Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 947
Filtrar
1.
Genome Biol ; 25(1): 117, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715110

RESUMEN

BACKGROUND: Preeclampsia, one of the most lethal pregnancy-related diseases, is associated with the disruption of uterine spiral artery remodeling during placentation. However, the early molecular events leading to preeclampsia remain unknown. RESULTS: By analyzing placentas from preeclampsia, non-preeclampsia, and twin pregnancies with selective intrauterine growth restriction, we show that the pathogenesis of preeclampsia is attributed to immature trophoblast and maldeveloped endothelial cells. Delayed epigenetic reprogramming during early extraembryonic tissue development leads to generation of excessive immature trophoblast cells. We find reduction of de novo DNA methylation in these trophoblast cells results in selective overexpression of maternally imprinted genes, including the endoretrovirus-derived gene PEG10 (paternally expressed gene 10). PEG10 forms virus-like particles, which are transferred from the trophoblast to the closely proximate endothelial cells. In normal pregnancy, only a low amount of PEG10 is transferred to maternal cells; however, in preeclampsia, excessive PEG10 disrupts maternal vascular development by inhibiting TGF-beta signaling. CONCLUSIONS: Our study reveals the intricate epigenetic mechanisms that regulate trans-generational genetic conflict and ultimately ensure proper maternal-fetal interface formation.


Asunto(s)
Preeclampsia , Trofoblastos , Remodelación Vascular , Preeclampsia/genética , Embarazo , Femenino , Humanos , Trofoblastos/metabolismo , Remodelación Vascular/genética , Placenta/metabolismo , Metilación de ADN , Epigénesis Genética , Células Endoteliales/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Impresión Genómica , Factor de Crecimiento Transformador beta/metabolismo , Retardo del Crecimiento Fetal/genética , Placentación/genética , Proteínas de Unión al ARN , Proteínas Reguladoras de la Apoptosis
2.
Cell ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38744281

RESUMEN

Alterations in extracellular matrix (ECM) architecture and stiffness represent hallmarks of cancer. Whether the biomechanical property of ECM impacts the functionality of tumor-reactive CD8+ T cells remains largely unknown. Here, we reveal that the transcription factor (TF) Osr2 integrates biomechanical signaling and facilitates the terminal exhaustion of tumor-reactive CD8+ T cells. Osr2 expression is selectively induced in the terminally exhausted tumor-specific CD8+ T cell subset by coupled T cell receptor (TCR) signaling and biomechanical stress mediated by the Piezo1/calcium/CREB axis. Consistently, depletion of Osr2 alleviates the exhaustion of tumor-specific CD8+ T cells or CAR-T cells, whereas forced Osr2 expression aggravates their exhaustion in solid tumor models. Mechanistically, Osr2 recruits HDAC3 to rewire the epigenetic program for suppressing cytotoxic gene expression and promoting CD8+ T cell exhaustion. Thus, our results unravel Osr2 functions as a biomechanical checkpoint to exacerbate CD8+ T cell exhaustion and could be targeted to potentiate cancer immunotherapy.

3.
J Thorac Dis ; 16(4): 2314-2325, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38738230

RESUMEN

Background: Gastrointestinal bleeding (GIB) is a notable complication in patients diagnosed with aortic dissection (AD). We evaluated the outcomes and identified the risk factors associated with GIB in patients with AD. Methods: A retrospective case-control study was conducted on patients diagnosed with type A aortic dissection (TAAD) who underwent total aortic arch replacement (TAAR) at our institution from July 2021 to July 2023. Comprehensive clinical data, laboratory findings, and imaging results were meticulously gathered and analyzed to identify potential risk factors linked to GIB in this patient cohort. Results: Of the 198 AD patients who underwent TAAR, 38 (19.2%) developed postoperative GIB (GIB group), with a median interval of 7 days between surgery and bleeding onset. The GIB group exhibited significantly higher mortality (26.3% vs. 3.1%, P<0.001), prolonged intensive care unit (ICU) stay {15 [interquartile range (IQR), 8-25] vs. 7 (IQR, 5-12) days, P<0.001}, and extended duration of ventilation [168 (IQR, 120-372) vs. 71 (IQR, 34-148) hours, P<0.001] compared to the control group (n=160, 80.8%). Logistic regression analysis identified age >54 years [odds ratio (OR): 3.529], intraoperative red blood cell (RBC) transfusion >600 mL (OR: 3.865), and concomitant celiac trunk and superior mesenteric artery (SMA) hypoperfusion (OR: 15.974) as independent risk factors for GIB in AD patients. Conclusions: GIB subsequent to TAAR in AD patients is linked to adverse prognosis. Factors such as advanced age, extensive intraoperative transfusion, and gastrointestinal (GI) perfusion abnormalities may heighten the risk of GIB in this patient population.

4.
Nat Commun ; 15(1): 3874, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719826

RESUMEN

The "terminal hydroxyl group anchoring mechanism" has been studied on metal oxides (Al2O3, CeO2) as well as a variety of noble and transition metals (Ag, Pt, Pd, Cu, Ni, Fe, Mn, and Co) in a number of generalized studies, but there is still a gap in how to regulate the content of terminal hydroxyl groups to influence the dispersion of the active species and thus to achieve optimal catalytic performance. Herein, we utilized AlOOH as a precursor for γ-Al2O3 and induced the transformation of the exposed crystal face of γ-Al2O3 from (110) to (100) by controlling the calcination temperature to generate more terminal hydroxyl groups to anchor Ag species. Experimental results combined with AIMD and DFT show that temperature can drive the atomic rearrangement on the (110) crystal face, thereby forming a structure similar to the atomic arrangement of the (100) crystal face. This resulted in the formation of more terminal hydroxyl groups during the high-temperature calcination of the support (Al-900), which can capture Ag species to form single-atom dispersions, and ultimately develop a stable and efficient single-atom Ag-based catalyst.

5.
Heliyon ; 10(9): e29701, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38726204

RESUMEN

In this study, isolate Bacillus velezensis1-3 was selected out for its anti- Listeria potency, from which a novel circular bacteriocin, velezin, was purified out of the fermentate, and then characterized. Facilitated with a broad antibacterial spectrum, velezin has demonstrated decent inhibitive activity against of foodborne pathogen L. monocytogenes ATCC 19115. It exerted the antibacterial activity through damaging the membrane integrity of targeted cell and causing leakage of vital elements, including K+ ion. It was noteworthy that velezin also inhibited the biofilm formation by L. monocytogenes ATCC 19115. At the challenge of velezin, L. monocytogenes ATCC 19115 up-regulated expression of genes associated with membrane, ion transporters, stressing-related proteins as well as the genes responsible for the synthesis of small molecule. Taken together, velezin may have potential to be a candidate as natural additive used in food/feed in the future.

6.
Food Res Int ; 186: 114355, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729701

RESUMEN

In this study, five C18 fatty acids (FA) with different numbers of double bonds and configurations including stearic acid (SA), oleic acid (OA), elaidic acid (EA), linoleic acid (LA), and α-linolenic acid (ALA), were selected to prepare highland barely starch (HBS)-FA complexes to modulate digestibility and elaborate the underlying mechanism. The results showed that HBS-SA had the highest complex index (34.18 %), relative crystallinity (17.62 %) and single helix content (25.78 %). Furthermore, the HBS-C18 FA complexes were formed by EA (C18 FA with monounsaturated bonds) that had the highest R1047/1022 (1.0509) and lowest full width at half-maximum (FWHM, 20.85), suggesting good short-range ordered structure. Moreover, all C18 FAs could form two kinds of V-type complexes with HBS, which can be confirmed by the results of CLSM and DSC measurements, and all of them showed significantly lower digestibility. HBS-EA possessed the highest resistant starch content (20.17 %), while HBS-SA had the highest slowly digestible starch content (26.61 %). In addition, the inhibition of HBS retrogradation by fatty acid addition was further proven, where HBS-SA gel firmness (37.80 g) and aging enthalpy value were the lowest, indicating the most effective. Overall, compounding with fatty acids, especially SA, could be used as a novel way to make functional foods based on HBS.


Asunto(s)
Digestión , Ácidos Grasos , Hordeum , Ácido Oléico , Almidón , Almidón/química , Ácidos Grasos/análisis , Ácidos Grasos/química , Hordeum/química , Ácido Oléico/química , Ácidos Esteáricos/química , Ácido Linoleico/química , Ácido alfa-Linolénico/química , Ácidos Oléicos
7.
Mol Biol Rep ; 51(1): 644, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727958

RESUMEN

BACKGROUND: MicroRNAs are differentially expressed in periodontitis tissues. They are involved in cellular responses to inflammation and can be used as markers for diagnosing periodontitis. Microarray analysis showed that the expression level of microRNA-671-5p in periodontal tissues of patients with periodontitis was increased. In this study, we investigated the mechanism of action of microRNA-671-5p in human periodontal ligament stem cells (hPDLSCs) under inflammatory conditions. METHODS AND RESULTS: HPDLSCs were treated with lipopolysaccharide (LPS) to establish an inflammation model. The cell survival rate was determined using the cell counting kit-8 (CCK8). Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analyses were used to detect the expression of microRNA-671-5p and dual-specificity phosphatase (DUSP) 8 proteins, respectively, Interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α were detected using qRT-PCR and Enzyme-linked immunosorbent assay (ELISA). A dual-luciferase reporter system was employed to determine the relationship between micoRNA-671-5p and DUSP8 expression. Activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway was confirmed using western blot analysis. Following the treatment of hPDLSCs with LPS, the expression levels of microRNA-671-5p in hPDLSCs were increased, cell viability decreased, and the expression of inflammatory factors displayed an increasing trend. MicroRNA-671-5p targets and binds to DUSP8. Silencing microRNA-671-5p or overexpressing DUSP8 can improve cell survival rate and reduce inflammatory responses. When DUSP8 was overexpressed, the expression of p-p38 was reduced. CONCLUSIONS: microRNA-671-5p targets DUSP8/p38 MAPK pathway to regulate LPS-induced proliferation and inflammation in hPDLSCs.


Asunto(s)
Fosfatasas de Especificidad Dual , Inflamación , Lipopolisacáridos , MicroARNs , Ligamento Periodontal , Células Madre , Proteínas Quinasas p38 Activadas por Mitógenos , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citología , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Células Madre/metabolismo , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos/farmacología , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Periodontitis/genética , Periodontitis/metabolismo , Periodontitis/patología , Supervivencia Celular/genética , Supervivencia Celular/efectos de los fármacos , Transducción de Señal/genética , Células Cultivadas
8.
Environ Pollut ; 351: 124083, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38697244

RESUMEN

Widespread use of tetracycline (TC) results in its persistent residue and bioaccumulation in aquatic environments, posing a high toxicity to non-target organisms. In this study, a bimetal-doped composite material Ag3PO4/MIL-101(Fe,Cu) has been designed for the treatment of TC in aqueous solutions. As the molar ratio of Fe/Cu in composite is 1:1, the obtained material AP/MFe1Cu1 is placed in an aqueous environment under visible light irradiation in the presence of 3 mM peroxydisulfate (PDS), which forms a photo-Fenton-like catalytic system that can completely degrade TC (10 mg/L) within 60 min. Further, the degradation rate constant (0.0668 min-1) is 5.66 and 7.34 times higher than that of AP/MFe and AP/MCu, respectively, demonstrating a significant advantage over single metal-doped catalysts. DFT calculations confirm the strong adsorption capacity and activation advantage of PDS on the composite surface. Therefore, the continuous photogenerated electrons (e-) accelerate the activation of PDS and the production of SO4•-, resulting in the stripping of abundant photogenerated h + for TC oxidation. Meanwhile, the internal circulation of FeⅢ/FeⅡ and CuⅡ/CuⅢ in composite also greatly enhances the photo-Fenton-like catalytic stability. According to the competitive dynamic experiments, SO4•- have the greatest contribution to TC degradation (58.93%), followed by 1O2 (23.80%). The degradation intermediates (products) identified by high-performance liquid chromatography-mass spectrometry (HPLC/MS) technique indicate the involvement of various processes in TC degradation, such as dehydroxylation, deamination, N-demethylation, and ring opening. Furthermore, as the reaction proceeds, the toxicity of the intermediates produced during TC degradation gradually decreases, which can ensure the safety of the aquatic ecosystem. Overall, this work reveals the synergy mechanism of PDS catalysis and photocatalysis, as well as provides technical support for removal of TC-contaminated wastewater.

9.
ACS Appl Bio Mater ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38756018

RESUMEN

Human growth hormone (hGH) has emerged as a promising therapeutic agent to prevent and treat skin photoaging. However, the success of hGH therapy largely lies in the availability of an optimal delivery system that enables the efficient delivery of hGH to the dermal layer of the skin. Here, we report a delivery system of hyaluronic acid/liposome-gel-encapsulated hGH (HA/HL-Gel) that can transdermally deliver hGH into the skin for hGH-based photoaging therapy through the upregulation of collagen type I (collagen-I). Specifically, hGH-liposomes were prepared by ethanol injection and then modified with HA to achieve specific targeting. The best formulation of HA/hGH-liposomes (HA/HL) had a high encapsulation efficiency (about 20%), with a size of 180 ± 1.2 nm. The optimized HA/HL was further incorporated into the carbomer gel to form an HA/HL-Gel. The biological activity of HA/HL on human dermal fibroblasts (HDFs) was confirmed by the elevated expression level of collagen-I through the enhanced local formation of insulin-like growth factor-1 (IGF-1) in the photoaging model. Moreover, HA/HL-Gel reduced ultraviolet (UV)-induced erythema and wrinkle formation. Meanwhile, immunohistochemical staining further showed higher levels of collagen-I in the HA/HL-Gel group compared to other groups tested. Taken together, these results demonstrate that HA/HL-Gel treatment could significantly ameliorate skin photoaging and thus may be used as a clinical potential for antiaging therapy.

10.
Dalton Trans ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757515

RESUMEN

Lanthanide doped multicolor luminescent materials have attracted extensive attention due to their advanced anti-counterfeiting properties. However, designing a simple, hard-to-copy and multicolor anti-counterfeiting strategy based on upconversion nanoparticles (UCNPs) remains a huge challenge. Herein, a strategy to modulate luminescence color by altering the mediating action of Tm3+ was proposed. As a proof of concept, the mediating action of Tm3+ was explored in NaYbF4:30%Er,1%Tm@NaYF4 by changing the doping ratio of Yb3+/Er3+/Tm3+, and red, yellow and blue luminescence was successfully obtained. Then, NaYbF4:x%Er,1%Tm@NaYF4 (x = 2, 10, 30, 50, 99), NaYbF4:x%Er@NaYF4 (x = 2, 10, 30, 50, 100) and NaYbF4:1%Tm@NaYF4:x%Er@NaYF4 (x = 2, 10, 30, 50, 100) were synthesized to further identify that the mediating action of Tm3+ was related to the doping ratio and distance between dopant ions. In addition, the luminescence color of NaYbF4:30%Er,1%Tm@NaYF4 changed from red to yellow with the increase of excitation power density. Based on the above, NaYbF4:Er,Tm@NaYF4 UCNPs show excellent performance in anti-counterfeiting of paintings, thus revealing their great potential in advanced anti-counterfeiting applications.

11.
Shock ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38754030

RESUMEN

ABSTRACT: Sepsis-induced acute kidney injury (SAKI) poses a significant clinical challenge with high morbidity and mortality. Excessive mitochondrial fission has been identified as the central pathogenesis of sepsis-associated organ damage, which is also implicated in the early stages of SAKI. Sirtuin 5 (SIRT5) has emerged as a central regulator of cellular mitochondrial function; however, its role in the regulation of sepsis-induced excessive mitochondrial fission in kidney and the underlying mechanism remains unclear.In this study, SAKI was modeled in mice through cecal ligation and puncture (CLP), and in human renal tubular epithelial (HK-2) cells stimulated with lipopolysaccharide (LPS), to mimic the cell SAKI model. Our findings revealed that septic mice with a SIRT5 knockout (SIRT5 KO) exhibited shortened survival times and elevated levels of renal injury compared to wild-type (WT) mice, suggesting the significant involvement of SIRT5 in SAKI pathophysiology. Additionally, we observed that SIRT5 depletion led to increased renal mitochondrial fission, while the use of a mitochondrial fission inhibitor (Mdivi-1) reversed the detrimental effects caused by SIRT5 depletion, emphasizing the pivotal role of SIRT5 in preventing excessive mitochondrial fission. In vitro experiments demonstrated that the overexpression of SIRT5 effectively mitigated the adverse effects of LPS on HK-2 cells viability and mitochondrial fission. Conversely, downregulation of SIRT5 decreased HK-2 cells viability and exacerbated LPS-induced mitochondrial fission. Mechanistically, the protective function of SIRT5 may be in part, ascribed to its desuccinylating action on ATPase inhibitory factor 1 (ATPIF1).In conclusion, this study provides novel insights into the underlying mechanisms of SAKI, suggesting the possibility of identifying future drug targets in terms of improved mitochondrial dynamics by SIRT5.

12.
Arch Virol ; 169(5): 115, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709425

RESUMEN

Porcine circoviruses (PCVs) are a significant cause of concern for swine health, with four genotypes currently recognized. Two of these, PCV3 and PCV4, have been detected in pigs across all age groups, in both healthy and diseased animals. These viruses have been associated with various clinical manifestations, including porcine dermatitis and nephropathy syndrome (PDNS) and respiratory and enteric signs. In this study, we detected PCV3 and PCV4 in central China between January 2022 and February 2023. We tested fecal swabs and tissue samples from growing-finishing and suckling pigs with or without respiratory and systemic manifestations and found the prevalence of PCV3 to be 15.15% (15/99) and that of PCV3/PCV4 coinfection to be 4.04% (4/99). This relatively low prevalence might be attributed to the fact that most of the clinical samples were collected from pigs exhibiting respiratory signs, with only a few samples having been obtained from pigs with diarrhea. In some cases, PCV2 was also detected, and the coinfection rates of PCV2/3, PCV2/4, and PCV2/3/4 were 6.06% (6/99), 5.05% (5/99), and 3.03% (3/99), respectively. The complete genomic sequences of four PCV3 and two PCV4 isolates were determined. All four of the PCV3 isolates were of subtype PCV3b, and the two PCV4 isolates were of subtype PCV4b. Two mutations (A24V and R27K) were found in antibody recognition domains of PCV3, suggesting that they might be associated with immune escape. This study provides valuable insights into the molecular epidemiology and evolution of PCV3 and PCV4 that will be useful in future investigations of genotyping, immunogenicity, and immune evasion strategies.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Genotipo , Filogenia , Enfermedades de los Porcinos , Circovirus/genética , Circovirus/aislamiento & purificación , Circovirus/clasificación , Animales , Porcinos , China/epidemiología , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/epidemiología , Infecciones por Circoviridae/veterinaria , Infecciones por Circoviridae/virología , Infecciones por Circoviridae/epidemiología , Coinfección/virología , Coinfección/veterinaria , Coinfección/epidemiología , Genoma Viral/genética , Heces/virología
13.
Angew Chem Int Ed Engl ; : e202402946, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696279

RESUMEN

Electrolytes with anion-dominated solvation are promising candidates to achieve dendrite-free and high-voltage potassium metal batteries. However, it's challenging to form anion-reinforced solvates at low salt concentrations. Herein, we construct an anion-reinforced solvation structure at a moderate concentration of 1.5 M with weakly coordinated cosolvent ethylene glycol dibutyl ether. The unique solvation structure accelerates the desolvation of K+, strengthens the oxidative stability to 4.94 V and facilitates the formation of inorganic-rich and stable electrode-electrolyte interface. These enable stable plating/stripping of K metal anode over 2200 h, high capacity retention of 83.0% after 150 cycles with a high cut-off voltage of 4.5 V in K0.67MnO2//K cells, and even 91.5% after 30 cycles under 4.7 V. This work provides insight into weakly coordinated cosolvent and opens new avenues for designing ether-based high-voltage electrolytes.

14.
Heart Lung ; 67: 53-61, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38701700

RESUMEN

BACKGROUND: The association between coffee and caffeine intake and the risk of COPD and lung function has not been thoroughly discussed in Americans, with subgroup and threshold effects remaining unclear. OBJECTIVES: This study investigated the association between coffee and caffeine consumption and the risk of chronic obstructive pulmonary disease (COPD) as well as lung function utilizing data from the NHANES 2007-2012. METHODS: We assessed the associations of coffee and caffeine consumption with the risk of COPD and lung function parameters, including FEV1 and FVC, adjusting for common demographic and disease characteristics in a cross-sectional analysis of NHANES data. RESULTS: A total of 9763 participants were included in the study, and 592 were diagnosed with COPD. Multivariate regression models revealed positive associations between coffee and caffeine consumption and the risk of COPD and lung function. Subgroup analyses stratified by sex, DM, hypertension status, and smoking habits identified potential effect modifiers as well as inflection points from threshold effect examinations. CONCLUSIONS: The results of this cross-sectional study indicated significant positive correlations between coffee and caffeine consumption and the risk of COPD. Additionally, positive correlations between exposure variables and FEV1 and FVC were detected. Among the stratification factors, smoking status exhibited the most potential for modifying effects. Future practices and research are needed to validate the results and explore the underlying mechanisms.

15.
Artículo en Inglés | MEDLINE | ID: mdl-38710592

RESUMEN

BACKGROUND AND AIM: The study aims to introduce a novel indicator, effective withdrawal time (WTS), which measures the time spent actively searching for suspicious lesions during colonoscopy and to compare WTS and the conventional withdrawal time (WT). METHODS: Colonoscopy video data from 472 patients across two hospitals were retrospectively analyzed. WTS was computed through a combination of artificial intelligence (AI) and manual verification. The results obtained through WTS were compared with those generated by the AI system. Patients were categorized into four groups based on the presence of polyps and whether resections or biopsies were performed. Bland Altman plots were utilized to compare AI-computed WTS with manually verified WTS. Scatterplots were used to illustrate WTS within the four groups, among different hospitals, and across various physicians. A parallel box plot was employed to depict the proportions of WTS relative to WT within each of the four groups. RESULTS: The study included 472 patients, with a median age of 55 years, and 57.8% were male. A significant correlation with manually verified WTS (r = 0.918) was observed in AI-computed WTS. Significant differences in WTS/WT among the four groups were revealed by the parallel box plot (P < 0.001). The group with no detected polyps had the highest WTS/WT, with a median of 0.69 (interquartile range: 0.40, 0.97). WTS patterns were found to be varied between the two hospitals and among senior and junior physicians. CONCLUSIONS: A promising alternative to traditional WT for quality control and training assessment in colonoscopy is offered by AI-assisted computation of WTS.

16.
Angew Chem Int Ed Engl ; : e202403241, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710651

RESUMEN

Exocytosis involving the fusion of intracellular vesicles with cell membrane, is thought to be modulated by the mechanical cues in the microenvironment. Single-cell electrochemistry can offer unique information about the quantification and kinetics of exocytotic events, however, the effects of mechanical force on vesicular release has been poorly explored. Herein, we developed a stretchable microelectrode with excellent electrochemical stability under mechanical deformation by microfabrication of functionalized poly(3,4-ethylenedioxythiophene) conductive ink, which achieved real-time quantitation of strain-induced vesicular exocytosis from a single cell for the first time. We found that mechanical strain could cause calcium influx via the activation of Piezo1 channel in chromaffin cell, initiating the vesicular exocytosis process. Interestingly, mechanical strain increases the amount of catecholamines release by accelerating the opening and prolonging the closing of fusion pore during exocytosis. This work is expected to provide a revealing insight on the regulatory effects of mechanical stimuli on vesicular exocytosis.

17.
Int J Biol Macromol ; : 132438, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38761906

RESUMEN

Spider silk is the self-assembling product of silk proteins each containing multiple repeating units. Each repeating unit is entirely intrinsically disordered or contains a small disordered domain. The role of the disordered domain/unit in conferring silk protein storage and self-assembly is not fully understood yet. Here, we used biophysical and biochemical techniques to investigate the self-assembly of a miniature version of a minor ampullate spidroin (denoted as miniMiSp). miniMiSp consists of two identical intrinsically disordered domains, one folded repetitive domain, and two folded terminal domains. Our data indicated that miniMiSp self-assembles into oligomers and further into liquid droplets. The oligomerization is attributed to the aggregation-prone property of both the disordered domains and the folded repetitive domain. Our results support the model of micellar structure for silk proteins at high protein concentrations. The disordered domain is indispensable for liquid droplet formation via liquid-liquid phase separation, and tyrosine residues located in the disordered domain make dominant contributions to stability of the liquid droplets. As the same tyrosine residues are also critical to fibrillation, the liquid droplets are likely an intermediate state between the solution state and the fiber state. Additionally, the terminal domains contribute to the pH- and salt-dependent self-assembly properties.

18.
Front Vet Sci ; 11: 1369845, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694481

RESUMEN

The Amur grayling (Thymallus arcticus grubei Dybowski, 1869), a species of potentially economic and research value, is renowned for its tender meat, exquisite flavor, and high nutritional contents. This study was conducted to investigate the physiological adaptation mechanisms to dietary lipids in Amur grayling fry (with average initial weight 4.64±0.03 g). This study involved a 56-day feeding trial with diets containing varying lipid levels (9.07%, 12.17%, 15.26%, 18.09%, 21.16%, and 24.07%, designated as GL1 through GL6, respectively) to explore the impact of dietary lipids on growth performance, intestinal digestion, liver antioxidative function, and transcriptomic profiles. Results showed that The group receiving 18% dietary lipid exhibited a markedly higher weight gain rate (WGR) and specific growth rate compared to other groups, alongside a reduced feed conversion ratio (FCR), except in comparison to the 15% lipid group. Activities of lipase in pancreatic secretion and amylase in stomach mucosa peaked in the 18% lipid treatment group, indicating enhanced digestive efficiency. The liver of fish in this group also showed increased activities of antioxidative enzymes and higher levels of glutathione and total antioxidative capacity, along with reduced malondialdehyde content compared to the 9% and 24% lipid treatments. Additionally, serum high-density lipoprotein cholesterol levels were highest in the 18% group. Transcriptomic analysis revealed four significant metabolic pathways affected: Cholesterol metabolism, Fat digestion and absorption, PPAR signaling, and Fatty acid degradation, involving key genes such as Lipase, Lipoprotein lipase, Fatty acid-binding protein, and Carnitine palmitoyltransferase I. These findings suggest that the liver of Amur grayling employs adaptive mechanisms to manage excessive dietary lipids. Quadratic regression analysis determined the optimal dietary lipid levels to be 16.62% and 16.52%, based on WGR and FCR, respectively. The optimal dietary lipid level for juvenile Amur grayling appears to be around 18%, as evidenced by improved growth performance, digestive function, balanced serum lipid profile, and enhanced liver antioxidative capacity. Exceeding this lipid threshold triggers both adaptive and potentially detrimental liver responses.

20.
Natl Sci Rev ; 11(5): nwae093, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38577667

RESUMEN

Photocatalytic N2 fixation is a promising strategy for ammonia (NH3) synthesis; however, it suffers from relatively low ammonia yield due to the difficulty in the design of photocatalysts with both high charge transfer efficiency and desirable N2 adsorption/activation capability. Herein, an S-scheme CoSx/ZnS heterojunction with dual active sites is designed as an efficient N2 fixation photocatalyst. The CoSx/ZnS heterojunction exhibits a unique pocket-like nanostructure with small ZnS nanocrystals adhered on a single-hole CoSx hollow dodecahedron. Within the heterojunction, the electronic interaction between ZnS and CoSx creates electron-deficient Zn sites with enhanced N2 chemisorption and electron-sufficient Co sites with active hydrogen supply for N2 hydrogenation, cooperatively reducing the energy barrier for N2 activation. In combination with the promoted photogenerated electron-hole separation of the S-scheme heterojunction and facilitated mass transfer by the pocket-like nanostructure, an excellent N2 fixation performance with a high NH3 yield of 1175.37 µmol g-1 h-1 is achieved. This study provides new insights into the design of heterojunction photocatalysts for N2 fixation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA