Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Acta Crystallogr C Struct Chem ; 80(Pt 8): 425-433, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-39028308

RESUMEN

We present a novel solid form of monascin, an azaphilonoid derivative extracted from Monascus purpureus-fermented rice. The crystal structure, C21H26O5, was characterized by single-crystal X-ray diffraction and belongs to the orthorhombic space group P212121. To gain insight into the electronic properties of the short contacts in the crystalline state of monascin, we utilized the Experimental Library of Multipolar Atom Model 2 (ELMAM2) database to transfer the electron density of monascin in its crystalline state. Hirshfeld surface analysis, fingerprint analysis, electronic properties and energetic characterization reveal that intermolecular C-H...O hydrogen bonds play a crucial role in the noncovalent bonding interactions by connecting molecules into two- and three-dimensional networks. The molecular electrostatic potential (MEP) map of the monascin molecule demonstrates that negatively charged regions located at four O atoms are favoured binding sites for more positively charged amino acid residues during molecular recognition. In addition, powder X-ray diffraction confirms that no transformation occurs during the crystallization of monascin.


Asunto(s)
Enlace de Hidrógeno , Monascus , Oryza , Monascus/química , Monascus/metabolismo , Cristalografía por Rayos X , Oryza/química , Fermentación , Compuestos Heterocíclicos con 3 Anillos/química , Estructura Molecular , Modelos Moleculares , Extractos Vegetales/química , Electricidad Estática
2.
ACS Omega ; 9(10): 11925-11941, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38496984

RESUMEN

Despite the previous preparation of aconine hydrochloride monohydrate (AHM), accurate determination of the crystal's composition was hindered by severely disordered water molecules within the crystal. In this study, we successfully prepared a new dihydrate form of the aconine hydrochloride [C25H42NO9+Cl-·2(H2O), aconine hydrochloride dihydrate (AHD)] and accurately refined all water molecules within the AHD crystal. Our objective is to elucidate both water-chloride and water-water interactions in the AHD crystal. The crystal structure of AHD was determined at 136 K using X-ray diffraction and a multipolar atom model was constructed by transferring charge-density parameters to explore the topological features of key short contacts. By comparing the crystal structures of dihydrate and monohydrate forms, we have observed that both AHD and AHM exhibit identical aconine cations, except for variations in the number of water molecules present. In the AHD crystal, chloride anions and water molecules serve as pivotal connecting hubs to establish three-dimensional hydrogen bonding networks and one-dimensional hydrogen bonding chain; both water-chloride and water-water interactions assemble supramolecular architectures. The crystal packing of AHD exhibits a complete reversal in the stacking order compared to AHM, thereby emphasizing distinct disparities between them. Hirshfeld surface analysis reveals that H···Cl- and H···O contacts play a significant role in constructing the hydrogen bonding network and chain within these supramolecular architectures. Furthermore, topological analysis and electrostatic interaction energy confirm that both water-chloride and water-water interactions stabilize supramolecular architectures through electrostatic attraction facilitated by H···Cl- and H···O contacts. Importantly, these findings are strongly supported by the existing literature evidence. Consequently, navigating these water-chloride and water-water interactions is imperative for ensuring storage and safe processing of this pharmaceutical compound.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA