Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 363
Filtrar
1.
Angew Chem Int Ed Engl ; : e202414867, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39377463

RESUMEN

The recent discovery of frustrated Lewis pairs (FLPs) during the activation of small molecules has inspired extensive research across the full span of chemical science. Owing to the nature of weak interactions, it is experimentally challenging to directly observe and modulate FLP at the molecular scale. Here we design a boron cluster anion building block (B10H82-) and organic amine cations ([NR4]+, R= -CH3, -C2H5) as the FLP to prove the feasibility of controlling their interaction in the electric double layer (EDL) via an electrochemical strategy. In situ single-molecule electrical measurements and Raman monitoring of B10H82--[NR4]+ FLP formed at the positively charged Au(111) electrode surface, in contrast to the free-standing B10H82- near or below the potential of zero charge (PZC). Furthermore, this FLP chemistry leads to a shift in the local density of states of boron clusters towards the EF for enhancing electron transport, providing a new prototype of a reversible single-cluster switch that digitally switches upon controlling FLP chemistry in the electric double layer.

2.
J Colloid Interface Sci ; 679(Pt A): 824-833, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39395221

RESUMEN

Iron, one of the most abundant elements on earth and an essential element for living organisms, plays a crucial role in our daily metabolism. In the field of catalysis, the development of high-performance catalysts based on less toxic iron element is also of significant importance for green chemistry and a sustainable future. To construct Fe-based heterogeneous catalysts with excellent hydrogenation performance, precise modulation of the atomic coordination structure is a key strategy for enhancing catalytic activity. In this study, we present an in-situ coating method for applying a zeolitic imidazolate framework (ZIF) onto the surface of fungal hyphae. The asymmetric coordination structure of Fe1-N3P1 was precisely tailored by utilizing the phosphorus source from the fungus and the nitrogen source in the ZIFs. Detailed characterizations and density functional theory calculations revealed that the incorporation of ZIFs not only increased the specific surface area of catalysts, but also facilitated the dispersion of Fe2P nanoparticles into the Fe1-N3P1 center, making the lowest reaction energy barrier and resulting in the best performance for nitrobenzene hydrogenation when compared to the Fe2P nanoparticles and clusters. This research introduces a novel design concept for constructing asymmetric monoatomic configuration based on the inherent characteristics of natural microorganisms and the exogenous porous coordination polymers.

3.
ACS Nano ; 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39401392

RESUMEN

Catalysis stands as an indispensable cornerstone of modern society, underpinning the production of over 80% of manufactured goods and driving over 90% of industrial chemical processes. As the demand for more efficient and sustainable processes grows, better catalysts are needed. Understanding the working principles of catalysts is key, and over the last 50 years, surface-enhanced Raman Spectroscopy (SERS) has become essential. Discovered in 1974, SERS has evolved into a mature and powerful analytical tool, transforming the way in which we detect molecules across disciplines. In catalysis, SERS has enabled insights into dynamic surface phenomena, facilitating the monitoring of the catalyst structure, adsorbate interactions, and reaction kinetics at very high spatial and temporal resolutions. This review explores the achievements as well as the future potential of SERS in the field of catalysis and energy conversion, thereby highlighting its role in advancing these critical areas of research.

4.
Anal Chem ; 96(39): 15816-15823, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39307967

RESUMEN

Methyl iodide (CH3I) gas as a toxic gas causes great harm to organisms due to its high volatility and high reactivity with biological nucleophiles. Unfortunately, the sensing and detection of CH3I gas are challenging because of the diffusive nature of the gases and its low concentrations in the environment. Herein, we have developed a fast, green, and sensitive CH3I gas visual sensing method based on the capture technology of toxic gases by natural deep eutectic solvents (NADESs) coupled to the halide rapid exchange capability of perovskite nanocrystals (PNCs). In this strategy, NADESs are used as an absorption solution to adsorb gaseous CH3I, while simultaneously exposing I- through the action of the nucleophilic reagent; then, CsPbBr3 PNCs were synthesized in NADESs and used as sensing material to achieve I- exchange. Benefiting from the capture and enrichment of CH3I gas, the sensitivity of the gas sensor was highly improved. The sensor exhibited the lowest detection limit (limits of detection) of 164.15 µmol/m3, below the minimum safe level for human inhalation, which is 200 µmol/m3. This breakthrough offers greater possibilities for the quantitative detection of CH3I gas.

5.
J Am Chem Soc ; 146(39): 26965-26974, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39303080

RESUMEN

The electrochemical nitrate reduction reaction (NO3RR) offers a promising solution for remediating nitrate-polluted wastewater while enabling the sustainable production of ammonia. The control strategy of surface-active hydrogen (*H) is extensively employed to enhance the kinetics of the NO3RR, but atomic understanding lags far behind the experimental observations. Here, we decipher the cation-water-adsorbate interactions in regulating the NO3RR kinetics at the Cu (111) electrode/electrolyte interface using AIMD simulations with a slow-growth approach. We demonstrate that the key oxygen-containing intermediates of the NO3RR (e.g., *NO, *NO2, and *NO3) will stably coordinate with the cations, impeding their integration with the hydrogen bond network and further their hydrogenation by interfacial water molecules due to steric hindrance. The *H can migrate across the interface with a low energy barrier, and its hydrogenation barrier with oxygen-containing species remains unaffected by cations, offering a potent supplement to the hydrogenation process, playing the predominant factor by which the *H facilitates NO3RR reaction kinetic. This study provides valuable insights for understanding the reaction mechanism of NO3RR by fully considering the cation-water-adsorbate interactions, which can aid in the further development of the electrolyte and electrocatalysts for efficient NO3RR.

6.
Plant Physiol ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39321183

RESUMEN

Plants must tactically balance immunity and growth when combating lethal pathogens like fungi. CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1), a conserved cell-surface co-receptor for the fungal elicitor chitin, enables plants to induce chitin-triggered immunity to counteract fungal invasion. Previously, we reported that bacterial infection can prime CERK1 through juxtamembrane (JM) phosphorylation to enhance fungal resistance, which only occurs in Arabidopsis (Arabidopsis thaliana) and its close relatives in Brassicaceae. Here, we aim to transfer the priming mechanism of Arabidopsis CERK1 (AtCERK1) to crop CERK1 via JM substitution. We revealed in protoplasts that the entire AtCERK1 JM variable region (AtJM) is essential for imparting the bacterial elicitor flg22-induced primed state to the Nicotiana benthamiana CERK1 (NbCERK1). The NbCERK1 chimera containing AtJM (NbCERK1AtJM) and similarly constructed rice (Oryza sativa) OsCERK1AtJM could undergo flg22-induced JM phosphorylation and confer enhanced antifungal immunity upon bacterial co-infection. Moreover, the NbCERK1AtJM+3D derivative with AtJM phosphomimetic mutations to mimic a constant primed state and similarly constructed OsCERK1AtJM+3D were sufficient to mediate strengthened chitin responses and fungal resistance in transgenic plants independent of bacterial infection. Importantly, no growth and reproduction defects were observed in these plants. Taken together, this study demonstrates that manipulating the primed state of a cell-surface immune receptor offers an effective approach to improve disease resistance in crops without compromising growth and yield and showcases how fundamental insights in plant biology can be translated into crop breeding applications.

7.
ACS Appl Mater Interfaces ; 16(36): 48139-48146, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39197856

RESUMEN

Traditional diagnostic methods, such as blood tests, are invasive and time-consuming, while sweat biomarkers offer a rapid physiological assessment. Surface-enhanced Raman spectroscopy (SERS) has garnered significant attention in sweat analysis because of its high sensitivity, label-free nature, and nondestructive properties. However, challenges related to substrate reproducibility and interference from the biological matrix persist with SERS. This study developed a novel ratio-based 3D hydrogel SERS chip, providing a noninvasive solution for real-time monitoring of pH and glucose levels in sweat. Encapsulating the probe molecule (4-MBN) in nanoscale gaps to form gold nanoflower-like nanotags with internal standards and integrating them into an agarose hydrogel to create a 3D flexible SERS substrate significantly enhances the reproducibility and stability of sweat analysis. Gap-Au nanopetals modified with probe molecules are uniformly dispersed throughout the porous hydrogel structure, facilitating the effective detection of the pH and glucose in sweat. The 3D hydrogel SERS chip demonstrates a strong linear relationship in pH and glucose detection, with a pH response range of 5.5-8.0 and a glucose detection range of 0.01-5 mM, with R2 values of 0.9973 and 0.9923, respectively. In actual sweat samples, the maximum error in pH detection accuracy is only 1.13%, with a lower glucose detection limit of 0.25 mM. This study suggests that the ratio-based 3D hydrogel SERS chip provides convenient, reliable, and rapid detection capabilities with substantial application potential for analyzing body fluid pH and glucose.


Asunto(s)
Glucosa , Oro , Hidrogeles , Espectrometría Raman , Sudor , Espectrometría Raman/métodos , Concentración de Iones de Hidrógeno , Sudor/química , Humanos , Glucosa/análisis , Glucosa/química , Hidrogeles/química , Oro/química , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química
8.
Angew Chem Int Ed Engl ; : e202408736, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107260

RESUMEN

The electrooxidation of catalyst surfaces is across various electrocatalytic reactions, directly impacting their activity, stability and selectivity. Precisely characterizing the electrooxidation on well-defined surfaces is essential to understanding electrocatalytic reactions comprehensively. Herein, we employed in situ Raman spectroscopy to monitor the electrooxidation process of palladium single crystal. Our findings reveal that the Pd surface's initial electrooxidation process involves forming *OH intermediate and ClO4 - ions facilitate the deprotonation process, leading to the formation of PdOx. Subsequently, under deep electrooxidation potential range, the oxygen atoms within PdOx contribute to creating surface-bound peroxide species, ultimately resulting in oxygen generation. The adsorption strength of *OH and the coverage of ClO4 - can be adjusted by the controllable electronic effect, resulting in different oxidation rates. This study offers valuable insights into elucidating the electrooxidation mechanisms underlying a range of electrocatalytic reactions, thereby contributing to the rational design of catalysts.

10.
Nat Nanotechnol ; 19(9): 1316-1322, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39009756

RESUMEN

The movement of ions along the pressure-driven water flow in narrow channels, known as downstream ionic transport, has been observed since 1859 to induce a streaming potential and has enabled the creation of various hydrovoltaic devices. In contrast, here we demonstrate that proton movement opposing the water flow in two-dimensional nanochannels of MXene/poly(vinyl alcohol) films, termed upstream proton diffusion, can also generate electricity. The infiltrated water into the channel causes the dissociation of protons from functional groups on the channel surface, resulting in a high proton concentration inside the channel that drives the upstream proton diffusion. Combined with the particularly sluggish water diffusion in the channels, a small water droplet of 5 µl can generate a voltage of ~400 mV for over 330 min. Benefiting from the ultrathin and flexible nature of the film, a wearable device is built for collecting energy from human skin sweat.

11.
aBIOTECH ; 5(2): 140-150, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38974862

RESUMEN

The CRISPR/Cas9 technology revolutionizes targeted gene knockout in diverse organisms including plants. However, screening edited alleles, particularly those with multiplex editing, from herbicide- or antibiotic-resistant transgenic plants and segregating out the Cas9 transgene represent two laborious processes. Current solutions to facilitate these processes rely on different selection markers. Here, by taking advantage of the opposite functions of a d-amino acid oxidase (DAO) in detoxifying d-serine and in metabolizing non-toxic d-valine to a cytotoxic product, we develop a DAO-based selection system that simultaneously enables the enrichment of multigene edited alleles and elimination of Cas9-containing progeny in Arabidopsis thaliana. Among five DAOs tested in Escherichia coli, the one encoded by Trigonopsis variabilis (TvDAO) could confer slightly stronger d-serine resistance than other homologs. Transgenic expression of TvDAO in Arabidopsis allowed a clear distinction between transgenic and non-transgenic plants in both d-serine-conditioned positive selection and d-valine-conditioned negative selection. As a proof of concept, we combined CRISPR-induced single-strand annealing repair of a dead TvDAO with d-serine-based positive selection to help identify transgenic plants with multiplex editing, where d-serine-resistant plants exhibited considerably higher co-editing frequencies at three endogenous target genes than those selected by hygromycin. Subsequently, d-valine-based negative selection successfully removed Cas9 and TvDAO transgenes from the survival offspring carrying inherited mutations. Collectively, this work provides a novel strategy to ease CRISPR mutant identification and Cas9 transgene elimination using a single selection marker, which promises more efficient and simplified multiplex CRISPR editing in plants. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-023-00132-6.

12.
J Chem Phys ; 161(2)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-38973762

RESUMEN

Electrocatalytic CO2 reduction reaction (CO2RR) for CH4 production presents a promising strategy to address carbon neutrality, and the incorporation of a second metal has been proven effective in enhancing catalyst performance. Nevertheless, there remains limited comprehension regarding the fundamental factors responsible for the improved performance. Herein, the critical role of Pd in electrocatalytic CO2 reduction to CH4 on Cu-based catalysts has been revealed at a molecular level using in situ surface-enhanced Raman spectroscopy (SERS). A "borrowing" SERS strategy has been developed by depositing Cu-Pd overlayers on plasmonic Au nanoparticles to achieve the in situ monitoring of the dynamic change of the intermediate during CO2RR. Electrochemical tests demonstrate that Pd incorporation significantly enhances selectivity toward CH4 production, and the Faradaic efficiency (FE) of CH4 is more than two times higher than that for the catalysts without Pd. The key intermediates, including *CO2-, *CO, and *OH, have been directly identified under CO2RR conditions, and their evolution with the electrochemical environments has been determined. It is found that Pd incorporation promotes the activation of both CO2 and H2O molecules and accelerates the formation of abundant active *CO and hydrogen species, thus enhancing the CH4 selectivity. This work offers fundamental insights into the understanding of the molecular mechanism of CO2RR and opens up possibilities for designing more efficient electrocatalysts.

13.
Nat Commun ; 15(1): 5624, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965231

RESUMEN

Graphene has been extensively utilized as an electrode material for nonaqueous electrochemical capacitors. However, a comprehensive understanding of the charging mechanism and ion arrangement at the graphene/electrolyte interface remain elusive. Herein, a gap-enhanced Raman spectroscopic strategy is designed to characterize the dynamic interfacial process of graphene with an adjustable number of layers, which is based on synergistic enhancement of localized surface plasmons from shell-isolated nanoparticles and a metal substrate. By employing such a strategy combined with complementary characterization techniques, we study the potential-dependent configuration of adsorbed ions and capacitance curves for graphene based on the number of layers. As the number of layers increases, the properties of graphene transform from a metalloid nature to graphite-like behavior. The charging mechanism shifts from co-ion desorption in single-layer graphene to ion exchange domination in few-layer graphene. The increase in area specific capacitance from 64 to 145 µF cm-2 is attributed to the influence on ion packing, thereby impacting the electrochemical performance. Furthermore, the potential-dependent coordination structure of lithium bis(fluorosulfonyl) imide in tetraglyme ([Li(G4)][FSI]) at graphene/electrolyte interface is revealed. This work adds to the understanding of graphene interfaces with distinct properties, offering insights for optimization of electrochemical capacitors.

14.
Angew Chem Int Ed Engl ; 63(35): e202402496, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-38863241

RESUMEN

Promoting the hydrogen oxidation reaction (HOR) activity and poisoning tolerance of electrocatalysts is crucial for the large-scale application of hydrogen-oxygen fuel cell. However, it is severely hindered by the scaling relations among different intermediates. Herein, lattice-contracted Pt-Rh in ultrasmall ternary L12-(Pt0.9Rh0.1)3V intermetallic nanoparticles (~2.2 nm) were fabricated to promote the HOR performances through an oxides self-confined growth strategy. The prepared (Pt0.9Rh0.1)3V displayed 5.5/3.7 times promotion in HOR mass/specific activity than Pt/C in pure H2 and dramatically limited activity attenuation in 1000 ppm CO/H2 mixture. In situ Raman spectra tracked the superior anti-CO* capability as a result of compressive strained Pt, and the adsorption of oxygen-containing species was promoted due to the dual-functional effect. Further assisted by density functional theory calculations, both the adsorption of H* and CO* on (Pt0.9Rh0.1)3V were reduced compared with that of Pt due to lattice contraction, while the adsorption of OH* was enhanced by introducing oxyphilic Rh sites. This work provides an effective tactic to stimulate the electrocatalytic performances by optimizing the adsorption of different intermediates severally.

15.
Small ; 20(38): e2401972, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38770749

RESUMEN

Due to the chemical stability of graphene, synthesis of carboxylated graphene still remains challenging during the electrochemical exfoliation of graphite. In this work, a spatially confined radical addition reaction which occurs in the sub-nanometer scaled interlayers of the expanded graphene sheets for the electrochemical synthesis of highly stable carboxylated graphene is reported. Here, formate anions act as both intercalation ions and co-reactant acid for the confinement of electro-generated carboxylic radical (●COOH) in the sub-nanometer scaled interlayers, which facilitates the radical addition reaction on graphene sheets. The controllable carboxylation of graphene is realized by tuning the concentration of formate anions in the electrolyte solution. The high crystallinity of the obtained product indicates the occurrence of spatially confined ●COOH addition reaction between the sub-nanometer interlayers of expanded graphite. In addition, the carboxylated graphene have been used for water desalination and hydrogen/oxygen reduction reaction. Therefore, this work provides a new method for the in situ preparation of functionalized graphene through the electrolysis and its applications in water desalination and hydrogen/oxygen reduction reactions.

17.
Foods ; 13(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731658

RESUMEN

Parkinson's disease (PD), the second most common neurodegenerative disorder, is linked to α-synuclein (α-Syn) aggregation. Despite no specific drug being available for its treatment, curcumin, from the spice turmeric, shows promise. However, its application in PD is limited by a lack of understanding of its anti-amyloidogenic mechanisms. In this study, we first reconstructed the liquid-liquid phase separation (LLPS) of α-Syn in vitro under different conditions, which may be an initial step in entraining the pathogenic aggregation. Subsequently, we evaluated the effects of curcumin on the formation of droplets, oligomers, and aggregated fibers during the LLPS of α-synuclein, as well as its impact on the toxicity of aggregated α-synuclein to cultured cells. Importantly, we found that curcumin can inhibit amyloid formation by inhibiting the occurrence of LLPS and the subsequent formation of oligomers of α-Syn in the early stages of aggregation. Finally, the molecular dynamic simulations of interactions between α-Syn decamer fibrils and curcumin showed that van der Waal's interactions make the largest contribution to the anti-aggregation effect of curcumin. These results may help to clarify the mechanism by which curcumin inhibits the formation of α-Syn aggregates during the development of PD.

18.
ACS Appl Mater Interfaces ; 16(19): 24863-24870, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38706443

RESUMEN

Water evaporation-induced electricity generators (WEGs) have drawn widespread attention in the field of hydrovoltaic technology, which can convert atmospheric thermal energy into sustainable electric power. However, it is restricted in the wide application of WEGs due to the low power output, complex fabrication process, and high cost. Herein, we present a simple and effective approach to fabricate TiO2-carbon black film-based WEGs (TC-WEGs). A single TC-WEG device can sustainably output an open-circuit voltage of 1.9 V and a maximum power density of 40.9 µW/cm2. Moreover, it has been shown that TC-WEGs exhibit stable electrical energy output when operating in seawater, which can yield a short-circuit current of 1.2 µA. The superior electricity generation performance can be attributed to the intrinsic characteristics of the TC-WEGs, including hydrophilicity, porous structure, and electrical conductivity. This work provides an important reference for the constant harvesting of clean energy.

19.
Nat Mater ; 23(10): 1355-1362, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38589543

RESUMEN

Unconventional 1T'-phase transition metal dichalcogenides (TMDs) have aroused tremendous research interest due to their unique phase-dependent physicochemical properties and applications. However, due to the metastable nature of 1T'-TMDs, the controlled synthesis of 1T'-TMD monolayers (MLs) with high phase purity and stability still remains a challenge. Here we report that 4H-Au nanowires (NWs), when used as templates, can induce the quasi-epitaxial growth of high-phase-purity and stable 1T'-TMD MLs, including WS2, WSe2, MoS2 and MoSe2, via a facile and rapid wet-chemical method. The as-synthesized 4H-Au@1T'-TMD core-shell NWs can be used for ultrasensitive surface-enhanced Raman scattering (SERS) detection. For instance, the 4H-Au@1T'-WS2 NWs have achieved attomole-level SERS detections of Rhodamine 6G and a variety of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike proteins. This work provides insights into the preparation of high-phase-purity and stable 1T'-TMD MLs on metal substrates or templates, showing great potential in various promising applications.

20.
Anal Chem ; 96(17): 6784-6793, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38632870

RESUMEN

Hepatitis B virus (HBV) is a major cause of liver cirrhosis and hepatocellular carcinoma, with HBV surface antigen (HBsAg) being a crucial marker in the clinical detection of HBV. Due to the significant harm and ease of transmission associated with HBV, HBsAg testing has become an essential part of preoperative assessments, particularly for emergency surgeries where healthcare professionals face exposure risks. Therefore, a timely and accurate detection method for HBsAg is urgently needed. In this study, a surface-enhanced Raman scattering (SERS) sensor with a sandwich structure was developed for HBsAg detection. Leveraging the ultrasensitive and rapid detection capabilities of SERS, this sensor enables quick detection results, significantly reducing waiting times. By systematically optimizing critical factors in the detection process, such as the composition and concentration of the incubation solution as well as the modification conditions and amount of probe particles, the sensitivity of the SERS immune assay system was improved. Ultimately, the sensor achieved a sensitivity of 0.00576 IU/mL within 12 min, surpassing the clinical requirement of 0.05 IU/mL by an order of magnitude. In clinical serum assay validation, the issue of false positives was effectively addressed by adding a blocker. The final sensor demonstrated 100% specificity and sensitivity at the threshold of 0.05 IU/mL. Therefore, this study not only designed an ultrasensitive SERS sensor for detecting HBsAg in actual clinical serum samples but also provided theoretical support for similar systems, filling the knowledge gap in existing literature.


Asunto(s)
Antígenos de Superficie de la Hepatitis B , Espectrometría Raman , Antígenos de Superficie de la Hepatitis B/sangre , Espectrometría Raman/métodos , Humanos , Virus de la Hepatitis B/aislamiento & purificación , Nanopartículas del Metal/química , Hepatitis B/sangre , Hepatitis B/diagnóstico , Propiedades de Superficie , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA