Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Ethnopharmacol ; 323: 117709, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38181931

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Shangkehuangshui (SK) has been traditionally used to treat traumatic injury, soft tissue and bone injury in Foshan hospital of traditional Chinese medicine for more than 60 years, which composed of many Chinese herbs such as Coptis chinensis Franch., Gardenia jasminoides Ellis, Phellodendron chinense Schneid. and etc. SK exhibits heat-clearing and detoxifying, enhancing blood circulation to eliminate blood stasis properties, and demonstrates noteworthy clinical efficacy. Nevertheless, the underlying mechanism remains uncertain. AIM OF THE STUDY: The early study found that SK had good anti-inflammatory effects in acute soft tissue injury model. This research is to verify the anti-inflammatory properties of SK both in vitro and in vivo via TLR4/TLR2-NF-κB signaling pathway, to clarify the underlying mechanisms responsible for the curative effect of SK. METHODS: The RAW264.7 cells inflammatory model was established with lipopolysaccharide (LPS) in vitro. NO and TNF-α, IL-6, IL-1ß were determined with Griess method and ELISA method respectively. The mRNA and protein expression levels of TLR4/TLR2-NF-κB pathway were evaluated by qPCR and Western blot method. In vivo experiment, chronic soft tissue injury rat models were established by tracking gastrocnemius muscle with electrical stimulation, then local appearance and pathological changes were observed and recorded, the contents of inflammatory factors in serum and tissue were performed. Moreover, we also measured and contrasted the expression of TLR4/TLR2-NF-κB related factors. RESULTS: SK effectively inhibited the LPS-induced generation of inflammatory cytokines, including NO, TNF-α, IL-6 and IL-1ß in RAW264.7 cells, and significantly suppressed the expression of TLR4, TLR2, MyD88, IκB, and NF-κB. In vivo, SK remarkably decreased the damage appearance scores after 4 and 14 days of administration and inhibit the quantity of NO and leukocytes present in the serum. Additionally, the inflammatory infiltration in the pathological section was alleviated, myofibrillar hyperplasia and blood stasis were reduced. SK markedly downregulated NO, TNF-α, IL-6 and IL-1ß in injured tissues of rats, also declined the expression of TLR4, TLR2, MyD88, IκB, NF-κB, IL-6, TNF-α and IL-1ß. CONCLUSION: This study revealed that SK had obvious effects of anti-inflammatory actions in vivo and vitro, effectively reduced acute and chronic soft tissue injury in clinical, this might be attributed to inhibit the TLR4/TLR2-NF-κB pathway, further inhibit the expression of downstream relevant pro-inflammatory cytokines.


Asunto(s)
FN-kappa B , Traumatismos de los Tejidos Blandos , Ratas , Animales , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Lipopolisacáridos/farmacología , Transducción de Señal , Citocinas/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Traumatismos de los Tejidos Blandos/tratamiento farmacológico
2.
AAPS PharmSciTech ; 24(7): 187, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37700066

RESUMEN

By selecting L-arginine as the hydrogen bond acceptor (HBA) and 2-hydroxypropyl-ß-cyclodextrin (2HPßCD) as the hydrogen bond donor (HBD), deep eutectic solvents (DESs) with various water content were prepared at the 4:1 mass ratio of L-arginine to 2HPßCD with 40 to 60% of water, and were studied for its application in transdermal drug delivery system (TDDS). The hydrogen bond networks and internal chemistry structures of the DESs were measured by attenuated total reflection Fourier transform infrared (ATR-FTIR) and 1H-nuclear magnetic resonance spectroscopy (1H-NMR), which demonstrated the successful synthesis of DESs. The viscosity of DES was decreased from 10,324.9 to 3219.6 mPa s, while glass transition temperature (Tg) of the DESs was increased from - 60.8 to - 51.4 °C, as the added water was increased from 45 to 60%. The solubility of ibuprofen, norfloxacin, and nateglinide in DES with 45% of water were increased by 79.3, 44.1, and 3.2 times higher than that in water, respectively. The vitro study of transdermal absorption of lidocaine in DESs showed that the cumulative amounts of lidocaine reached 252.4 µg/cm2, 226.1 µg/cm2, and 286.1 µg/cm2 at 8 h for DESs with 45%, 50%, and 60% of water, respectively. The permeation mechanism of DES with lower content of water (45%) was mainly by changing the fluidization of lipids, while changing the secondary structure of keratin in stratum corneum (SC) at higher water content (50% and 60%). These nonirritant and viscous fluid like DESs with good drug solubility and permeation enhancing effects have broad application prospect in the field of drug solubilization and transdermal drug delivery system.


Asunto(s)
Disolventes Eutécticos Profundos , Portadores de Fármacos , 2-Hidroxipropil-beta-Ciclodextrina , Arginina , Lidocaína
3.
Int J Biol Macromol ; 253(Pt 2): 126767, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37703981

RESUMEN

Based on the assumption that protein could be removed by the combined mechanism of alkaline induced degradation and strong hydrogen bond interactions of deep eutectic solvents (DESs), ß-chitins were successfully prepared from squid pens by using alkaline DESs formed by potassium carbonate and glycerol. The chemical structures of the DESs were investigated by 1H nuclear magnetic resonance (1H NMR), attenuated total reflection Fourier transform infrared (ATR-FTIR) and molecular modeling, and the physicochemical property of the prepared ß-chitins were characterized. The preparation yields was about 32 %, and DESs with K2CO3/glycerol of 1/10 could be reused for three times while maintaining high preparation yields (31 %-32 %) and degree of deacetylation of 66.9 %-76.9 %. The mechanisms of deproteinization and demineralization by the alkaline DESs were proposed to follow the degradation and dissolution steps, and proteins and minerals were removed from squid pens through the synergistic actions of alkaline degradation and hydrogen bonding interactions. This alkaline DESs are promising to be used as a green and efficient approach for commercial production of ß-chitin.


Asunto(s)
Quitina , Glicerol , Animales , Glicerol/química , Quitina/química , Solventes/química , Decapodiformes , Disolventes Eutécticos Profundos
4.
Artículo en Inglés | MEDLINE | ID: mdl-35222679

RESUMEN

BACKGROUND: Skin and soft tissue infections (SSTIs) are a group of common diseases, usually caused by bacteria. Shangke Huangshui (SK) has been widely used to treat various SSTIs diseases for many years, but its mechanism is unclear. Therefore, this study was designed to investigate the anti-infective effect of SK on different skin and soft tissue infection diseases and to explore its underlying mechanism. METHODS: The subcutaneous abscess mouse model, the dermal ulcer rat model, and the infectious soft tissue injury rat model were established by injection of Staphylococcus aureus to evaluate the anti-inflammatory and antibacterial effects of SK. Abscess volume, local appearance score and histological changes, bacterial contents, and hydroxyproline concentration in the skin or soft tissue were analyzed. The levels of NO, TNF-α, IL-1ß, and IL-8 in the serum and tissue were determined by ELISA method. The mRNA expression levels of TLR2, MyD88, TAK1, NF-κB, AP-1, and other genes were measured with qRT-PCR method, and the protein expression of TLR2, MyD88, TAK1, NF-κB, and AP-1 was detected by western blot method. RESULTS: SK had an obvious therapeutic effect on skin and soft tissue infections. It reduced the volume of abscess and promoted the healing of skin ulcer, improved pathological phenomena, such as inflammatory infiltration of skin and soft tissue, reduced the levels of white blood cells and NO in the blood, decreased bacteria contents in the skin and soft tissue. Furthermore, SK decreased the mRNA expression of TLR2, MyD88, TAK1, NF-κB and AP-1, and other related genes and also downregulated the protein expression of TLR2, MyD88, TAK1, NF-κB, and AP-1. CONCLUSION: The experiments provide evidence that SK can treat skin and soft tissue infection diseases based on its comprehensive antibacterial and anti-inflammatory effects. The therapeutic mechanism may be associated with the inhibition of TLR2/MyD88/NF-κB signaling pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA