RESUMEN
Extracellular vesicles (EVs) and their cargoes are increasingly being recognized as noninvasive diagnostic markers, necessitating the isolation of EVs from complex biological samples. Herein, a distearoyl phospholipid ethanolamine-functionalized single-crystal ordered macroporous three-dimensional zeolitic imidazolate framework (SOM-ZIF-8-DSPE) was developed, which combines the surface charge interaction of ZIF-8 with the synergistic effect of DSPE insertion into the phospholipid membrane of EVs to improve the isolating selectivity of EV capture. The materials have porous structures larger than 300 nm in diameter, providing enough space and active sites to trap EVs. Benefiting from this feature, the entire isolation process takes only 10 min and is well compatible with the subsequent analysis of RNA in EVs. Consequently, 10 upregulated miRNA of plasma EVs in the primary colorectal cancer (pCRC) patients is found over the healthy donors, and 6 upregulated miRNA of plasma EVs in the metastatic colorectal cancer (mCRC) patients over pCRC patients. These findings suggest that the isolation of EV-based SOM-ZIF-8-DSPE is a promising strategy to identify biomarkers for disease diagnosis, such as miRNAs in plasma EVs for the early detection of CRC.
RESUMEN
Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), has a significantly higher risk of recurrence. However, the exact mechanism by which HBV prompts HCC recurrence remains largely unknown. In this study liver microarray test revealed significant upregulation of microtubule associated protein 1S (MAP1S) in metastatic HCC compared to control. MAP1S knockdown suppressed growth of HCCLM3 cells in vitro and in vivo. Mechanistically, HBV-encoded X protein (HBx) upregulates MAP1S, which enhances microtubule (MT) acetylation by promoting the degradation of histone deacetylase 6 (HDAC6), and facilitates the nuclear translocation of Smad complex, and thereby enhancing downstream TGF-ß signaling. Smad complex, in turn, increases MAP1S, establishing a feedback loop of MAP1S/Smad/TGF-ß1. Finally, survival analysis of 150 HBV-associated HCC patients demonstrated both increased MAP1S and decreased HDAC6 were significantly associated with shorter relapse-free survival. Collectively, this study reveals a unique mechanism whereby HBx-induced upregulation of MAP1S drives HBV-related HCC proliferation and migration through the MAP1S/Smad/TGF-ß1 feedback loop. TEASER: MAP1S is a key link between HBV infection and a higher risk of metastatic recurrence of HCC.
RESUMEN
INTRODUCTION: Insight into comparing key active ingredients of Radix Bupleuri (RB) based on different processing technologies is a key step to reveal the material basis of drug efficacy and a challenging task for developing traditional Chinese medicine (TCM). OBJECTIVE: This work aims to establish a comprehensive comparative analysis method of TCM and its processed products, which can be used to analyze the changing trend of active components of RB before and after processing. METHODS: First, RB was processed with rice vinegar, rice wine, and honey. Then, ultra-high-performance liquid chromatography (UHPLC) and gas chromatography (GC) coupled with mass spectrometry (MS) technology as well as multiple statistical analyses were used to comprehensively evaluate the compositional variation of polar and volatile compounds in RB under different processing processes. Meanwhile, in UHPLC-MS, a sequential window acquisition of all theoretical fragment ion spectral and information-dependent acquisition mutual authentication (SIMA) was developed. RESULTS: A total of 30 polar components and 33 volatile components were identified as chemical markers (mainly type II saikosaponins, terpenes, and fatty acid esters). These may be the material basis for giving unique pharmacological activities to RB and its processed products. CONCLUSIONS: These findings provided a solid foundation for the differentiated clinical application of RB, and the SIMA method held great potential for achieving accurate analysis of TCM processing ingredients.
RESUMEN
BACKGROUND: Santalum album L. is an evergreen tree which is mainly distributes throughout tropical and temperate regions. And it has a great medicinal and economic value. RESULTS: In this study, the complete mitochondrial genome of S. album were assembled and annotated, which could be descried by a complex branched structure consisting of three contigs. The lengths of these three contigs are 165,122 bp, 93,430 bp and 92,491 bp. We annotated 34 genes coding for proteins (PCGs), 26 tRNA genes, and 4 rRNA genes. The analysis of repeated elements shows that there are 89 SSRs and 242 pairs of dispersed repeats in S. album mitochondrial genome. Also we found 20 MTPTs among the chloroplast and mitochondria. The 20 MTPTs sequences span a combined length of 22,353 bp, making up 15.52 % of the plastome, 6.37 % of the mitochondrial genome. Additionally, by using the Deepred-mt tool, we found 628 RNA editing sites in 34 PCGs. Moreover, significant genomic rearrangement is observed between S. album and its associated mitochondrial genomes. Finally, based on mitochondrial genome PCGs, we deduced the phylogenetic ties between S. album and other angiosperms. CONCLUSIONS: We reported the mitochondrial genome from Santalales for the first time, which provides a crucial genetic resource for our study of the evolution of mitochondrial genome.
Asunto(s)
Genoma Mitocondrial , Filogenia , Santalum , Santalum/genética , Edición de ARN , ARN de Transferencia/genética , ARN de Transferencia/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/químicaRESUMEN
BACKGROUND: Pneumonia, a leading cause of morbidity and mortality worldwide, often necessitates Intensive Care Unit (ICU) admission. Accurate prediction of pneumonia mortality is crucial for tailored prevention and treatment plans. However, existing mortality prediction models face limited adoption in clinical practice due to their lack of interpretability. OBJECTIVE: This study aimed to develop an interpretable model for predicting pneumonia mortality in ICUs. Leveraging the Shapley Additive Explanation (SHAP) method, we sought to elucidate the Extreme Gradient Boosting (XGBoost) model and identify prognostic factors for pneumonia. METHODS: Conducted as a retrospective cohort study, we utilized electronic health records from the eICU-CRD (2014-2015) for all adult pneumonia patients. The first 24 h of each ICU admission records were considered, with 70% of the dataset allocated for model training and 30% for validation. The XGBoost model was employed, and performance was assessed using the area under the receiver operating characteristic curve (AUC). The SHAP method provided insights into the XGBoost model. RESULTS: Among 10,962 pneumonia patients, in-hospital mortality was 16.33%. The XGBoost model demonstrated superior predictive performance (AUC: 0.778 ± 0.016)) compared to traditional scoring systems and other machine learning method, which achieved an improvement of 10% points. SHAP analysis identified Aspartate Aminotransferase (AST) as the most crucial predictor. CONCLUSIONS: Interpretable predictive models enhance mortality risk assessment for pneumonia patients in the ICU, fostering transparency. AST emerged as the foremost predictor, followed by patient age, albumin, BMI et al. These insights, rooted in strong correlations with mortality, facilitate improved clinical decision-making and resource allocation.
Asunto(s)
Mortalidad Hospitalaria , Unidades de Cuidados Intensivos , Neumonía , Humanos , Unidades de Cuidados Intensivos/estadística & datos numéricos , Neumonía/mortalidad , Estudios Retrospectivos , Masculino , Femenino , Anciano , Persona de Mediana Edad , Pronóstico , Curva ROC , Medición de Riesgo/métodos , Aprendizaje Automático , Anciano de 80 o más Años , Factores de Riesgo , AdultoRESUMEN
The plant cell wall is rich in polysaccharides with high heterogeneity. Investigating the composition and structure of cell wall polysaccharides is crucial for understanding the functionalities of plant cell walls. Carbohydrate electrophoresis is a sensitive and rapid method to analyze polysaccharides qualitatively and quantitatively. The process includes digesting the polysaccharides with appropriate cleavage enzymes, labeling the reducing ends of the released oligosaccharides with a highly charged fluorophore, and separating the labeled oligosaccharides in a polyacrylamide gel via high-voltage electrophoresis. The generated fluorescence can be calculated as compared to that of oligosaccharide standards. Therefore, this is a convenient method for polysaccharide characterization that can be performed in most laboratories. Here, we introduce the detailed operational steps and precautions, which are helpful for researchers to quickly obtain the structural information of polysaccharides.
