Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 497
Filtrar
1.
Ann Surg Oncol ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976160

RESUMEN

PURPOSE: This study was designed to develop and validate a machine learning-based, multimodality fusion (MMF) model using 18F-fluorodeoxyglucose (FDG) PET/CT radiomics and kernelled support tensor machine (KSTM), integrated with clinical factors and nuclear medicine experts' diagnoses to individually predict peritoneal metastasis (PM) in advanced gastric cancer (AGC). METHODS: A total of 167 patients receiving preoperative PET/CT and subsequent surgery were included between November 2006 and September 2020 and were divided into a training and testing cohort. The PM status was confirmed via laparoscopic exploration and postoperative pathology. The PET/CT signatures were constructed by classic radiomic, handcrafted-feature-based model and KSTM self-learning-based model. The clinical nomogram was constructed by independent risk factors for PM. Lastly, the PET/CT signatures, clinical nomogram, and experts' diagnoses were fused using evidential reasoning to establish the MMF model. RESULTS: The MMF model showed excellent performance in both cohorts (area under the curve [AUC] 94.16% and 90.84% in training and testing), and demonstrated better prediction accuracy than clinical nomogram or experts' diagnoses (net reclassification improvement p < 0.05). The MMF model also had satisfactory generalization ability, even in mucinous adenocarcinoma and signet ring cell carcinoma which have poor uptake of 18F-FDG (AUC 97.98% and 89.71% in training and testing). CONCLUSIONS: The 18F-FDG PET/CT radiomics-based MMF model may have significant clinical implications in predicting PM in AGC, revealing that it is necessary to combine the information from different modalities for comprehensive prediction of PM.

3.
Biomed Pharmacother ; 177: 117134, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39013225

RESUMEN

Gastrointestinal cancer is among the most common cancers worldwide. Immune checkpoint inhibitor-based cancer immunotherapy has become an innovative approach in cancer treatment; however, its efficacy in gastrointestinal cancer is limited by the absence of infiltration of immune cells within the tumor microenvironment. Therefore, it is therefore urgent to develop a novel therapeutic drug to enhance immunotherapy. In this study, we describe a previously unreported potentiating effect of Icariside I (ICA I, GH01), the main bioactive compound isolated from the Epimedium species, on anti-tumor immune responses. Mechanistically, molecular docking and SPR assay result show that ICA I binding with TRPV4. ICA I induced intracellular Ca2+ increasing and mitochondrial DNA release by targeting TRPV4, which triggered cytosolic ox-mitoDNA release. Importantly, these intracellular ox-mitoDNA fragments were taken up by immune cells in the tumor microenvironment, which amplified the immune response. Moreover, our study shows the remarkable efficacy of sequential administration of ICA I and anti-α-PD-1 mAb in advanced tumors and provides a strong scientific rationale for recommending such a combination therapy for clinical trials. ICA I enhanced the anti-tumor effects with PD-1 inhibitors by regulating the TRPV4/Ca2+/Ox-mitoDNA/cGAS/STING axis. We expect that these findings will be translated into clinical therapies, which will benefit more patients with cancer in the near future.

4.
Int J Biol Macromol ; : 133411, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945722

RESUMEN

Preparing bio-based air filtration membrane through green electrospinning strategy is a vital approach to alleviating environmental and energy crises. However, the development of related biomaterials and method for regulating membrane structure are still lacking. In this study, ethyl cellulose (EC) bimodal nanofibrous membrane was prepared by electrospinning using ethanol and water as solvents to achieve high-performance air filtration. A new strategy for bimodal fiber molding based on molecular weight modulation was proposed. The EC polymer chains with medium molecular weights were subject to the highest degree of inhomogeneity of solvent intrusion, and there were significant differences in viscous forces "microscopically", leading to the formation of bimodal structure by inhomogeneous stretching of the jet. The well-defined bimodal structure endowed EC membrane with excellent air filtration performance. The filtration efficiency for PM0.3, pressure drop, quality factor were 99.11 %, 42.2 Pa, and 0.112 Pa-1, respectively. Compared to the commonly used zein, EC cost just 12.77 %, and its solution had a 50 % longer shelf life, making it a more desirable biomaterial. This work will facilitate the application of more biomaterials in air filtration, promote the green fabrication of high-performance air filtration membranes, and realize sustainable development.

5.
ACS Appl Mater Interfaces ; 16(27): 35104-35113, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38932475

RESUMEN

Aqueous zinc-ion batteries have attracted widespread attention due to their low cost and high safety. Unfortunately, their commercial applications are greatly inhibited by the negative effects of zinc dendrites and side reactions. A solution that utilizes a 3D host can help mitigate these issues. In this paper, we present a 3D host that is composed of an aerogel scaffold with a poly(vinyl alcohol) and MXene structure. The embedded Zn can be densely packed inside the host due to its zincophilic properties. During cycling, the fluorine-based functional groups on the surface of MXene were able to react with the electrolyte to form the ZnF2 solid electrolyte interphase, which can effectively protect the composite anode. As a result, the symmetrical battery was capable of stable cycling for >300 h at a high current density of 10 mA cm-2. More impressively, the assembled full cell retained 93.86% after 800 cycles at a current density of 5 A g-1. This work provides an effective idea for improving the cycling performance of aqueous zinc-ion batteries.

6.
Adv Mater ; : e2405877, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38889909

RESUMEN

Targeted imaging of cancer lymphatic metastasis remains challenging due to its highly heterogeneous molecular and phenotypic diversity. Herein, triple-targeted protein nanoprobes capable of specifically binding to three targets for imaging cancer lymphatic metastasis, through a data-driven design approach combined with a synthetic biology-based assembly strategy, are introduced. Specifically, to address the diversity of metastatic lymph nodes (LNs), a combination of three targets, including C-X-C motif chemokine receptor 4 (CXCR4), transferrin receptor protein 1 (TfR1), and vascular endothelial growth factor receptor 3 (VEGFR3) is identified, leveraging machine leaning-based bioinformatics analysis and examination of LN tissues from patients with gastric cancer. Using this identified target combination, ferritin nanocage-based nanoprobes capable of specifically binding to all three targets are designed through the self-assembly of genetically engineered ferritin subunits using a synthetic biology approach. Using these nanoprobes, multiplexed imaging of heterogeneous metastatic LNs is successfully achieved in a polyclonal lymphatic metastasis animal model. In 19 freshly resected human gastric specimens, the signal from the triple-targeted nanoprobes significantly differentiates metastatic LNs from benign LNs. This study not only provides an effective nanoprobe for imaging highly heterogeneous lymphatic metastasis but also proposes a potential strategy for guiding the design of targeted nanomedicines for cancer lymphatic metastasis.

7.
Nat Med ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824242

RESUMEN

The vascular endothelial growth factor pathway plays a key role in the pathogenesis of gastric cancer. In the multicenter, double-blind phase 3 FRUTIGA trial, 703 patients with advanced gastric or gastroesophageal junction adenocarcinoma who progressed on fluorouracil- and platinum-containing chemotherapy were randomized (1:1) to receive fruquintinib (an inhibitor of vascular endothelial growth factor receptor-1/2/3; 4 mg orally, once daily) or placebo for 3 weeks, followed by 1 week off, plus paclitaxel (80 mg/m2 intravenously on days 1/8/15 per cycle). The study results were positive as one of the dual primary endpoints, progression-free survival (PFS), was met (median PFS, 5.6 months in the fruquintinib arm versus 2.7 months in the placebo arm; hazard ratio 0.57; 95% confidence interval 0.48-0.68; P < 0.0001). The other dual primary endpoint, overall survival (OS), was not met (median OS, 9.6 months versus 8.4 months; hazard ratio 0.96, 95% confidence interval 0.81-1.13; P = 0.6064). The most common grade ≥3 adverse events were neutropenia, leukopenia and anemia. Fruquintinib plus paclitaxel as a second-line treatment significantly improved PFS, but not OS, in Chinese patients with advanced gastric or gastroesophageal junction adenocarcinoma and could potentially be another treatment option for these patients. ClinicalTrials.gov registration: NCT03223376 .

8.
J Control Release ; 371: 204-215, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810704

RESUMEN

Cuproptosis, a newly discovered mechanism of inducing tumor cell death, primarily relies on the intracellular accumulation of copper ions. The utilization of Cu-based nanomaterials to induce cuproptosis holds promising prospects in future biomedical applications. However, the presence of high levels of glutathione (GSH) within tumor cells hinders the efficacy of cuproptosis. In this study, we have developed a BPTES-loaded biomimetic Cu-doped polypyrrole nanoparticles (CuP) nanosystem (PCB) for enhanced cuproptosis and immune modulation. PCB comprises an internal BPTES and CuP core and an external platelet membrane (PM) that facilitates active targeting to tumor sites following intravenous administration. Subsequently, PCB effectively suppresses glutaminase (GLS1) activity, thereby reducing GSH content. Moreover, CuP catalyze intracellular H2O2, amplifying oxidative stress while simultaneously inducing dihydrolipoyl transacetylase (DLAT) oligomerization through released Cu2+, resulting in cuproptosis. PCB not only inhibits primary tumors but also exhibits inhibitory effects on abscopal tumors. This work represents the first instance where GLS inhibition has been employed to enhance cuproptosis and immunotherapy. It also provides valuable insights into further investigations on cuproptosis.


Asunto(s)
Materiales Biomiméticos , Neoplasias de la Mama , Cobre , Glutamina , Inmunoterapia , Nanopartículas , Polímeros , Pirroles , Cobre/química , Polímeros/química , Nanopartículas/química , Nanopartículas/administración & dosificación , Animales , Femenino , Pirroles/administración & dosificación , Pirroles/química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Humanos , Inmunoterapia/métodos , Línea Celular Tumoral , Glutamina/metabolismo , Materiales Biomiméticos/química , Materiales Biomiméticos/administración & dosificación , Ratones Endogámicos BALB C , Glutaminasa/metabolismo , Glutaminasa/antagonistas & inhibidores , Ratones , Glutatión/metabolismo
9.
J Immunother Cancer ; 12(5)2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38749538

RESUMEN

BACKGROUND: Only a subset of patients with gastric cancer experience long-term benefits from immune checkpoint inhibitors (ICIs). Currently, there is a deficiency in precise predictive biomarkers for ICI efficacy. The aim of this study was to develop and validate a pathomics-driven ensemble model for predicting the response to ICIs in gastric cancer, using H&E-stained whole slide images (WSI). METHODS: This multicenter study retrospectively collected and analyzed H&E-stained WSIs and clinical data from 584 patients with gastric cancer. An ensemble model, integrating four classifiers: least absolute shrinkage and selection operator, k-nearest neighbors, decision trees, and random forests, was developed and validated using pathomics features, with the objective of predicting the therapeutic efficacy of immune checkpoint inhibition. Model performance was evaluated using metrics including the area under the curve (AUC), sensitivity, and specificity. Additionally, SHAP (SHapley Additive exPlanations) analysis was used to explain the model's predicted values as the sum of the attribution values for each input feature. Pathogenomics analysis was employed to explain the molecular mechanisms underlying the model's predictions. RESULTS: Our pathomics-driven ensemble model effectively stratified the response to ICIs in training cohort (AUC 0.985 (95% CI 0.971 to 0.999)), which was further validated in internal validation cohort (AUC 0.921 (95% CI 0.839 to 0.999)), as well as in external validation cohort 1 (AUC 0.914 (95% CI 0.837 to 0.990)), and external validation cohort 2 (0.927 (95% CI 0.802 to 0.999)). The univariate Cox regression analysis revealed that the prediction signature of pathomics-driven ensemble model was a prognostic factor for progression-free survival in patients with gastric cancer who underwent immunotherapy (p<0.001, HR 0.35 (95% CI 0.24 to 0.50)), and remained an independent predictor after multivariable Cox regression adjusted for clinicopathological variables, (including sex, age, carcinoembryonic antigen, carbohydrate antigen 19-9, therapy regime, line of therapy, differentiation, location and programmed death ligand 1 (PD-L1) expression in all patients (p<0.001, HR 0.34 (95% CI 0.24 to 0.50)). Pathogenomics analysis suggested that the ensemble model is driven by molecular-level immune, cancer, metabolism-related pathways, and was correlated with the immune-related characteristics, including immune score, Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data score, and tumor purity. CONCLUSIONS: Our pathomics-driven ensemble model exhibited high accuracy and robustness in predicting the response to ICIs using WSIs. Therefore, it could serve as a novel and valuable tool to facilitate precision immunotherapy.


Asunto(s)
Inmunoterapia , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/patología , Neoplasias Gástricas/terapia , Masculino , Femenino , Inmunoterapia/métodos , Estudios Retrospectivos , Persona de Mediana Edad , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Anciano
10.
ACS Appl Mater Interfaces ; 16(21): 27075-27086, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38752796

RESUMEN

Multifaceted nanoplatforms integrating fluorescence imaging and chemotherapy have garnered acknowledgment for their potential potency in cancer diagnosis and simultaneous in situ therapy. However, some drawbacks remain for traditional organic photosensitizers, such as poor photostability, short excitation wavelength, and shallow penetration depth, which will greatly lower the chemotherapy treatment efficiency. Herein, we present lipid-encapsulated two-photon active aggregation-induced emission (AIE) luminogen and paclitaxel (PTX) nanoparticles (AIE@PTX NPs) with bright red fluorescence emission, excellent photostability, and good biocompatibility. The AIE@PTX NPs exhibit dual functionality as two-photon probes for visualizing blood vessels and tumor structures, achieving penetration depth up to 186 and 120 µm, respectively. Furthermore, the tumor growth of the HeLa-xenograft model can be effectively prohibited after the fluorescence imaging-guided and PTX-induced chemotherapy, which shows great potential in the clinical application of two-photon cell and tumor fluorescence imaging and cancer treatment.


Asunto(s)
Nanopartículas , Paclitaxel , Fotones , Nanomedicina Teranóstica , Paclitaxel/química , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Humanos , Nanopartículas/química , Nanopartículas/uso terapéutico , Animales , Células HeLa , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/diagnóstico por imagen , Imagen Óptica , Ratones Desnudos , Ratones Endogámicos BALB C , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología
11.
Eur J Oncol Nurs ; 70: 102622, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38795443

RESUMEN

PURPOSE: To explore the relationship between dyadic coping and family resistance in colorectal cancer patients and their spouses. METHODS: 178 pairs of colorectal cancer patients and their spouses hospitalized in a three tertiary hospital in Changsha were selected from July 2021 to March 2022. The Family Resilience Assessment Scale and the Dyadic Coping Inventory were used to investigate, which relationship was analyzed by APIM. RESULTS: The total score of patients' dyadic coping was 121.51 ± 16.8, and spouses' score was 123.72 ± 16.6. The total score of family resilience was 176.42 ± 16.0, and spouses' score was 182.72 ± 17.03. There was a significant positive relationship between dyadic coping and family resistance of colorectal cancer patients and their spouses (r > 0.7, P < 0.001). The positive dyadic coping of colorectal cancer patients and their spouses had a positive effect on their own and their spouses' family resilience and the effect was the same. The negative dyadic coping of colorectal cancer patients and their spouses had a negative impact on their own family resilience, and the overall model showed a subject pattern. CONCLUSIONS: The level of family resilience of colorectal cancer patients and their spouses was affected by the level of dyadic coping. Medical workers should regard patients and their spouses as a whole and formulate mutually supportive coping strategies with family as the center, so as to increase positive coping behavior and enhance their family's ability to cope with cancer.


Asunto(s)
Adaptación Psicológica , Neoplasias Colorrectales , Resiliencia Psicológica , Esposos , Humanos , Neoplasias Colorrectales/psicología , Femenino , Masculino , Esposos/psicología , Persona de Mediana Edad , Anciano , Adulto , Encuestas y Cuestionarios
12.
Front Public Health ; 12: 1292289, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638478

RESUMEN

Rationale: With the accelerating process of population aging, the comorbidity of chronic disease (CCD) has become a major public health problem that threatens the health of older adults. Objective: This study aimed to assess whether CCD is associated with basic activities of daily living (BADL) and explore the factors influencing BADL in older adults. Method: A cross-sectional community health survey with stratified random sampling among older residents (≥60 years old) was conducted in 2022. A questionnaire was used to collect information on BADL, chronic diseases, and other relevant aspects. Propensity score matching (PSM) was used to match the older adults with and without CCD. Univariate and multivariate logistic regression analyses were used to explore the factors influencing BADL. PSM was used to match participants with single-chronic disease (SCD) and CCD. Results: Among the 47,720 participants, those with CCD showed a higher prevalence of BADL disability (13.07%) than those with no CCD (6.33%) and SCD (7.39%). After adjusting for potential confounders with PSM, 6,513 pairs of cases with and without CCD were matched. The univariate analysis found that the older adults with CCD had a significantly higher prevalence of BADL disability (13.07%, 851 of 6,513) than those without CCD (9.83%, 640 of 6,513, P < 0.05). The multivariate logistic regression analysis revealed that CCD was a risk factor for BADL in older adults [OR = 1.496, 95% CI: 1.393-1.750, P < 0.001]. In addition, age, educational level, alcohol intake, social interaction, annual physical examination, retirement benefits, depression, weekly amount of exercise, and years of exercise were related to BADL disability (P < 0.05). PSM matching was performed on participants with CCD and SCD and showed that the older adults with CCD had a significantly higher prevalence of BADL disability (13.07%, 851 of 6,513) than those with SCD (11.39%, 742 of 6,513, P < 0.05). Conclusion: The older adults with CCD are at a higher risk of BADL disability than their counterparts with no CCD or SCD. Therefore, we advocate paying attention to and taking measures to improve the health and quality of life of these individuals.


Asunto(s)
Actividades Cotidianas , Calidad de Vida , Humanos , Anciano , Persona de Mediana Edad , Estudios Transversales , Puntaje de Propensión , Comorbilidad , Enfermedad Crónica
13.
Cell Death Dis ; 15(4): 248, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575587

RESUMEN

Gastric cancer (GC) contains subpopulations of cancer stem cells (CSCs), which are described as the main contributors in tumor initiation and metastasis. It is necessary to clarify the molecular mechanism underlying CSCs phenotype and develop novel biomarkers and therapeutic targets for gastric cancer. Here, we show that POLQ positively regulates stem cell-like characteristics of gastric cancer cells, knockdown of POLQ suppressed the stemness of GC cells in vitro and in vivo. Further mechanistic studies revealed that POLQ knockdown could downregulate the expression of dihydroorotate dehydrogenase (DHODH). DHODH overexpression rescued the reduced stemness resulted by POLQ knockdown. Furthermore, we found that POLQ expression correlated with resistance to ferroptosis, and POLQ inhibition renders gastric cancer cells more vulnerable to ferroptosis. Further investigation revealed that POLQ regulated DHODH expression via the transcription factors E2F4, thereby regulating ferroptosis resistance and stemness of gastric cancer cells. Given the importance of POLQ in stemness and ferroptosis resistance of GC, we further evaluated the therapeutic potential of POLQ inhibitor novobiocin, the results show that novobiocin attenuates the stemness of GC cells and increased ferroptosis sensitivity. Moreover, the combination of POLQ inhibitor and ferroptosis inducer synergistically suppressed MGC-803 xenograft tumor growth and diminished metastasis. Our results identify a POLQ-mediated stemness and ferroptosis defense mechanism and provide a new therapeutic strategy for gastric cancer.


Asunto(s)
Ferroptosis , Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Dihidroorotato Deshidrogenasa , Regulación hacia Abajo/genética , Ferroptosis/genética , Novobiocina , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética
14.
Front Immunol ; 15: 1328266, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550592

RESUMEN

Background: Porcine deltacoronavirus (PDCoV), a novel swine enteropathogenic coronavirus, challenges the global swine industry. Currently, there are no approaches preventing swine from PDCoV infection. Methods: A new PDCoV strain named JS2211 was isolated. Next, the dimer receptor binding domain of PDCoV spike protein (RBD-dimer) was expressed using the prokaryotic expression system, and a novel nanoparticle containing RBD-dimer and ferritin (SC-Fe) was constructed using the SpyTag/SpyCatcher system. Finally, the immunoprotection of RBD-Fe nanoparticles was evaluated in mice. Results: The novel PDCoV strain was located in the clade of the late Chinese isolate strains and close to the United States strains. The RBD-Fe nanoparticles were successfully established. Immune responses of the homologous prime-boost regime showed that RBD-Fe nanoparticles efficiently elicited specific humoral and cellular immune responses in mice. Notably, high level PDCoV RBD-specific IgG and neutralizing antibody (NA) could be detected, and the histopathological results showed that PDCoV infection was dramatically reduced in mice immunized with RBD-Fe nanoparticles. Conclusion: This study effectively developed a candidate nanoparticle with receptor binding domain of PDCoV spike protein that offers protection against PDCoV infection in mice.


Asunto(s)
Nanovacunas , Glicoproteína de la Espiga del Coronavirus , Porcinos , Animales , Ratones , Deltacoronavirus , Inmunidad , SARS-CoV-2
15.
J Environ Manage ; 356: 120605, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38498962

RESUMEN

The photocatalytic cementitious materials (PCM) are expected to alleviate air pollution due to the direct utilization of natural solar energy. However, the color properties of cementitious materials have significant effect on the photocatalytic performance of PCM. In the present study, the colorful PCM is prepared using various colorants. The effect of color properties of cementitious materials on the NOx removal capacity of PCM is researched, and the related mechanism is analyzed by optical analysis. Furthermore, the effect of colorants on the compressive strength of PCM is studied. Results showed that the NOx removal capacity of PCM is decreased by the presence of colorants. As the 5% of black, yellow, red, and blue colorants are used, the NOx removal capacity of PCM is reduced by 73%, 48%, 21%, and 19%, respectively. Both the nano-TiO2 and cement in the PCM can absorb UV light. Colorants could enhance the UV light absorption capacity of cement, leading to a decrease in the UV light absorption of nano-TiO2, which is harmful to the generation of electron-hole pairs. Moreover, the Fe-phase in colorants could improve the surface charge separation resistance of nano-TiO2, limiting the efficiently separated electron-hole pairs. Therefore, the photocatalytic performance of PCM is weakened by the presence of colorants. The compressive strength of PCM is decreased by using colorants, but the reduction ratio at 28 d is no more than 10%, with the content of colorants within 5%. This research can guide the color design of PCM in practical applications.


Asunto(s)
Contaminación del Aire , Rayos Ultravioleta , Fuerza Compresiva
16.
Gut Microbes ; 16(1): 2307542, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38319728

RESUMEN

The gut microbiota and Short-chain fatty acids (SCFAs) can influence the progression of diseases, yet the role of these factors on gastric cancer (GC) remains uncertain. In this work, the analysis of the gut microbiota composition and SCFA content in the blood and feces of both healthy individuals and GC patients indicated that significant reductions in the abundance of intestinal bacteria involved in SCFA production were observed in GC patients compared with the controls. ABX mice transplanted with fecal microbiota from GC patients developed more tumors during the induction of GC and had lower levels of butyric acid. Supplementation of butyrate during the induction of gastric cancer along with H. pylori and N-methyl-N-nitrosourea (MNU) in WT in GPR109A-/-mice resulted in fewer tumors and more IFN-γ+ CD8+ T cells, but this effect was significantly weakened after knockout of GPR109A. Furthermore, In vitro GC cells and co-cultured CD8+ T cells or CAR-Claudin 18.2+ CD8+ T cells, as well as in vivo tumor-bearing studies, have indicated that butyrate enhanced the killing function of CD8+ T cells or CAR-Claudin 18.2+ CD8+ T cells against GC cells through G protein-coupled receptor 109A (GPR109A) and homologous domain protein homologous box (HOPX). Together, these data highlighted that the restoration of gut microbial butyrate enhanced CD8+ T cell cytotoxicity via GPR109A/HOPX, thus inhibiting GC carcinogenesis, which suggests a novel theoretical foundation for GC management against GC.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias Gástricas , Humanos , Ratones , Animales , Butiratos/metabolismo , Microbioma Gastrointestinal/fisiología , Linfocitos T CD8-positivos , Ácidos Grasos Volátiles/metabolismo , Ácido Butírico , Claudinas
17.
Gastroenterol Rep (Oxf) ; 12: goae001, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38390578

RESUMEN

Background: Systemic chemotherapy for gastric cancer with peritoneal metastasis has limited clinical benefit; for those with intraoperative detection of occult peritoneal metastasis, cytoreductive surgery followed by hyperthermic intraperitoneal chemotherapy (HIPEC) is an alternative treatment. However, the feasibility and effects of this modality and criteria for selecting suitable groups remain unclear. This study aimed to explore the safety and efficacy of laparoscopic cytoreductive surgery (L-CRS) followed by HIPEC in gastric cancer with limited peritoneal metastasis, and this study also aimed to determine the optimized cut-off of the peritoneal cancer index. Methods: Between March 2017 and November 2019, patients diagnosed with gastric cancer peritoneal metastases by using laparoscopy and the Sugarbaker peritoneal cancer index of ≤12 were eligible for inclusion. All patients received L-CRS (including gastrectomy with D2 lymph node dissection) and resection of visible peritoneal metastasis, followed by post-operative HIPEC, and systemic chemotherapy. The primary end points were median progression-free survival and median survival time, and the secondary outcomes were morbidity and mortality within 30 days after surgery. Results: Thirty patients were eligible for analysis, of whom 19 (63.3%) were female, and the overall mean age was 53.0 years. The post-operative morbidity was 20% and the severe complication rate was 10%. The median survival time was 27.0 months with a 2-year overall survival rate of 52.3% and median progression-free survival was 14.0 months with a 2-year progression-free survival of 30.4%. Conclusions: L-CRS followed by HIPEC can be safely performed for gastric cancer with limited peritoneal metastasis and potential survival benefits.

18.
J Clin Nurs ; 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38379369

RESUMEN

AIMS: To develop a nomogram to provide a screening tool for recognising patients at risk of post-operative pain undergoing abdominal operations. BACKGROUND: Risk prediction models for acute post-operative pain can allow initiating prevention strategies, which are valuable for post-operative pain management and recovery. Despite the increasing number of studies on risk factors, there were inconsistent findings across different studies. In addition, few studies have comprehensively explored predictors of post-operative acute pain and built prediction models. DESIGN: A prospective observational study. METHODS: A total of 352 patients undergoing abdominal operations from June 2022 to December 2022 participated in this investigation. A nomogram was developed for predicting the probability of acute pain after abdominal surgery according to the results of binary logistic regression. The nomogram's predictive performance was assessed by discrimination and calibration. Internal validation was performed via Bootstrap with 1000 re-samplings. RESULTS: A total of 139 patients experienced acute post-operative pain following abdominal surgery, with an incidence of 39.49%. Age <60, marital status (unmarried, divorced, or widowed), consumption of intraoperative remifentanil >2 mg, indwelling of drainage tubes, poor quality sleep, high pain catastrophizing, low pain self-efficacy, and PCIA not used were predictors of inadequate pain control in patients after abdominal surgery. Using these variables, we developed a nomogram model. All tested indicators showed that the model has reliable discrimination and calibration. CONCLUSIONS: This study established an online dynamic predictive model that can offer an individualised risk assessment of acute pain after abdominal surgery. Our model had good differentiation and calibration and was verified internally as a useful tool for risk assessment. RELEVANCE TO CLINICAL PRACTICE: The constructed nomogram model could be a practical tool for predicting the risk of experiencing acute post-operative pain in patients undergoing abdominal operations, which would be helpful to realise personalised management and prevention strategies for post-operative pain. REPORTING METHOD: The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines were adopted in this study. PATIENT OR PUBLIC CONTRIBUTION: Before the surgery, research group members visited the patients who met the inclusion criteria and explained the purpose and scope of the study to them. After informed consent, they completed the questionnaire. The patients' pain scores (VAS) were regularly assessed and documented by the bedside nurse for the first 3 days following surgery. Other information was obtained from medical records.

19.
Antiviral Res ; 223: 105825, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311297

RESUMEN

Feline coronavirus (FCoV) is an unsegmented, single-stranded RNA virus belonging to the Alphacoronavirus genus. It can cause fatal feline infectious peritonitis (FIP) in cats of any ages. Currently, there are no effective prevention and control measures to against FCoV. In this study, we developed a recombinant adenovirus vaccine, AD5-N, based on the nucleocapsid(N) protein of FCoV. The immunogenicity of AD5-N was evaluated through intramuscular immunization in 6-week-old Balb/c mice and 9-12 months old cats. Compared to the control group, AD5-N specifically induced a significant increase in IgG and SIgA levels in the vaccinated mice. Furthermore, AD5-N not only effectively promoted strong cellular immune responses in cats but also induced high levels of specific SIgA, effectively helping cats resist FCoV infection. Our findings suggest that adenovirus vector vaccines based on the N gene have the potential to become candidate vaccines for the prevention and control of FCoV infection.


Asunto(s)
Infecciones por Adenoviridae , Vacunas contra el Adenovirus , Infecciones por Coronavirus , Coronavirus Felino , Vacunas , Gatos , Animales , Ratones , Adenoviridae/genética , Coronavirus Felino/genética , Inmunoglobulina A Secretora , Ratones Endogámicos BALB C , Inmunidad
20.
Exp Mol Med ; 56(2): 441-452, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38383581

RESUMEN

Helicobacter pylori, particularly cytotoxin-associated gene A (CagA)-positive strains, plays a key role in the progression of gastric cancer (GC). Ferroptosis, associated with lethal lipid peroxidation, has emerged to play an important role in malignant and infectious diseases, but the role of CagA in ferroptosis in cancer cells has not been determined. Here, we report that CagA confers GC cells sensitivity to ferroptosis both in vitro and in vivo. Mechanistically, CagA promotes the synthesis of polyunsaturated ether phospholipids (PUFA-ePLs), which is mediated by increased expression of alkylglycerone phosphate synthase (AGPS) and 1-acylglycerol-3-phosphate O-acyltransferase 3 (AGPAT3), leading to susceptibility to ferroptosis. This susceptibility is mediated by activation of the MEK/ERK/SRF pathway. SRF is a crucial transcription factor that increases AGPS transcription by binding to the AGPS promoter region. Moreover, the results demonstrated that CagA-positive cells are more sensitive to apatinib than are CagA-negative cells, suggesting that detecting the H. pylori CagA status may aid patient stratification for treatment with apatinib.


Asunto(s)
Ferroptosis , Helicobacter pylori , Neoplasias Gástricas , Humanos , Citotoxinas , Éteres Fosfolípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA