancer cell growth. Taken together, our study uncovers a new function of migfilin as an autophagy-regulatory protein and suggests that targeting the migfilin-SNARE assembly could provide a promising therapeutic approach to alleviate cancer progression.


Asunto(s)
Autofagia , Moléculas de Adhesión Celular , Proliferación Celular , Lisosomas , Proteínas Qb-SNARE , Proteínas Qc-SNARE , Proteínas R-SNARE , Humanos , Proteínas R-SNARE/metabolismo , Proteínas R-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/metabolismo , Proteínas Qc-SNARE/genética , Lisosomas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Autofagosomas/metabolismo , Células HeLa , Línea Celular Tumoral , Unión Proteica , Proteínas SNARE/metabolismo , Proteínas SNARE/genética , Fusión de Membrana , Proteínas Qa-SNARE
2.
Cell Mol Life Sci ; 81(1): 385, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235496

RESUMEN

Cisplatin-induced renal tubular injury largely restricts the wide-spread usage of cisplatin in the treatment of malignancies. Identifying the key signaling pathways that regulate cisplatin-induced renal tubular injury is thus clinically important. PARVB, a focal adhesion protein, plays a crucial role in tumorigenesis. However, the function of PARVB in kidney disease is largely unknown. To investigate whether and how PARVB contributes to cisplatin-induced renal tubular injury, a mouse model (PARVB cKO) was generated in which PARVB gene was specifically deleted from proximal tubular epithelial cells using the Cre-LoxP system. In this study, we found depletion of PARVB in proximal tubular epithelial cells significantly attenuates cisplatin-induced renal tubular injury, including tubular cell death and inflammation. Mechanistically, PARVB associates with transforming growth factor-ß-activated kinase 1 (TAK1), a central regulator of cell survival and inflammation that is critically involved in mediating cisplatin-induced renal tubular injury. Depletion of PARVB promotes cisplatin-induced TAK1 degradation, inhibits TAK1 downstream signaling, and ultimately alleviates cisplatin-induced tubular cell damage. Restoration of PARVB or TAK1 in PARVB-deficient cells aggravates cisplatin-induced tubular cell injury. Finally, we demonstrated that PARVB regulates TAK1 protein expression through an E3 ligase ITCH-dependent pathway. PARVB prevents ITCH association with TAK1 to block its ubiquitination. Our study reveals that PARVB deficiency protects against cisplatin-induced tubular injury through regulation of TAK1 signaling and indicates targeting this pathway may provide a novel therapeutic strategy to alleviate cisplatin-induced kidney damage.


Asunto(s)
Cisplatino , Quinasas Quinasa Quinasa PAM , Ratones Noqueados , Transducción de Señal , Cisplatino/efectos adversos , Cisplatino/toxicidad , Animales , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Transducción de Señal/efectos de los fármacos , Ratones , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Túbulos Renales Proximales/efectos de los fármacos , Humanos , Ratones Endogámicos C57BL , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Antineoplásicos/farmacología , Antineoplásicos/efectos adversos , Túbulos Renales/patología , Túbulos Renales/metabolismo , Túbulos Renales/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales
3.
Chemosphere ; 364: 143210, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39209041

RESUMEN

Fe3O4 has the advantages of unique magnetic stability and low biological toxicity, which can improve pollutants separation efficiency. MXenes are two-dimensional materials and easy surface functionalization that can provide suitable carriers for Fe3O4. In this work, we synthesized magnetic MXene composites by a one-pot method that relies on doping Fe3O4 particles onto Ti3C2 MXene nanosheets by heat treatment. The Fe3O4/Ti3C2 MXene was analyzed by SEM, XRD, FTIR and XPS techniques, which showed that the material has good tetracycline (TC) removal properties and magnetic separation ability. The results showed that the adsorption capacity of it was 46.42 mg g-1, and the removal efficiency of 0.06 g adsorbent for 50 mL of 30 mg L-1 TC could reach 92.1% in a wide pH range of 4-10, when the adsorption temperature was 25 °C, and the adsorption time was 3 h. The adsorption data were consistent with Langmuir and the proposed second-order kinetic model, and the thermodynamic experiments confirmed that the adsorption of TC was a monolayer physicochemical adsorption coexisting heat-trapping process (ΔH = 15.72 kJ mol-1). In addition, the adsorption of TC by Fe3O4/Ti3C2 MXene was attributed to the synergistic effect of electrostatic attraction, hydrogen bonding and π-π packing. In conclusion, the saturation magnetization of Fe3O4/Ti3C2 MXene is 27.3 emu/g and it can not only be separated from water using its strong magnetic properties to avoid secondary contamination, but also can be used as a promising material to effectively remove antibiotics from aqueous media.

4.
Heliyon ; 10(15): e35235, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39165982

RESUMEN

Introduction: Esophageal cancer is increasingly recognized as a significant global malignancy. The main pathological subtype of this cancer is esophageal squamous cell carcinoma (ESCC), which displays a higher degree of malignancy and a poorer prognosis. Reactive oxygen species (ROS) play a critical role in modulating the immune response to tumors, and understanding the regulation of ROS in ESCC could lead to novel and improved therapeutic strategies for ESCC patients. Methods: A consensus matrix derived from genes involved in the ROS pathway revealed two subtypes of ROS. These subtypes were categorized as ROS-active or ROS-suppressive based on their level of ROS activity. The heterogeneity among the different ROS subtypes was then explored from various perspectives, including gene function, immune response, genomic stability, and immunotherapy. In order to assess the prognosis and the potential benefits of immunotherapy, a ROS activity score (RAS) was developed using the identified ROS subtypes. In vitro experiments were performed to confirm the impact of core RAS genes on the proliferative activity of esophageal cancer cell lines. Results: Two distinctive subtypes of ROS were identified. The first subtype, referred to as ROS-active, exhibited elevated ROS activity, enhanced involvement in cancer-associated immune pathways, and increased infiltration of effector immune cells. The second subtype, named ROS-suppressive, demonstrated weaker ROS activity but displayed more pronounced dysregulation in the cell cycle and a denser extracellular matrix, indicating malignant characteristics. Genomic stability, particularly in terms of copy number variation (CNV) events, differed between the two ROS subtypes. By developing a RAS model, reliable risk assessment for overall survival (OS) in patients with ESCC was achieved, and the model demonstrated strong predictive capabilities in real-world immunotherapy cohorts. Moreover, the core gene LDLRAD1 within the RAS model was found to enhance proliferative activity in esophageal cancer cell lines. Conclusion: Based on the ROS pathway, we successfully identified two distinct subtypes in ESCC: the ROS-active subtype and the ROS-suppressive subtype. These subtypes were utilized to evaluate prognosis and the sensitivity to immunotherapy.

6.
Polymers (Basel) ; 16(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39204541

RESUMEN

As the consumption of antibiotics rises, they have generated some negative impacts on organisms and the environment because they are often unable to be effectively degraded, and seeking effective detection methods is currently a challenge. Covalent-organic frameworks (COFs) are new types of crystalline porous crystals created based on the strong covalent interactions between blocked monomers, and COFs demonstrate great potential in the detection of antibiotics from aqueous solutions because of their large surface area, adjustable porosity, recyclability, and predictable structure. This review aims to present state-of-the-art insights into COFs (properties, classification, synthesis methods, and functionalization). The key mechanisms for the detection of antibiotics and the application performance of COFs in the detection of antibiotics from water are also discussed, followed by the challenges and opportunities for COFs in future research.

7.
Chemosphere ; 362: 142790, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971435

RESUMEN

The combination of fluorescent probe and colorimetric technique has become one of the most powerful analytical methods due to the advantages of visualization, minimal measurement errors and high sensitivity. Hence, a novel dual-modality sensing probe with both colorimetric and fluorescent capabilities was developed for detecting cobalt ions (Co2+) based on homocysteine mediated silver nanoparticles and rhodamine 6G derivatives probe (AgNPs-Hcy-Rh6G2). The fluorescence of the AgNPs-Hcy-Rh6G2 probe turned on due to the opening of the Rh6G2 spirolactam ring in the presence of Co2+ by a catalytic hydrolysis. The fluorescent intensity of probe is proportional to Co2+ concentration in the range of 0.10-50 µM with a detection limit of 0.05 µM (S/N = 3). More fascinatingly, the color of AgNPs-Hcy-Rh6G2 probe changed from colorless to pink with increasing Co2+ concentration, which allowing colorimetric determination of Co2+. The absorbance of AgNPs-Hcy-Rh6G2 probe is proportional to Co2+ concentration in the range from 0.10 to 25 µM with a detection limit of 0.04 µM (S/N = 3). This colorimetric and fluorescent dual-modal method exhibited good selectivity, and reproducibility and stability, holding great potential for real samples analysis in environmental and drug field.


Asunto(s)
Cobalto , Colorimetría , Colorantes Fluorescentes , Límite de Detección , Nanopartículas del Metal , Rodaminas , Plata , Cobalto/química , Cobalto/análisis , Plata/química , Rodaminas/química , Colorimetría/métodos , Nanopartículas del Metal/química , Colorantes Fluorescentes/química , Reproducibilidad de los Resultados , Iones/análisis , Espectrometría de Fluorescencia
8.
mSystems ; 9(7): e0051324, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38904399

RESUMEN

Mixotrophy is an important trophic strategy for bacterial survival in the ocean. However, the global relevance and identity of the major mixotrophic taxa remain largely elusive. Here, we combined phylogenetic, metagenomic, and metatranscriptomic analyses to characterize ubiquitous Arcobacteraceae based on our deep-sea in situ incubations and the global data. The phylogenomic tree of Arcobacteraceae is divided into three large clades, among which members of clades A and B are almost all from terrestrial environments, while those of clade C are widely distributed in various marine habitats in addition to some terrestrial origins. All clades harbor genes putatively involved in chitin degradation, sulfide oxidation, hydrogen oxidation, thiosulfate oxidation, denitrification, dissimilatory nitrate reduction to ammonium, microaerophilic respiration, and metal (iron/manganese) reduction. Additionally, in clade C, more unique pathways were retrieved, including thiosulfate disproportionation, ethanol fermentation, methane oxidation, fatty acid oxidation, cobalamin synthesis, and dissimilatory reductions of sulfate, perchlorate, and arsenate. Within this clade, two mixotrophic Candidatus genera represented by UBA6211 and CAIJNA01 harbor genes putatively involved in the reverse tricarboxylic acid pathway for carbon fixation. Moreover, the metatranscriptomic data in deep-sea in situ incubations indicated that the latter genus is a mixotroph that conducts carbon fixation by coupling sulfur oxidation and denitrification and metabolizing organic matter. Furthermore, global metatranscriptomic data confirmed the ubiquitous distribution and global relevance of Arcobacteraceae in the expression of those corresponding genes across all oceanic regions and depths. Overall, these results highlight the contribution of previously unrecognized Arcobacteraceae to carbon, nitrogen, and sulfur cycling in global oceans.IMPORTANCEMarine microorganisms exert a profound influence on global carbon cycling and ecological relationships. Mixotrophy, characterized by the simultaneous utilization of both autotrophic and heterotrophic nutrition, has a significant impact on the global carbon cycling. This report characterizes a group of uncultivated bacteria Arcobacteraceae that thrived on the "hot time" of bulky particulate organic matter and exhibited mixotrophic strategy during the in situ organic mineralization. Compared with clades A and B, more unique metabolic pathways were retrieved in clade C, including the reverse tricarboxylic acid pathway for carbon fixation, thiosulfate disproportionation, methane oxidation, and fatty acid oxidation. Global metatranscriptomic data from the Tara Oceans expeditions confirmed the ubiquitous distribution and extensive transcriptional activity of Arcobacteraceae with the expression of genes putatively involved in carbon fixation, methane oxidation, multiple sulfur compound oxidation, and denitrification across all oceanic regions and depths.


Asunto(s)
Carbono , Nitrógeno , Océanos y Mares , Azufre , Azufre/metabolismo , Carbono/metabolismo , Nitrógeno/metabolismo , Filogenia , Agua de Mar/microbiología
9.
J Sep Sci ; 47(9-10): e2300925, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38726740

RESUMEN

Deep eutectic solvents (DESs), as a new type of eco-friendly solvent, have attracted increasing attention on the extraction and separation of flavonoid compounds from various samples, owing to their excellent properties such as biodegradability and ease of handling with very low toxicity. This article provides a status review of the applications of DESs in the extraction of flavonoids, including the introduction of flavonoid compounds, the properties and superiority of DESs, and extraction methods (ultrasonic-assisted extraction, heating reflux extraction, matrix solid-phase dispersion, and solid-phase extraction). Finally, prospects and challenges in the application of DESs on extraction and separation are extensively elucidated and critically reviewed.


Asunto(s)
Disolventes Eutécticos Profundos , Flavonoides , Extracción en Fase Sólida , Flavonoides/aislamiento & purificación , Flavonoides/química , Disolventes Eutécticos Profundos/química , Solventes/química
10.
Transl Cancer Res ; 13(3): 1394-1405, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38617517

RESUMEN

Background: Lung cancer (LC) is a leading cause of cancer-associated mortality worldwide, with high incidence and mortality rates. Ly6/PLAUR domain containing 3 (LYPD3) is a tumorigenic and highly glycosylated cell surface protein that has been rarely reported in LC. This study aimed to explore the prognostic role and immune cell infiltration of LYPD3 in LC. Methods: We used ExoCarta, a database of exosomal proteins and RNA, to select exosomes in LC. The Tumor Immune Estimation Resource (TIMER) and Human Protein Atlas (HPA) databases were utilized to compare the expression of LYPD3 in LC. We applied Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and Kaplan-Meier (KM) plotter to evaluate the prognostic prediction performance of LYPD3. Biological processes (BPs), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and gene set enrichment analysis (GSEA) analyses were performed to illustrate the possible role of LYPD3 in LC. The correlations between LYPD3 and immune cell infiltration were explored using Tumor and Immune System Interaction Database (TISIDB), GEPIA2, and TIMER. R software was used for statistical analysis and mapping. Results: A total of 904 exosome molecules were screened in LC. Further analysis showed that the up-regulation of LYPD3 in these 904 exosome molecules was associated with poor prognosis in LC. Pan-cancer analyses revealed that the expression of LYPD3 varied in many cancers, particularly in LC. Clinical correlation analysis indicated that LYPD3 was associated with stage and T classification in LC. We observed that LYPD3 co-expression genes were associated with cell cycle, DNA replication, proteasome, and regulation of the actin cytoskeleton by GSEA. Moreover, LYPD3 was associated with immune modulators. Immunophenoscores (IPS) and IPS-CTLA4 were significantly different between the high LYPD3 group and low LYPD3 group. Additionally, the median half maximal inhibitory concentration (IC50) of bexarotene, cyclopamine, etoposide, and paclitaxel in LYPD3 high group was significantly lower than that in LYPD3 low group. Conclusions: LYPD3 is involved in many BPs of LC, such as regulating immune cell infiltration and affecting prognosis. Therefore, LYPD3 may have potential value as a biomarker for prognosis and immunotherapy in LC.

13.
Int J Syst Evol Microbiol ; 73(20)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37801073

RESUMEN

Two Gram-stain-negative, non-motile, non-spore-forming, strictly aerobic and rod-shaped bacterial strains, CMA-7T and CAA-3, were isolated from surface seawater samples collected from the western Pacific Ocean. Phylogeny of 16S rRNA gene sequences indicated they were related to the genera Galbibacter and Joostella and shared 95.1, 90.9 and 90.8% sequence similarity with G. mesophilus Mok-17T, J. marina DSM 19592T and G. marinus ck-I2-15T, respectively. Phylogenomic analysis showed that the two strains, together with the members of the genera Galbibacter and Joostella, formed a monophyletic clade that could also be considered a monophyletic taxon. This distinctiveness was supported by amino acid identity and percentage of conserved proteins indices, phenotypic and chemotaxonomic characteristics and comparative genomics analysis. Digital DNA‒DNA hybridization values and average nucleotide identities between the two strains and their closest relatives were 18.0-20.8 % and 77.7-79.3 %, respectively. The principal fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH, iso-C15 : 1 G, Summed Feature 3 (C16 : 1 ω7c/C16 : 1 ω6c or C16 : 1 ω6c/C16 : 1 ω7c), Summed Feature 9 (iso-C17 : 1 ω9c or C16 : 0 10-methyl), and C15 : 0 3-OH. The predominant respiratory quinone was MK-6. The polar lipids were phosphatidylethanolamine, aminolipid, aminophospholipid, phospholipid, phosphoglycolipid, glycolipid and unknown polar lipid. The genomic DNA G+C content of strains CMA-7T and CAA-3 was both 38.4 mol%. Genomic analysis indicated they have the potential to degrade cellulose and chitin. Based on the polyphasic evidence presented in this study, the two strains represent a novel species within the genus Galbibacter, for which the name Galbibacter pacificus sp. nov. is proposed. The type strain is CMA-7T (=MCCC M28999T = KCTC 92588T). Moreover, the transfer of Joostella marina to the genus Galbibacter as Galbibacter orientalis nom. nov. (type strain En5T = KCTC 12518T = DSM 19592T=CGMCC 1.6973T) is also proposed.


Asunto(s)
Ácidos Grasos , Agua de Mar , Ácidos Grasos/química , ARN Ribosómico 16S/genética , Océano Pacífico , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Filogenia , Composición de Base , Técnicas de Tipificación Bacteriana , Agua de Mar/microbiología
14.
Ecotoxicol Environ Saf ; 266: 115588, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37839193

RESUMEN

High concentration of ammonia poses a common threat to the healthy breeding of marine aquaculture organisms. Since aquaculture water is rich in organic matter, heterotrophic nitrifying bacteria might play a crucial role in ammonia removal. However, their roles in ammonia oxidation remain unknown. Here, we report a novel strain isolated from shrimp aquaculture seawater, identified as Sneathiella aquimaris 216LB-ZA1-12T, capable of heterotrophic nitrification. It is the first characterized heterotrophic nitrifier of the order Sneathiellales in the class Alphaproteobacteria. It exhibits high activity in heterotrophic nitrification, removing nearly 94% of ammonium-N under carbon-constrained conditions in 8 days with no observed nitrite accumulation. The heterotrophic nitrification pathway, inferred based on detection and genomic data was as follows: NH4+→NH2OH→NO→NO2-→NO3-. While this pathway aligns with the classical nitrification pathway, while the significant difference lies in the absence of classical HAO and HOX encoding genes in the genome, which is common in heterotrophic nitrifying bacteria. In summary, this bacterium is not only valuable for studying the nitrifying mechanism, but also holds potential for practical applications in ammonia removal in marine aquaculture systems and saline wastewater.


Asunto(s)
Alphaproteobacteria , Nitrificación , Desnitrificación , Amoníaco/metabolismo , Aerobiosis , Nitritos/metabolismo , Bacterias/metabolismo , Procesos Heterotróficos , Acuicultura , Agua de Mar/microbiología , Alphaproteobacteria/metabolismo , Nitrógeno/metabolismo
15.
Dalton Trans ; 52(32): 11035-11041, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37526042

RESUMEN

In recent years, a variety of adsorbents have been developed for Hg2+ removal. However, these adsorbents are unsatisfactory for adsorption due to narrow and irregular pore channels or poor adsorption capacity and low stability. Therefore, it is worth exploring a porous Hg2+ adsorbent material with high adsorption performance and stability. In this study, a benzothiadiazole-based nonbranching functionalized covalent organic framework (COF) material (TPS-COF) by one-step synthesis was reported, which exhibited a high specific surface area of 1564 m2 g-1, high crystallinity and stability attributed to its high conjugated linkage structure of benzothiadiazole. In addition, due to the rich S and N elements of the benzothiadiazole unit, it exhibited excellent adsorption performance on Hg2+, including excellent adsorption amount (1040 mg g-1), high initial adsorption rate (448 mg g-1 min-1) and very short adsorption equilibrium time (10 min), with an efficient removal rate of Hg2+ in the pH range of 2-8. After desorption, the TPS-COF still retained good pore stability, adsorption capacity, and reusability. Such a one-step synthetic unbranched functionalization strategy provides further insights to achieve a good balance between the high crystallinity, functionality and stability of COFs.

16.
Chemosphere ; 340: 139696, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37557996

RESUMEN

The magnetic Fe3O4/bamboo-based activated carbon/Zr-based metal-organic frameworks composite (Fe3O4/BAC/UiO-66) was prepared by hydrothermal method. The as-prepared material was analyzed via TEM, XRD, FT-IR, BET-BJH, VSM and XPS techniques, the results showed that it had good dispersion and magnetic separation capacity (Ms = 44.06 emu∙g-1). Then, the adsorption properties of materials for bisphenol A (BPA) were studied. The results revealed that the removal efficiency of 50 mg·L-1 BPA by 0.1 g of adsorbent can reach 87.18-95% in a wide pH range. Langmuir isotherm model and pseudo-second-order kinetic well fitted the adsorption data. The thermodynamic data indicated that the adsorption process was spontaneous and endothermic. Moreover, BAC as a supporter and UiO-66 as the functional part in the ternary composite may have a synergistic effect, which was beneficial for the removal of contaminants. The Fe3O4/BAC/UiO-66 can be simply separated from the water using its strong magnetism after finish adsorption process, which effectively avoids secondary contamination.


Asunto(s)
Carbón Orgánico , Contaminantes Químicos del Agua , Espectroscopía Infrarroja por Transformada de Fourier , Adsorción , Fenómenos Magnéticos , Contaminantes Químicos del Agua/análisis , Cinética
17.
Chemosphere ; 338: 139451, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37451632

RESUMEN

An off-on fluorescent probe (NS-CDs-AgNPs) was synthesized based on a one-pot microwave process by utilizing N, S co-doping carbon dots (NS-CDs) and silver nitrate as precursors. The significant peak of NS-CDs-AgNPs at 393 nm in ultraviolet spectrum indicated silver nanoparticle (AgNPs) were successfully synthesized. A faint blue fluorescence emission (442 nm) was displayed when excited NS-CDs-AgNPs at 371 nm. A remarkable fluorescence recovery was observed upon adding of trance Hg2+, whereas the other heavy metal ions did not elicit this response. The reason for this phenomenon was revealed in this work that a spontaneous redox reaction occurred between NS-CDs-AgNPs and Hg2+, which leaded to the formation of NS-CDs-Agn-2NPsHg complexes. On the basis of this mechanism, a new off-on fluorescent analytical method was constructed for Hg2+ detection with linear range of 10-400 nM (R2 = 0.9941), and the detection limit (LOD) of 5.16 nM. Additionally, satisfactory recovery (90.28%-106.13%) and the relative standard deviation (RSD) (RSD<5.21%) were obtained in water sample detection. More importantly, the NS-CDs-AgNPs exhibited lower cytotoxicity and better biocompatibility, indicating a huge potential in cell imaging and clinical medicine.


Asunto(s)
Mercurio , Nanopartículas del Metal , Puntos Cuánticos , Colorantes Fluorescentes , Carbono , Microondas , Espectrometría de Fluorescencia/métodos , Límite de Detección , Plata
18.
Chemosphere ; 338: 139399, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37423411

RESUMEN

In the present study, Ni-UiO-66 was synthesized to improve the adsorption efficiency of tetracycline (TC) in wastewater treatment. To this end, nickel doping was performed in the preparation process of UiO-66. The synthesized Ni-UiO-66 was characterized by XRD, SEM and EDS, BET, FTIR, TGA, and XPS for obtaining the lattice structure, surface topography, specific surface area, surface functional groups, and thermostability. More specifically, Ni-UiO-66 has a removal efficiency and adsorption capacity of up to 90% and 120 mg g-1, respectively, when used to treat TC. The presence of ions HCO3-, SO42-, NO3- and PO43- slightly affects the TC adsorption. A 20 mg L-1 humic acid reduces the removal efficiency from 80% to 60%. The performed analyses revealed that Ni-UiO-66 had similar adsorption capacity in wastewater with different ion strengths. The variation of adsorption capacity with the adsorption time was fitted using a pseudo-second-order kinetic equation. Meanwhile, it is found that the adsorption reaction occurs only on the monolayer of the UiO-66 surface so the adsorption process can be simulated using the Langmuir isotherm model. The thermodynamic analysis indicates that the adsorption of TC is an endothermic reaction. Electrostatic attraction, hydrogen-bond interaction, and π-π interaction might be the main reasons for the adsorption. The synthesized Ni-UiO-66 has well adsorption capacity and stable structure. Accordingly, it is expected to achieve a good prospect in industrial applications and wastewater treatment plants.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Níquel , Contaminantes Químicos del Agua/química , Tetraciclina , Antibacterianos/química , Termodinámica , Adsorción , Cinética , Concentración de Iones de Hidrógeno
19.
Chemosphere ; 336: 139241, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37330066

RESUMEN

Excessive phosphorus (P) and ammonia nitrogen (NH3-N) in water bodies can lead to eutrophication of the aquatic environment. Therefore, it is important to develop a technology that can efficiently remove P and NH3-N from water. Here, the adsorption performance of cerium-loaded intercalated bentonite (Ce-bentonite) was optimized based on single-factor experiments using central composite design-response surface methodology (CCD-RSM) and genetic algorithm-back propagation neural network (GA-BPNN) models. Based on the determination coefficient (R2), mean absolute error (MAE), mean square error (MSE), mean absolute percentage error (MAPE), and root mean square error (RMSE), the GA-BPNN model was found to be more accurate in predicting adsorption conditions than the CCD-RSM model. The validation results showed that the removal efficiency of P and NH3-N by Ce-bentonite under optimal adsorption conditions (adsorbent dosage = 1.0 g, adsorption time = 60 min, pH = 8, initial concentration = 30 mg/L) reached 95.70% and 65.93%. Furthermore, based on the application of these optimal conditions in simultaneous removal of P and NH3-N by Ce-bentonite, pseudo-second order and Freundlich models were able to better analyze adsorption kinetics and isotherms. It is concluded that the optimization of experimental conditions by GA-BPNN has some guidance and provides a new approach to explore adsorption performance after optimizing the conditions.


Asunto(s)
Cerio , Contaminantes Químicos del Agua , Fósforo , Bentonita , Amoníaco , Adsorción , Redes Neurales de la Computación , Cinética , Nitrógeno , Concentración de Iones de Hidrógeno
20.
Artículo en Inglés | MEDLINE | ID: mdl-36795459

RESUMEN

A novel marine bacterium designated strain PHK-P5T was isolated from a sea anemone (Actinostolidae sp. 1). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain PHK-P5T belonged to the genus Sneathiella. The bacterium was Gram-stain-negative, aerobic, oxidase- and catalase- positive, oval- to rod-shaped, and motile. Growth was observed at pH 6.0-9.0, salinities of 2.0-9.0 % and temperatures of 4-37 °C. The G+C content of the chromosomal DNA was 49.2 %. The respiratory quinone was determined to be Q-10. The principal fatty acids of strain PHK-P5T were C19 : 0cyclo ω8c (25.19 %), C16 : 0 (22.76 %), summed feature 8 (C18 : 1 ω7c/ω6c; 16.14 %), C14 : 0 (8.81 %), C17 : 0cyclo (8.10 %), summed feature 2 (C12 : 0 aldehyde and/or unknown 10.928; 7.19 %) and C18 : 1 ω7c 11-methyl (5.03 %). The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The average nucleotide identity and digital DNA-DNA hybridization values among the genomes of strain PHK-P5T and the reference strains were 68.7-70.9 % and 17.4-18.1 %, respectively. The combined genotypic and phenotypic data showed that strain PHK-P5T represents a novel species within the genus Sneathiella, for which the name Sneathiella marina sp. nov. is proposed, with the type strain PHK-P5T (=MCCC M21824T=KCTC 82924T).


Asunto(s)
Alphaproteobacteria , Anémonas de Mar , Animales , Ácidos Grasos/química , Fosfolípidos/química , Agua de Mar/microbiología , Anémonas de Mar/genética , Filogenia , Océano Pacífico , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Composición de Base , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , Ubiquinona/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA