RESUMEN
Potassium-ion batteries (PIBs) are gaining attention among emerging technologies for their cost-effectiveness and the abundance of resources they utilize. Within this context, bismuth oxyhalides (BiOX) have emerged as exceptional candidates for anode materials in PIBs due to their unique structural and superior electrochemical properties. However, challenges such as structural instability and low electronic conductivity remain to be addressed. In this study, a flower-like BiOBr0.5Cl0.5/rGO composite anode material was synthesized, demonstrating outstanding K+ storage performance. The self-hybridized structure enhances ion adsorption and diffusion, which in turn improves charge and discharge efficiency as well as long-term stability. In situ X-ray diffraction (XRD) tests confirmed the gradual release and alloying potassium storage mechanism of Bi metal, which occurs through the intermediate KxBiOBr0.5Cl0.5 phase within the BiOBr0.5Cl0.5 anode. This composite exhibited a high specific capacity of 246.4 mAh/g at 50 A/g and maintained excellent capacity retention after 2400 cycles at 5 A/g. Additionally, in full battery tests, it showed good rate performance and long cycle life, maintaining a discharge specific capacity of 119.6 mAh/g at a high current density of 10 A/g. Comprehensive characterizations revealed insights into the structural, electrochemical, and kinetic properties, advancing high-performance PIBs.
RESUMEN
Injecting α-synuclein pre-formed fibrils (αSyn PFFs) into various tissues and organs involves converting monomeric αSyn into a fibrillar form, inducing extensive αSyn pathology that effectively models Parkinson's disease (PD). However, the distinct physicochemical properties of αSyn amyloid fibrils can potentially reduce their seeding activity, especially during storage. In this study, it is demonstrated that αSyn PFFs exhibit significant sensitivity to low temperatures, with notable denaturation occurring between -20 and 4 °C, and gradual disassembly persisted even under storage conditions at -80 °C. To mitigate this issue, a commonly used protein stabilizer, glycerol is introduced, which significantly reverses the cold-induced disassembly of PFFs. Remarkably, storing PFFs with 20% glycerol at -80 °C for a month preserved their morphology and seeding activity as freshly prepared PFFs. Glycerol-stabilized αSyn PFFs resulted in compromised neuronal survival, with the extent of these impairments correlating with the formation of αSyn pathology both in vivo and in vitro, indistinguishable from freshly prepared PFFs. Storing sonicated PFFs with 20% glycerol at -80 °C provides an optimal storage method, as sonication is necessary for activating their seeding potential. This approach reduces the frequency of sonication, simplifies handling, and ultimately lowers the overall workload, enhancing the practicality of using PFFs.
RESUMEN
Background: In the context of rapid economic and social development, there has been a continuous intensification of population aging, transformation of disease patterns, and wide application of new medical technologies. As a result, health expenditures in various countries have sharply soared. How to utilize limited medical resources to maximize the improvement of health levels has become a hot and challenging issue related to the well-being of all humanity. The relevant indicators of total health expenditure play a crucial role in monitoring and evaluating the fairness of health financing and health security in the region. Objective: This study explores the changes in the main expenses that constitute China's total health expenditure and uses indicators related to health expenditure to observe the changes and future development trends of China's health expenditure. Based on this, the utilization of China's health expenditure is monitored to identify possible problems, and thereby targeted suggestions for promoting the development of China's health and wellness cause are put forward. Methods: Based on the comparison of previous literature, this paper analyzes the changes and future development trends in China's health expenditure by using the relevant indicators of China's health expenditure through the structural variation analysis method and the gray prediction model. Results: The results show that the scale of government, social, and out-of-pocket health expenditures has continuously expanded, with social health expenditures becoming the main funding source for total health expenditures. The burden of medical expenditures on individuals has been further reduced. In the institutional method of total health expenditures, hospital expenditures account for about 60% of the total and are the main component. The expenditures of health administration and medical insurance management institutions are the main driving force behind the growth of total health expenditures. However, the proportion of health expenditures in China's GDP is relatively low, so more investment is needed in the healthcare sector, and the burden of individual medical expenses also needs to be continuously reduced. Discussion: In the future, China should further increase its investment in the medical and health sector. Specifically, the government should persist in investing in fundamental medical and health services. Simultaneously, efforts should be made to establish a scientific cost control mechanism for pharmaceuticals and broaden financing channels for healthcare, such as accelerating the development of commercial health insurance.
Asunto(s)
Gastos en Salud , China , Gastos en Salud/tendencias , Gastos en Salud/estadística & datos numéricos , Humanos , PredicciónRESUMEN
3'-Sialyllactose (3'-SL), a major acidic oligosaccharide found in human milk, has been investigated to improve cognitive-enhancing effects with 3 weeks old C57BL/6 mice by administering 3'-SL orally at a dose of 350 mg/kg/day for 6 weeks. Behavioral tests indicated that supplementation with 3'-SL promoted cognitive and memory development in young mice. Through interaction network and coenrichment analysis, nine differentially expressed genes (DEGs) related to memory and cognition were identified and localized in the hippocampal tissue of mice. The intervention of 3'-SL significantly increased the metabolism of sialic acid in mouse hippocampal tissue and promoted the expression of learning-related genes (p < 0.05). Notably, it increased the expression of genes associated with neural cell adhesion molecule (NCAM, p < 0.05), glutamate receptors, and fibroblast growth factor receptor (FGFR, p < 0.05). This suggests that 3'-SL may elevate polysialylated NCAM (PSA-NCAM) levels, which could subsequently interact with FGFR and glutamate receptors, thereby enhancing synaptic growth and plasticity. Additionally, 3'-SL altered the composition of the mouse intestinal microbiota. The synergistic action of gut microbiota and intestinal sialidase promoted the production of free sialic acid, providing essential nutritional elements for the development of the brain's nervous system. In conclusion, our findings provide new insights into the promoting effect of 3'-SL on cognitive development in growing mice and elucidate its molecular mechanisms.
RESUMEN
Both elevated atmospheric CO2 concentration ([CO2]) and increased temperature exert notable influences on wheat (Triticum aestivum L.) growth and productivity when examined individually. Nevertheless, limited research comprehensively investigates the combined effects of both factors. Winter wheat was grown in environment-controlled chambers under two concentrations of CO2 (ambient CO2 concentration and ambient CO2 concentration plus 200 µmol mol-1) and two levels of temperature (ambient temperature and ambient temperature plus 2°C). The phenology, photosynthesis, carbohydrate and nitrogen metabolism, yield and quality responses of wheat were investigated. Elevated [CO2] did not counteract warming-induced shortening of wheat phenological period but prolonged grain filling. Even though photosynthetic adaptation occurred during the reproductive growth period, elevated [CO2] still significantly enhanced carbohydrate accumulation under warming, particularly at the grain filling stage, thereby increasing yield by 20.1% compared with the ambient control. However, elevated [CO2] inhibited nitrogen assimilation at the grain filling stage under increased temperature by downregulating the expression levels of TaNR, TaNIR, TaGS1 and TaGOGAT and reducing glutamine synthetase activity, which directly led to a significant decrease of 19.4% in grain protein content relative to the ambient control. These findings suggest that elevated [CO2] will likely increase yield but decrease grain nutritional quality for wheat under future global warming scenarios.
RESUMEN
BACKGROUND: Colorectal cancer (CRC) is the most common malignancy of the digestive tract, and to date, morbidity and mortality rates remain high. While existing therapeutic methods have achieved certain effective outcomes, there are still many problems in treating this disease. Therefore, it is still urgent to constantly find new therapeutic targets in CRC that could lead to new therapeutics. METHODS: Immunohistochemistry, Real-time PCR and Western Blot were employed to measure mRNA and protein levels of the target protein, respectively. The proliferation ability of CRC cells was evaluated using ATP assay, Soft agar assay, and nude mouse subcutaneous tumorigenesis assay. Protein Degradation Assay was conducted to determine protein degradation rate, while Ubiquitination assay was used to assess the ubiquitination modification level of target proteins. Immunoprecipitation assay was used to study protein interactions, and pull-down assay was employed to investigate direct interactions between proteins. RESULTS: TRIM40 was significantly down-regulated in CRC tissues, with its expression levels positively correlating with disease prognosis. Using both in vitro and in vivo approaches, it was demonstrated that TRIM40 could significantly inhibit the proliferation of CRC cells. Molecular mechanism studies showed that TRIM40 directly binds to and ubiquitinates ROCK1 protein, accelerating its degradation and subsequently reducing the stability of c-Myc protein. This cascade of events results in the release of transcriptional inhibition of p21 by c-Myc, leading to increased p21 expression and G0/G1 phase arrest in CRC cells. CONCLUSION: This research suggests that TRIM40 could be a valuable therapeutic target for the treatment of CRC.
Asunto(s)
Proliferación Celular , Neoplasias Colorrectales , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Proteínas Proto-Oncogénicas c-myc , Quinasas Asociadas a rho , Animales , Femenino , Humanos , Masculino , Ratones , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Ratones Desnudos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/genética , Transducción de Señal , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , UbiquitinaciónRESUMEN
It is difficult for carbonaceous materials to combine a large specific surface area with flexibility. Here, a flexible all-carbon nanoarchitecture based on the in situ growth of nanoporous graphene within "skeletal-capillary" carbon nanotube (CNT) networks has been achieved by a chemical vapor deposition (CVD) process. Multi-path long-range conductivity is established, and the porous graphene provides a large specific surface area for charge storage. The flexibility of the films allows them to be directly used as binder-free electrodes for supercapacitors. Since the polymeric binders are saved, the supercapacitors exhibit a higher overall storage density.
RESUMEN
With the rapidly growing applications, efficient purification of single-walled carbon nanotubes (SWCNTs) has become one of the key problems. This paper proposes Freon-CO2-assisted purification of SWCNTs, where CO2 can oxidize the graphitized carbon layer to expose iron (Fe) impurities, while the chlorine from Freon can react with the Fe impurities to form low-boiling-point metal chlorides that can be eliminated in a gas stream. After an acid washing with a very small amount of hydrochloric acid, the last remaining metal impurities are removed and highly pure SWCNTs are produced. Compared with traditional strong-acid-oxidation purification or high-temperature-vacuum purification, this method can maintain the structure and length of the SWCNTs. Raman spectra show that an I G/I D ratio of more than 100 can be obtained. This purification method can maintain the microstructure and excellent properties of SWCNTs and provide a solution for the preparation of high-quality SWCNTs to exert their properties.
RESUMEN
OBJECTIVE: To investigate the diagnostic significance of immune cells and biochemical markers in the cerebrospinal fluid and blood of patients with brucella meningitis. METHODS: A retrospective study was conducted to analyze the clinical data from 30 patients with Brucella meningitis (Group A), 30 patients with Brucella infection without neurological impairment (Group B), and 30 cases of non-brucella infection (Group C) that were collected from the People's Hospital of Xinjiang Uygur Autonomous Region between January 2020 and December 2022. The levels of immune cells and biochemical markers in the cerebrospinal fluid and blood were compared between the three groups. Spearman correlation coefficient, logistic regression analysis, and receiver operating characteristic (ROC) curve analysis were used to assess the association between these factors and Brucella meningitis and to determine their diagnostic value. RESULTS: A negative correlation was found between Brucella meningitis and CD3+, CD4+, CD4+/CD8+ T lymphocytes, glucose (C-Glu), and chloride ions (C-Cl) in the cerebrospinal fluid. Conversely, a positive correlation was observed between Brucella meningitis and blood CD4+, CD4+/CD8+ cells, cerebrospinal fluid protein (C-Pro), and lactate dehydrogenase (C-LDH). High levels of C-Glu and C-Cl were identified as protective factors, while elevated C-LDH was considered as a risk factor for Brucella meningitis. The area under the curve (AUC) for C-Glu, C-Cl, C-LDH, and their combination in predicting Brucella meningitis were 0.828, 0.860, 0.869, and 0.971, respectively. CONCLUSION: The levels of CD3+, CD4+, CD4+/CD8+ cells in the cerebrospinal fluid, as well as the levels of CD4+ and CD4+/CD8+ cells in the blood, are correlated with the occurrence of Brucella meningitis. C-Glu, C-Cl, C-LDH and their combination demonstrate significant potential in aiding the auxiliary diagnosis of Brucellosis meningitis.
RESUMEN
Introduction: Inflammatory bowel disease (IBD) is a multi-organ autoimmune disease that commonly affects the gastrointestinal tract, but can also affect other organs throughout the body. Less is known, however, about kidney involvement in IBD. Although IBD has been associated with chronic kidney disease (CKD) and end-stage renal disease (ESRD), these results have been inconsistent. The present study analyzed the prevalence of concurrent CKD and ESRD in patients with IBD. Methods: PubMed, Cochrane, Web of Science, and Embase were searched for studies published through October 2023 on IBD patients with concurrent CKD or ESRD. Outcomes included the incidence rates and odds ratios (OR) of concurrent CKD and ESRD in IBD patients. The quality of included studies was assessed using the Newcastle-Ottawa Scale, and sequential sensitivity was analyzed. Publication bias was evaluated using Egger's test. Results: Nine studies were included in this meta-analysis. The combined results of eight studies, which included 239,042 IBD patients, showed that the prevalence of CKD in IBD patients was 5% (95% confidence interval [CI]: 1-9%). The combined results of two studies, which included 40,341 IBD patients, showed that the prevalence of ESRD in IBD patients was 0.2% (95% CI: -0.08-0.12%). The combined results of six case-control studies reported that the risk of CKD was significantly higher in patients with than without IBD (OR 1.36, 95% CI: 1.08-1.70, p = 0.008). Conclusion: Although studies have shown an increased risk of CKD in IBD, due to the small number of included studies and high heterogeneity across studies, it is not enough to definitively conclude that CKD is more common in patients with IBD. But patients with IBD should be regularly monitored for CKD. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/.
RESUMEN
Ceramic aerogels prepared by the route of polymer-derived ceramics (PDCs) have been of significant attention in high-temperature insulation. However, the application of ceramic aerogels was seriously confined due to the structural damage and shrinkage cracking of ceramic precursors during pyrolysis. In this investigation, precursor ceramic microsphere aerogels with outstanding antishrinkage properties were prepared by storing strain in curled molecular chains and using polysilazane (PSZ) as the precursor. Meanwhile, precursor ceramic microsphere aerogels with different curled molecular chain structures were prepared by modulating solvent interactions and cross-linked structures. Different curled molecular chain structures were formed, and the impact on the antishrinkage properties of precursor aerogels was analyzed. The shrinkage resistance, thermal insulation, and mechanical properties of the prepared aerogels were tested and compared. Furthermore, the mechanism of the impact of different curled molecular chain structures on thermal insulation and mechanical properties was investigated through multiscale simulations combined with fractal theory. The thermal and stress transfer at the interfaces of different microsphere skeleton structures and the mechanisms were investigated. An idea for solving the problem of pyrolytic shrinkage in the preparation of ceramic aerogels was provided in this investigation. In addition, insights into the influence of the microsphere skeleton structure on the thermal and mechanical properties of ceramic aerogels were provided.
RESUMEN
This study investigates changes in human milk oligosaccharide (HMO) composition over a 12 month breastfeeding period in rural central China. The HMO profiles of 97 mothers were analyzed by graphitized carbon liquid chromatography-electrospray ionization-mass spectrometry. This method was simple to prepare samples and can simultaneously and absolutely quantify at least 20 neutral and acidic HMOs. All mothers were classified into four milk groups based on the presence or absence of specific α-1,2 and α-1,4-fucosylated HMOs. The main oligosaccharides in milk groups I and II were 2'-FL, LDFT, LNFP-I, and LNDFH-I, while LNT, 3-FL, LNFP-II, LNFP-V, LNDFH-II, and DFLNH-b were predominant in milk groups III and IV. Additionally, the lactation period was the primary factor affecting the concentration of individual HMOs. The concentrations of most HMOs decreased with lactation and stabilized after 180 days. However, the concentrations of 3-FL, LDFT, and LNDFH II increased gradually over the lactation period, and the concentration of 3'-SL decreased during early lactation (5-180 days) but increased during later lactation (180-365 days). Furthermore, Spearman correlation analysis revealed that maternal factors and infant factors may also affect the concentration of various HMOs. These findings provide fundamental insights for the development of a comprehensive human milk database.
RESUMEN
Ischemic stroke poses a significant global health challenge with limited treatment options. Tissue plasminogen activator, the only effective medication, has strict restrictions, limiting its benefits only to a small number of patients. Astaxanthin, a natural carotenoid found in algae, shrimp, and crabs, has demonstrated promising neuroprotective properties in models of ischemic stroke. This article reviews the novel finding of neuroprotective impact of astaxanthin in ischemic stroke, highlighting its benefits in various protective mechanisms such as antioxidation, anti-inflammation, enhancement of DNA repair, anti-cell death, protection of blood-brain barrier, and promotion of neuronal survival. This analysis underscores the therapeutic and preventive potential of astaxanthin in ischemic stroke, positioning it as a prospective pharmaceutical agent against ischemic stroke.
RESUMEN
The giant panda (Ailuropoda melanoleuca) stands as a flagship and umbrella species, symbolizing global biodiversity. While traditional assisted reproductive technology faces constraints in safeguarding the genetic diversity of giant pandas, induced pluripotent stem cells (iPSCs) known for their capacity to differentiate into diverse cells types, including germ cells, present a transformative potential for conservation of endangered animals. In this study, primary fibroblast cells were isolated from the giant panda, and giant panda iPSCs (GPiPSCs) were generated using a non-integrating episomal vector reprogramming method. Characterization of these GPiPSCs revealed their state of primed pluripotency and demonstrated their potential for differentiation. Furthermore, we innovatively formulated a species-specific chemically defined FACL medium and unraveled the intricate signaling pathway networks responsible for maintaining the pluripotency and fostering cell proliferation of GPiPSCs. This study provides key insights into rare species iPSCs, offering materials for panda characteristics research and laying the groundwork for in vitro giant panda gamete generation, potentially aiding endangered species conservation.
Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Ursidae , Animales , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Reprogramación Celular , Células Cultivadas , Proliferación Celular , Especies en Peligro de ExtinciónRESUMEN
BACKGROUND: There are few studies about the differences in the composition of moisture, ash, crude protein, crude fat, crude polysaccharide and ergothioneine in Ganoderma lucidum spore powder (GLSP) from different origins. As for GLSP after oil extraction (OE-GLSP), there are still lots of bioactive substance in it. It can be seen that OE-GLSP has certain biological activity. The effect of OE-GLSP on the improvement of intestinal barrier function has been less studied. RESULTS: The results showed that there were significant differences for GLSP from five different origins (Anhui, Jilin, Jiangxi, Shandong and Zhejiang) in moisture (0.065-0.113%), ash (0.603-0.955%), crude fat (42.444-44.773%), crude polysaccharide (2.977-4.127%), crude protein (14.761-17.639%) and ergothioneine (0.552-1.816 mg g-1) (P < 0.05). The monosaccharides of GLSP polysaccharide mainly consist of glucose, galactose, mannose, rhamnose, etc. Moreover, the effects of OE-GLSP supplementation on the regulation of organ index, colonic tissue and intestinal microbiota in C57BL/6J mice were investigated. The supplement of OE-GLSP could restore the organ index and weight loss of antibiotic-treated mice. Moreover, OE-GLSP led to the improvement of intestinal dysbiosis by enriching Bacteroidetes, Firmicutes, Lactobacillus and Roseburia, and increasing the Firmicutes/Bacteroidetes ratio. In addition, OE-GLSP intervention repaired intestinal barrier dysfunction by increasing the expression of tight junction proteins (Occludin, Claudin-1 and E-cadherin). CONCLUSION: Different GLSP from five origins exhibited significant differences in microstructure and contents of crude polysaccharide, crude protein, crude fat, water, ash and ergothioneine. Moreover, it was found that OE-GLSP could improve the intestinal barrier function and induce potentially beneficial changes in intestinal flora. © 2024 Society of Chemical Industry.
RESUMEN
Data visualization aids in making data analysis more intuitive and in-depth, with widespread applications in fields such as biology, finance, and medicine. For massive and continuously growing streaming time series data, these data are typically visualized in the form of line charts, but the data transmission puts significant pressure on the network, leading to visualization lag or even failure to render completely. This paper proposes a universal sampling algorithm FPCS, which retains feature points from continuously received streaming time series data, compensates for the frequent fluctuating feature points, and aims to achieve efficient visualization. This algorithm bridges the gap in sampling for streaming time series data. The algorithm has several advantages: (1) It optimizes the sampling results by compensating for fewer feature points, retaining the visualization features of the original data very well, ensuring high-quality sampled data; (2) The execution time is the shortest compared to similar existing algorithms; (3) It has an almost negligible space overhead; (4) The data sampling process does not depend on the overall data; (5) This algorithm can be applied to infinite streaming data and finite static data.
RESUMEN
This study systematically explored how different hydration levels (45 %, 50 %, and 55 % water addition) affect the evolution of gluten network morphology, distribution, conformational and molecular transition, and moisture migration during the processing of Chinse steamed bread (CSB), and their impact on quality formation. Higher hydration levels resulted in a more uniform distribution and fibrous structure of the gluten network during mixing. However, excessive hydration (55 %) caused gluten fibers to rupture during fermentation. This increased the specific volume but decreased the chewiness and stickiness of CSB. MRI results highlighted that differences in moisture migration and internal structure among samples with different hydration levels were enlarged after steaming. AFM images revealed the increase in both protein molecular chain height and width with increasing hydration level, particularly after steaming. Moreover, high hydration levels promoted the depolymerization of glutenin macropolymers during mixing, fermentation, as well as repolymerization during cooking. These results indicated that both macroscopic qualities and molecular structure of gluten protein became more sensitive to the physical and biochemical processes during CSB processing. These dynamic transitions play a crucial role in determining dough rheological properties and CSB's overall quality. This research offers theoretical insights for precise dough product regulation and understanding underlying mechanisms.
RESUMEN
Precise on-site monitoring of alkylresorcinols, a vital biomarker, is crucial for verifying whole wheat foods and accurately quantifying the whole wheat content in various consumer and industrial products. Herein, for the first time, we introduce a novel ratiometric fluorescence sensor (CDs@ZIF-8/CdTe@MIP) for ultrasensitive and selective detection of alkylresorcinols. 5-Heneicosylresorcinol (C21:0 AR), the primary alkylresorcinol homologue in whole wheat grains, was selected as the target analyte. This analyte was specifically and selectively recognized by the incorporation of a molecularly imprinted polymer (MIP) layer. Within this nanoreactor, blue-emitting carbon dots embedded in zeolitic imidazolate framework-8 (CDs@ZIF-8) and orange-emitting CdTe quantum dots served as the self-calibration signal and response signal, respectively. Exploiting a photoinduced electron transfer effect between CdTe and C21:0 AR, the established fluorescence sensor exhibited remarkable sensing performance, offering wide linear responses in 0.005-1 µg·mL-1 and 1-80 µg·mL-1 concentration ranges, and achieving a low detection limit of 1.14 ng·mL-1. The proposed assay effectively detected C21:0 AR in real samples, including 8 whole wheat foods and 19 whole wheat grains, demonstrating good recoveries and relative standard deviation. Furthermore, an intelligent sensing platform was established by integrating CDs@ZIF-8/CdTe@MIP with a smartphone-assisted device, thus validating the feasibility of visual and on-site monitoring of C21:0 AR. Because of its rapid response, portability, cost-effectiveness, superior sensitivity, and high selectivity, the proposed sensor serves as a reliable method for the analysis of C21:0 AR, thus having substantial potential for on-site monitoring of whole wheat foods.
Asunto(s)
Contaminación de Alimentos , Puntos Cuánticos , Resorcinoles , Teléfono Inteligente , Triticum , Triticum/química , Resorcinoles/química , Resorcinoles/análisis , Puntos Cuánticos/química , Contaminación de Alimentos/análisis , Límite de Detección , Espectrometría de Fluorescencia/métodos , Espectrometría de Fluorescencia/instrumentación , Fluorescencia , Granos Enteros/química , Polímeros Impresos Molecularmente/químicaRESUMEN
OBJECTIVES: To evaluate the effectiveness of employing the water sac dilation (WSD) method during endoscopy-assisted transoral resection of parapharyngeal space benign tumor (PSBT). METHODS: Between February 2017 and January 2022, a total of 32 patients diagnosed with PSBT were included in this prospective study and were randomly allocated into two groups: the WSD group and the control group. Tumors of the WSD group patients were all dissected using the WSD method. RESULTS: The final numbers of studied patients in WSD group and control group were 17 and 15, respectively. The basic information was comparable between these two groups of patients. All these patients successfully underwent tumor resection via transoral approach. The operation time, intraoperative blood loss, drainage volume on the first postoperative day, drainage duration, and the total drainage volume in the WSD group patients were significantly lower than those in the control group patients (all p < 0.05). No surgical complications occurred, and no residual tumor or recurrence could be identified at 6 months after surgery in both groups of patients. CONCLUSION: The application of the WSD method in endoscopy-assisted transoral resection of PSBT effectively attenuated intraoperative injury, improved surgical efficiency, and accelerated postoperative recovery. LEVEL OF EVIDENCE: 3 Laryngoscope, 2024.
RESUMEN
Objectives: Musculoskeletal pain after COVID-19 infection remains a concerning long-term complication of COVID-19. Here, our study aimed to investigate the prevalence of musculoskeletal pain associated with COVID-19 (MSPC) and healthcare-seeking behaviors, as well as the associating factors. Methods: A cross-sectional survey was conducted using convenience sampling and distributed to participants anonymously through the online platform Credamo. Demographic and characteristic data of the participants were collected and analyzed. Logistic regression analysis was employed to investigate potential factors associated with MSPC and healthcare-seeking tendencies. Results: A total of 1,510 participants responded to the survey, with 42.6% (643 individuals) exhibiting MSPC. Higher education level and a greater number of concomitant symptoms were significant risk factors for MSPC, while longer exercise duration and higher PSS-10 scores were protective factors. Additionally, higher income level, frequency and severity of pain, and greater PSS-10 scores increased healthcare-seeking intention. Conclusion: A significant proportion of individuals experience MSPC. Education level and concomitant symptoms were risk factors for MSPC, while exercise duration and PSS-10 score were potential protective factors. Income level, frequency and severity of pain, and PSS-10 score are significantly related to the willingness to seek medical treatment for MSPC.