Asunto(s)
Pared Celular , Polisacáridos , Pared Celular/química , Polisacáridos/análisis , Polisacáridos/química , Oligosacáridos/análisis , Oligosacáridos/química , Electroforesis en Gel de Poliacrilamida/métodos , Electroforesis/métodosRESUMEN
Background: To quantify the changes in dynamic visual acuity (DVA) and explain the hidden reasons after acute exposure to hypobaric hypoxia status. Methods: The study group comprised 18 healthy male and 15 healthy female participants aged 20-24 years old. DVA was measured with the self-developed software of Meidixin (Tianjin) Co., Ltd. Measurements were taken at eight altitudes. Data analysis was performed using the Kolmogorov-Smirnov test, paired sample T-test, and two-way repeated measures analysis of variance (ANOVA) for repeated measurements. Results: At constant altitude, DVA showed an overall decreasing trend with increasing angular velocity and a fluctuating decrease at the vast majority of altitudes. At constant angular velocities, DVA gradually increased with altitude, with the most pronounced increase in DVA at altitude 5, and thereafter a gradual decrease in DVA as altitude increased. Finally, as altitude decreased, DVA increased again and reached a higher level at the end of the experiment, which was superior to the DVA in the initial state. Conclusion: Under a hypobaric hypoxic environment at high altitude, DVA was affected by the angular velocity and the degree of hypoxia, manifesting as an increase or decrease in DVA, which affects the pilot's observation of the display and control interfaces during the driving process, acquisition of information, and decision-making ability, which in turn may potentially jeopardize the safety of the flight.
RESUMEN
Half of Chinese adults face the double burden of overweight/obesity and micronutrient deficiencies, and nearly 40% of them are severely overweight/obese or have micronutrient deficiencies. This study used the data from China Nutrition and Health Survey (CNHS) from 2015 to 2017 to estimate the prevalence of inadequate dietary micronutrient intake (including vitamin A, vitamin B1, vitamin B2, vitamin C, cCalcium, iron and sodium) in Chinese adults and further determine the differences in micronutrient intake by gender, age and BMI. A total of 61,768 subjects were included in this study, of which 33,262 (54%) were female. The intake of energy and all macronutrients decreased with age, and the intake was higher in men than in women. Inadequate energy intake occurs in adults of all ages. In terms of nutrient intake, women had a higher rate of insufficient carbohydrate intake than men in all age groups. Inadequate protein intake was more common in women aged 18-49 years (60.9%) than in men. Compared with women, men had a higher rate of vitamin B2 intake. Insufficient vitamin B3 intake was more common in women aged 18-49 years (35.6%), men aged 65-79 years (39.7%) and men aged 80 years and above (47.9%). In all age groups, insufficient vitamin C intake is higher in women than in men-up to 85.8 percent in women aged 80 years old and above. Compared with men in the same age group, insufficient intake of calcium and iron is more obvious in women. Women have significantly higher rates of inadequate intake of calcium, iron and sodium than men. In the analysis of correlations between BMI or demographic data and micronutrient intakes, the likelihood of micronutrient intakes being insufficient was higher in the central and western regions in all age groups compared to the eastern regions. The risk of insufficient micronutrient intake was higher in obese men and women aged 18-49 years and 50-64 years. Underweight and overweight women in the 65-79 age group were more likely to have inadequate micronutrient intake. Obese women over 80 years of age were less likely to have inadequate micronutrient intake. No significant difference was found between urban and rural areas for each age group.
Asunto(s)
Ingestión de Energía , Micronutrientes , Encuestas Nutricionales , Humanos , Femenino , Masculino , Adulto , Persona de Mediana Edad , China/epidemiología , Anciano , Adolescente , Adulto Joven , Anciano de 80 o más Años , Micronutrientes/deficiencia , Micronutrientes/administración & dosificación , Factores Sexuales , Estado Nutricional , Índice de Masa Corporal , Desnutrición/epidemiología , Dieta/estadística & datos numéricos , Prevalencia , Nutrientes , Factores de Edad , Pueblos del Este de AsiaRESUMEN
The relationship between vascular proteins (VPs) and intracranial aneurysms (IAs) has not been fully elucidated. We used Mendelian randomization (MR) analysis to explore the effect of VPs on IAs. Dataset of aneurysmal subarachnoid hemorrhage (aSAH) [5140 cases and 71,934 controls] and unruptured intracranial aneurysm (uIA) [2070 cases and 71,934 controls] were obtained from individuals of European ancestry. Univariate MR was used to explore the associations between 90 VPs and IAs. Then, we performed multivariate MR (MVMR) to further investigate the identified VP-to-IA estimates. Two-sample MR showed that TNFSF14 was inversely associated with aSAH (odds ratio [OR] = 0.831, 95% CI: 0.713-0.969, p = 0.018). IL-16 (OR = 1.218, 95% CI: 1.032-1.438, p = 0.020) and AgRP (OR = 1.394, 95% CI: 1.048-1.855, p = 0.023) were positively associated with aSAH. HBEGF (OR = 0.642, 95% CI: 0.461-0.894, p = 0.009), MCP-1 (OR = 1.537, 95% CI: 1.007-2.344, p = 0.046), and CX3CL1 (OR = 0.762, 95% CI: 0.581-0.999, 0.049 < p < 0.050) were associated with uIA risk. The MVMR showed that the TNFSF14-to-aSAH estimate remained statistically significant after adjustment for past tobacco smoking, alcohol consumption, systolic blood pressure and body mass index. Our study indicated that low serum TNFSF14 levels might be a potential risk factor for IA rupture. Five VPs (HBEGF, MCP-1, IL-6, CX3CL1, and AgRP) are associated with the risk of IAs (both uIA and aSAH).
RESUMEN
Two Gram-stain-negative, rod-shaped, non-motile, aerobic and carotenoid-producing strains, belonging to the family Erythrobacteraceae, designated as H149T and Z2T, were isolated from tidal flat sediment samples collected in Hainan and Zhejiang, PR China, respectively. Growth of strain H149T occurred at 15-42 °C, 0-10.0â% (w/v) NaCl, and pH 6.0-8.5, with the optima at 35-37 °C, 3.0-3.5â% (w/v) NaCl and pH 7.0. Strain Z2T grew at 15-37 °C, 0-6.0â% (w/v) NaCl, and pH 6.0-9.5, with the optima at 25-30 °C, 0.5-1.0â% (w/v) NaCl and pH 6.0-6.5. Ubiquinone-10 was the sole ubiquinone in two strains. The predominant cellular fatty acids of strain H149T were C16â:â0, summed feature 3 and summed feature 8, while those of strain Z2T were C17â:â1 ω6c, summed feature 3 and summed feature 8. Strains H149T and Z2T shared diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and sphingoglycolipid as major polar lipids. The 16S rRNA gene sequence identity analysis indicated that strain H149T had the highest sequence identity of 98.4â% with Aurantiacibacter odishensis KCTC 23981T, and strain Z2T had that of 98.2â% with Qipengyuania pacifica NZ-96T. Phylogenetic trees based on 16S rRNA gene and core-genome sequences revealed that strains H149T and Z2T formed two independent clades in the genera Aurantiacibacter and Qipengyuania, respectively. Strain H149T had average nucleotide identity values of 74.0-81.3â% and in silico DNA-DNA hybridization values of 18.5-23.1â% with Aurantiacibacter type strains, while strain Z2T had values of 73.3-78.7â% and 14.5-33.3â% with Qipengyuania type strains. The genomic DNA G+C contents of strains H149T and Z2T were 64.3 and 61.8â%, respectively. Based on the genetic, genomic, phylogenetic, physiological and chemotaxonomic results, strains H149T (=KCTC 8397T=MCCC 1K08920T) and Z2T (=KCTC 8396T=MCCC 1K08946T) are concluded to represent two novel Erythrobacteraceae species for which the names Aurantiacibacter hainanensis sp. nov. and Qipengyuania zhejiangensis sp. nov. are proposed, respectively.
Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Sedimentos Geológicos , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Ubiquinona , ARN Ribosómico 16S/genética , Sedimentos Geológicos/microbiología , China , ADN Bacteriano/genética , Agua de Mar/microbiología , FosfolípidosRESUMEN
Tunneling nanotubes (TNTs) represent an innovative way for cells to communicate with one another, as they act as long conduits between cells. However, their roles in human dermal microvascular pericytes (HDMPCs) interaction remain elusive in vitro. In this work, we identified and characterized the TNT-like structures that connected two or more pericytes in two-dimensional cultures and formed a functional network in the human dermis. Immunofluorescence assay indicated that the F-actin was an essential element to form inter-pericyte TNT-like structures, as it decreased in actin polymer inhibitor-cytochalasin B treated groups, and microtubules were present in almost half of the TNT-like structures. Most importantly, we only found the presence of mitochondrial in TNT-like structures containing α-tubulin, and the application of microtubule assembly inhibitor-Nocodazole significantly reduced the percentage of TNT-like structures that contain α-tubulin, resulting in a sudden decrease in the positive rate of cytochrome c oxidase subunit 4 isoform 1 (COX IV, a marker of mitochondria) in TNT-like structures. In summary, we described a novel intercellular communication-TNT-like structures-between HDMPCs in vitro, and this work allows us to properly understand the cellular mechanisms of spreading materials between HDMPCs, shedding light on the role of HDMPCs.
Asunto(s)
Pericitos , Humanos , Pericitos/citología , Pericitos/metabolismo , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Dermis/citología , Dermis/metabolismo , Comunicación Celular , Mitocondrias/metabolismo , Actinas/metabolismo , Nanotubos/química , Microvasos/citología , Microvasos/metabolismo , Células Cultivadas , Estructuras de la Membrana CelularRESUMEN
Extracellular vesicles (EVs) are nanoparticles secreted by cells with a closed phospholipid bilayer structure, which can participate in various physiological and pathological processes and have significant clinical value in disease diagnosis, targeted therapy and prognosis assessment. EV isolation methods currently include differential ultracentrifugation, ultrafiltration, size exclusion chromatography, immunoaffinity, polymer co-precipitation and microfluidics. In addition, material-based biochemical or biophysical approaches relying on intrinsic properties of the material or its surface-modified functionalized monomers, demonstrated unique advantages in the efficient isolation of EVs. In order to provide new ideas for the subsequent development of material-based EV isolation methods, this review will focus on the principle, research status and application prospects of material-based EV isolation methods based on different material carriers and functional monomers.
Asunto(s)
Vesículas Extracelulares , Ultracentrifugación , Vesículas Extracelulares/química , Humanos , Ultracentrifugación/métodos , Cromatografía en Gel/métodos , Animales , Ultrafiltración/métodosRESUMEN
The classification analysis of incomplete and imbalanced data is still a challenging task since these issues could negatively impact the training of classifiers, which were also found in our study on the physical fitness assessments of patients. And in fields such as healthcare, there are higher requirements for the accuracy of the generated imputation values. To train a high-performance classifier and pursue high accuracy, we attempted to resolve any potential negative impact by using a novel algorithmic approach based on the combination of multivariate imputation by chained equations and the ensemble learning method (MICEEN), which can solve the two problems simultaneously. We used multivariate imputation by chained equations to generate more accurate imputation values for the training set passed to ensemble learning to build a predictor. On the other hand, missing values were introduced into minority classes and used them to generate new samples belonging to the minority classes in order to balance the distribution of classes. On real-world datasets, we perform extensive experiments to assess our method and compare it to other state-of-the-art approaches. The advantages of the proposed method are demonstrated by experimental results for the benchmark datasets and self-collected datasets of physical fitness assessment of tumor patients with varying missing rates.
Asunto(s)
Algoritmos , Aprendizaje Automático , Humanos , Bases de Datos Factuales , Aptitud Física/fisiología , Análisis MultivarianteRESUMEN
Iron (Fe) and copper (Cu), essential transition metals, play pivotal roles in various cellular processes critical to cancer biology, including cell proliferation, mitochondrial respiration, distant metastases, and oxidative stress. The emergence of ferroptosis and cuproptosis as distinct forms of non-apoptotic cell death has heightened their significance, particularly in connection with these metal ions. While initially studied separately, recent evidence underscores the interdependence of ferroptosis and cuproptosis. Studies reveal a link between mitochondrial copper accumulation and ferroptosis induction. This interconnected relationship presents a promising strategy, especially for addressing refractory cancers marked by drug tolerance. Harnessing the toxicity of iron and copper in clinical settings becomes crucial. Simultaneous targeting of ferroptosis and cuproptosis, exemplified by the combination of sorafenib and elesclomol-Cu, represents an intriguing approach. Strategies targeting mitochondria further enhance the precision of these approaches, providing hope for improving treatment outcomes of drug-resistant cancers. Moreover, the combination of iron chelators and copper-lowering agents with established therapeutic modalities exhibits a synergy that holds promise for the augmentation of anti-tumor efficacy in various malignancies. This review elaborates on the complex interplay between ferroptosis and cuproptosis, including their underlying mechanisms, and explores their potential as druggable targets in both cancer research and clinical settings.
RESUMEN
BACKGROUND: Pericytes (PCs), the critical components of vessels, are implicated in wound repair. This study aimed to explore the roles of PCs in wound healing and angiogenesis. METHODS: Skin PCs and human dermal microvascular endothelial cells (HDMECs) were isolated from patients' upper eyelid skin. Immunofluorescence staining was used to characterize the morphology of PCs. Tube formation and transwell chemotaxis assays were performed to explore PC's tube-forming capability and chemotaxis. Finally, we investigated the effects of PCs and endothelial cells on wound repair using skin wound of a rat model. RESULTS: Skin PCs exhibited a double-protrusion structure and characteristic antigen expression of neural/glial antigen 2 (NG2)+/platelet-derived growth factor receptor-ß (PDGFR-ß)+/alpha-smooth muscle actin (α-SMA)+/CD31-. Skin PCs could directly form lumen-like structures in a two dimensional (2D) culture environment, and mild hypoxia and starvation promoted the lumen-like structure formation. Furthermore, skin PCs quickly formed more stable lumen-like structures than HDMECs in matrigel, and they recruited HDMECs in a three dimensional (3D) culture environment. Transwell chemotaxis assay showed that PCs and HDMECs were chemotactic to each other. PCs could develop lumen-like structures in the skin wounds of rat models. The number of PCs mounted in wounded skin was compared to normal skin. The ratio of PCs to endothelial cells gradually increased after skin injury and reached its maximum on the 3rd day. CONCLUSIONS: Skin PCs have an excellent tube-forming capability and chemotaxis to endothelial cells. PCs might promote wound repair by recruiting endothelial cells.
Asunto(s)
Células Endoteliales , Pericitos , Humanos , Ratas , Animales , Pericitos/metabolismo , Quimiotaxis , Piel , Cicatrización de Heridas/fisiologíaRESUMEN
BACKGROUND: Moyamoya disease (MMD) is a rare and complex cerebrovascular disorder characterized by the progressive narrowing of the internal carotid arteries and the formation of compensatory collateral vessels. The etiology of MMD remains enigmatic, making diagnosis and management challenging. The MOYAOMICS project was initiated to investigate the molecular underpinnings of MMD and explore potential diagnostic and therapeutic strategies. METHODS: The MOYAOMICS project employs a multidisciplinary approach, integrating various omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, to comprehensively examine the molecular signatures associated with MMD pathogenesis. Additionally, we will investigate the potential influence of gut microbiota and brain-gut peptides on MMD development, assessing their suitability as targets for therapeutic strategies and dietary interventions. Radiomics, a specialized field in medical imaging, is utilized to analyze neuroimaging data for early detection and characterization of MMD-related brain changes. Deep learning algorithms are employed to differentiate MMD from other conditions, automating the diagnostic process. We also employ single-cellomics and mass cytometry to precisely study cellular heterogeneity in peripheral blood samples from MMD patients. CONCLUSIONS: The MOYAOMICS project represents a significant step toward comprehending MMD's molecular underpinnings. This multidisciplinary approach has the potential to revolutionize early diagnosis, patient stratification, and the development of targeted therapies for MMD. The identification of blood-based biomarkers and the integration of multiple omics data are critical for improving the clinical management of MMD and enhancing patient outcomes for this complex disease.
RESUMEN
Sepsis remains a critical concern in intensive care units due to its high mortality rate. Early identification and intervention are paramount to improving patient outcomes. In this study, we have proposed predictive models for early sepsis prediction based on time-series data, utilizing both CNN-Transformer and LSTM-Transformer architectures. By collecting time-series data from patients at 4, 8, and 12 h prior to sepsis diagnosis and subjecting it to various network models for analysis and comparison. In contrast to traditional recurrent neural networks, our model exhibited a substantial improvement of approximately 20%. On average, our model demonstrated an accuracy of 0.964 (± 0.018), a precision of 0.956 (± 0.012), a recall of 0.967 (± 0.012), and an F1 score of 0.959 (± 0.014). Furthermore, by adjusting the time window, it was observed that the Transformer-based model demonstrated exceptional predictive capabilities, particularly within the earlier time window (i.e., 12 h before onset), thus holding significant promise for early clinical diagnosis and intervention. Besides, we employed the SHAP algorithm to visualize the weight distribution of different features, enhancing the interpretability of our model and facilitating early clinical diagnosis and intervention.
Asunto(s)
Sepsis , Humanos , Factores de Tiempo , Sepsis/diagnóstico , Sepsis/terapia , Algoritmos , Unidades de Cuidados Intensivos , Recuerdo MentalRESUMEN
INTRODUCTION: Klippel Trenaunay syndrome (KTS) is a rare congenital disorder characterized by wine staining, varicose veins, bone hypertrophy, and soft tissue hyperplasia. KTS usually occurs at birth, early infancy or childhood. The rarity of disease makes it difficult to calculate its incidence rate. However, few studies report the incidence rate of 2 to 5 cases per 100 thousand. Furthermore, evidence demonstrates that KTS is more prevalent among males compared to females. CASE PRESENTATION: An elderly male aged 67, was admitted to the hospital for chronic pain in his left knee. An outpatient physical examination reveals a significantly thicker left lower limb accompanied by multiple varicose veins. The right lower limb was 2 cm short on the opposite side, and the right foot was stunted with high arch deformity. The entire body was covered in a red grape globus, which faded after pressing. He was diagnosed with KTS. We performed TKA for him after blood coagulation examination. The patient recovered well after the operation. He was followed up for 1 year, The patient is in good condition and satisfied with the operation. CONCLUSION: For patients with KTS, total knee arthroplasty is an effective surgical procedure to treat arthritis. However, some risks must be considered, and appropriate surgical preparation must be undertaken.
Asunto(s)
Artroplastia de Reemplazo de Rodilla , Síndrome de Klippel-Trenaunay-Weber , Osteoartritis de la Rodilla , Várices , Anciano , Humanos , Masculino , Síndrome de Klippel-Trenaunay-Weber/complicaciones , Extremidad Inferior/cirugía , Osteoartritis de la Rodilla/cirugía , Osteoartritis de la Rodilla/complicaciones , Várices/cirugíaRESUMEN
BACKGROUND: Hollow heart is a kind of physiological defect that seriously affects the yield, quality, and economic value of cucumber. However, the formation of hollow hearts may relate to multiple factors in cucumber, and it is necessary to conduct analysis. RESULTS: In this study, hollow and non-hollow fruits of cucumber K07 were used for comparative transcriptome sequencing and analysis. 253 differentially expressed genes and 139 transcription factors were identified as being associated with the formation of hollow hearts. Hormone (auxin) signaling and cell wall biosynthesis were mainly enriched in GO and KEGG pathways. Expression levels of key genes involved in indole-3-acetic acid biosynthesis in carpel were lower in the hollow fruits than non-hollow fruits, while there was no difference in the flesh. The concentration of indole-3-acetic also showed lower in the carpel than flesh. The biosynthetic pathway and content analysis of the main components of the cell wall found that lignin biosynthesis had obvious regularity with hollow heart, followed by hemicellulose and cellulose. Correlation analysis showed that there may be an interaction between auxin and cell wall biosynthesis, and they collectively participate in the formation of hollow hearts in cucumber. Among the differentially expressed transcription factors, MYB members were the most abundant, followed by NAC, ERF, and bHLH. CONCLUSIONS: The results and analyses showed that the low content of auxin in the carpel affected the activity of enzymes related to cell wall biosynthesis at the early stage of fruit development, resulting in incomplete development of carpel cells, thus forming a hollow heart in cucumber. Some transcription factors may play regulatory roles in this progress. The results may enrich the theory of the formation of hollow hearts and provide a basis for future research.