RESUMEN
A modified QuEChERS method was developed to determine multi-class pesticide and veterinary residues in aquatic products. Chitosan microspheres were conveniently synthesized and utilized as the cleanup adsorbent in the QuEChERS procedure, showcasing rapid filtration one-step pretreatment ability for the determination of drug multi-residues in aquatic products. Compared to conventional synthetic sorbents, chitosan microspheres not only have good purification performance, but also have renewable and degradable properties. This novel sorbent worked well in the simultaneous determination of 95 pesticides and veterinary drug residues in aquatic products after being combined with an improved one-step vortex oscillating cleanup method. We achieved recoveries ranging from 64.0% to 115.9% for target drugs in shrimp and fish matrix. The limits of detection and quantification were 0.5-1.0 and 1.0-2.0 µg kg-1, respectively. Notably, hydrocortisone was detected with considerable frequency and concentration in the tested samples, underscoring the necessity for stringent monitoring of this compound in aquatic products.
Asunto(s)
Quitosano , Peces , Microesferas , Espectrometría de Masas en Tándem , Drogas Veterinarias , Animales , Quitosano/química , Cromatografía Líquida de Alta Presión , Drogas Veterinarias/análisis , Drogas Veterinarias/aislamiento & purificación , Contaminación de Alimentos/análisis , Residuos de Medicamentos/análisis , Residuos de Medicamentos/aislamiento & purificación , Residuos de Medicamentos/química , Plaguicidas/aislamiento & purificación , Plaguicidas/análisis , Plaguicidas/química , Residuos de Plaguicidas/aislamiento & purificación , Residuos de Plaguicidas/análisis , Residuos de Plaguicidas/química , Adsorción , Extracción en Fase Sólida/métodos , Extracción en Fase Sólida/instrumentación , Contaminantes Químicos del Agua/aislamiento & purificación , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Alimentos Marinos/análisis , Mariscos/análisis , Cromatografía Líquida con Espectrometría de MasasRESUMEN
The versatile epigenetic modification known as N6-methyladenosine (m6A) has been demonstrated to be pivotal in numerous physiological and pathological contexts. Nonetheless, the precise regulatory mechanisms linking m6A to histone modifications and the involvement of transposable elements (TEs) in ovarian development and aging are still not completely understood. First, we discovered that m6A modifications are highly expressed during ovarian aging (OA), with significant contributions from decreased m6A demethylase FTO and overexpressed m6A methyltransferase METTL16. Then, using FTO knockout mouse model and KGN cell line, we also observed that FTO deletion and METTL16 overexpression significantly increased m6A levels. This led to the downregulation of the methyltransferase SUV39H1, resulting in reduced H3K9me3 expression. The downregulation of SUV39H1 and H3K9me3 primarily activated LTR7 and LTR12, subsequently activating ERV1. This resulted in a decrease in cell proliferation, while the levels of apoptosis, cellular aging markers, and autophagy markers significantly increased in OA. In summary, our study offers intriguing insights into the role of m6A in regulating DNA epigenetics, including H3K9me3 and TEs, as well as autophagy, thereby accelerating OA.
RESUMEN
Zeolitic-imidazolate frameworks (ZIFs) are among the most efficient precursors for the synthesis of atomically dispersed Fe-N/C materials, which are promising catalysts for enhancing the performance of Zn-air batteries (ZABs) and proton exchange fuel cells (PEMFCs). However, existing ZIF-derived Fe-N/C electrocatalysts mostly consist of microporous materials, leading to insufficient mass transport and inadequate battery/cell performance. In this study, we synthesize an atomically dispersed meso/microporous Fe-N/C material with curved Fe-N4 active sites, denoted as FeSA-N/TC, through the pyrolysis of hemin-modified ZIF films on ZnO nanorods, obtained from the self-assembly reaction between Zn2+ from ZnO hydrolysis and 2-methylimidazole. Density functional theory calculations demonstrate that the curved Fe-N4 active sites can weaken the intermediate adsorptions, resulting in lower free energy barriers and enhanced performance during oxygen reduction reaction (ORR). Specifically, FeSA-N/TC exhibits exceptional ORR performance with half-wave potentials of 0.925 V in alkaline media and 0.825 V in acidic media. When used as the cathodic catalyst in PEMFCs and ZABs, FeSA-N/TC achieves high peak power densities (H2-O2 PEMFC: 1100 mW cm-2; H2-Air PEMFC: 715 mW cm-2; liquid-state ZAB: 228 mW cm-2; solid-state ZAB: 112 mW cm-2), demonstrating its feasibility and efficiency in practical applications.
RESUMEN
BACKGROUND: Systemic changes in multiple diseases may influence the onset of dementia. However, the specific temporality between exposure diseases and dementia remains uncertain. AIMS: By characterising the full spectrum of temporal disease trajectories before dementia, this study aims to yield a global picture of precursor diseases to dementia and to provide detailed instructions for risk management and primary prevention of dementia. METHOD: Using the multicentre, community-based prospective UK Biobank, we constructed disease trajectories before dementia utilising the phenome-wide association analysis, paired directional test and association quantification. Stratified disease trajectories were constructed by dementia subtypes, gender, age of diagnosis and Apolipoprotein E (ApoE) status, respectively. RESULTS: Our study population comprised 434 266 participants without baseline dementia and 4638 individuals with all-cause dementia. In total, 1253 diseases were extracted as potential components of the disease trajectory before dementia. We identified three clusters of disease trajectories preceding all-cause dementia, initiated by circulatory, metabolic and respiratory diseases occurring approximately 5-15 years before dementia. Cerebral infarction or chronic renal failure following chronic ischaemic heart disease was the specific trajectory before vascular dementia. Apolipoprotein E (ApoE) ε4 non-carriers exhibited more complex trajectories compared with carriers. Lipid metabolism disorders remained in the trajectories regardless of dementia subtypes, gender, age of diagnosis and ApoE status. CONCLUSIONS: This study provides a comprehensive view of the longitudinal disease trajectories before dementia and highlights the potential targets of midlife cardiometabolic dysfunction for dementia screening and prevention.
RESUMEN
An efficient, sensitive, and precise method for investigating the metabolism of four sulfonamides in grass carp has been established using high-performance liquid chromatography-mass spectrometry. By optimizing the experimental conditions, the method achieved a coefficient of determination above 0.999, with detection and quantification limits set at 0.5 µg/kg and 1.0 µg/kg, respectively. Recovery rates were between 92.90 % and 102.84 %, and relative standard deviations ranged from 1.70 % to 9.83 %, enabling the precise detection of these sulfonamides in grass carp tissue. The factors affecting the metabolic rate during the medicated bath process were investigated, and obtained the optimal parameter conditions for screening the candidate materials. The candidate materials screened through this method exhibit good stability when used to prepare matrix standard substances, this work not only provides a scientific basis for screening sulfonamide candidate materials but also offers insights for developing other matrix reference materials.
RESUMEN
Background: Contrast-induced nephropathy (CIN) can lead to serious complications following percutaneous coronary intervention (PCI). Urine N-Acetyl-ß-D-glucosaminidase (uNAG) and serum homocysteine (sHCY) are both potential predictors for CIN detection, but their combination has not been explored. We aimed to combine uNAG and sHCY as predictors for the early detection of CIN and for prognosis prediction in patients after PCI. Methods: A total of 232 consecutive patients who underwent PCI at a university hospital were recruited for this study. According to the European Society of Urology and Reproduction (ESUR) criterion, CIN is defined as an elevation of serum creatinine (sCr) by ≥25% or ≥0.5â mg/dl from baseline within 48â h. We assessed the use of individual biomarkers (uNAG and sHCY) measured around PCI and their combinations for CIN detection and prognosis prediction. Receiver operating characteristic curves (ROC) and area under the curve (AUC) were used to evaluate the predictive efficiency of potential predictors. Results: In total, 54 (23.28%) patients developed CIN. Concentrations of uNAG and sHCY increased significantly in CIN subjects (p < 0.05) than non-CIN. CIN could be predicted by uNAG and sHCY but not by creatinine at an early stage. At pre-PCI, 0, 12, 24, and 48â h after PCI, the AUC-ROC value of uNAG in calculating total CIN was 0.594, 0.603, 0.685, 0.657, and 0.648, respectively. The AUC-ROC value of sHCY in calculating total CIN was 0.685, 0.726, 0.771, 0.755, and 0.821, respectively. The panel of uNAG plus sHCY detected CIN with significantly higher accuracy than either individual biomarker alone and earlier than sCr. For detecting total CIN, this panel yielded AUC-ROCs of 0.693, 0.754, 0.826, 0.796, and 0.844 at pre-PCI, 0, 12, 24, and 48â h after PCI, respectively, which were superior to those of the individual biomarkers. For predicting the incidence of major adverse cardiovascular events (MACE) within 30â days to 12â months, the AUC-ROC values for uNAG and sHCY measured before discharge were 0.637 and 0.826, respectively. The combined panel yielded an AUC-ROC of 0.832. The combined detection did not significantly enhance the predictive capability for MACE in patients with CIN. The CIN group and the non-CIN group showed no significant difference in the Coronary Heart Disease Intensive Care Unit (CCU) stay time, hospital stay time, demand for renal replacement therapy, CCU mortality rate, and in-hospital mortality rate. Conclusions: The uNAG and sHCY panel demonstrated better sensitivity and specificity for predicting the diagnosis and prognosis of CIN in patients after PCI, earlier than sCr. The combination of these biomarkers revealed a significantly superior discriminative performance for CIN detection and prognosis compared to using uNAG or sHCY alone.
RESUMEN
During the COVID-19 pandemic, the online delivery model became the primary mode of education. With multiple pressures on society and families, mental health issues for parents have become particularly pronounced. Most of the current research has focused on the psychological state of education practitioners and children, with little attention to parents' mental health issues. Therefore, this study explored the attitudes and coping styles of parents who experienced the process of their children being taught online over a long period and the factors influencing their mental health. This cross-sectional study was conducted between November 2021 and January 2022, using an anonymous online questionnaire to survey 1500 parents with children aged 6-13 years. The Chinese versions of the Patient Health Questionnaire Depression Scale (PHQ-9), the Parenting Stress Scale (PSS), the General Mental Health Questionnaire (GHQ-12), and the Brief Coping Style Scale (SCSQ), and a related factors questionnaire were used to survey the subjects. The normal distribution of the data was examined using the Shapiro-Wilk method. A multivariate regression analysis was conducted to identify factors significantly associated with parental mental health during the COVID-19 pandemic. Only 30.24% of parents agreed with online classes during the pandemic, and 52.28% used positive coping methods during stressful situations. Multivariate regression models identified significant factors associated with parental mental health: parent's gender, child's grade level, perceived stress about online classes, whether the child has ADHD, positive or negative coping styles, and subjective attitudes of support for online classes or not. The results of the study suggest that as online classes become more socially acceptable, it is necessary to be concerned about the risk of mental illness for parents and develop policies and interventions, especially for parents who adopt negative coping styles and endorse online classes. The focus should be on the stress of online classes on parents, improving the acceptance of online classes and psychological well-being, regulating the way parents deal with their children, and targeting subgroups of children with ADHD symptoms during the COVID-19 pandemic.
Asunto(s)
Adaptación Psicológica , COVID-19 , Educación a Distancia , Salud Mental , Padres , Humanos , COVID-19/psicología , COVID-19/epidemiología , Padres/psicología , Masculino , Femenino , Niño , Estudios Transversales , Adolescente , Educación a Distancia/métodos , Encuestas y Cuestionarios , Adulto , Pandemias , Estrés Psicológico/epidemiología , Estrés Psicológico/psicología , SARS-CoV-2 , Responsabilidad Parental/psicología , Actitud , Persona de Mediana EdadRESUMEN
Cavity optomechanical systems have enabled precision sensing of magnetic fields, by leveraging the optical resonance-enhanced readout and mechanical resonance-enhanced response. Previous studies have successfully achieved mass-produced and reproducible microcavity optomechanical magnetometry (MCOM) by incorporating Terfenol-D thin films into high-quality (Q) factor whispering gallery mode (WGM) microcavities. However, the sensitivity was limited to 585 pT Hz-1/2, over 20 times inferior to those using Terfenol-D particles. In this work, we propose and demonstrate a high-sensitivity and mass-produced MCOM approach by sputtering a FeGaB thin film onto a high-Q SiO2 WGM microdisk. Theoretical studies are conducted to explore the magnetic actuation constant and noise-limited sensitivity by varying the parameters of the FeGaB film and SiO2 microdisk. Multiple magnetometers with different radii are fabricated and characterized. By utilizing a microdisk with a radius of 355 µm and a thickness of 1 µm, along with a FeGaB film with a radius of 330 µm and a thickness of 1.3 µm, we have achieved a remarkable peak sensitivity of 1.68 pT Hz-1/2 at 9.52 MHz. This represents a significant improvement of over two orders of magnitude compared with previous studies employing sputtered Terfenol-D film. Notably, the magnetometer operates without a bias magnetic field, thanks to the remarkable soft magnetic properties of the FeGaB film. Furthermore, as a proof of concept, we have demonstrated the real-time measurement of a pulsed magnetic field simulating the corona current in a high-voltage transmission line using our developed magnetometer. These high-sensitivity magnetometers hold great potential for various applications, such as magnetic induction tomography and corona current monitoring.
RESUMEN
Global Net Anthropogenic Nitrogen Input (NANI) at high resolution is crucial for assessing the impact of human activities on aquatic environments. Insufficient global high-resolution data sources and methods have hindered the effective examination of the global characteristics and driving forces of NANI. This study presents a general framework for calculating global NANI, providing estimates at a 5-arc-minute resolution and over 1.42 million lake basins in 2015. The results highlight the region near the Tropic of Cancer as a concentration area for high NANI and an inflection point for latitude-based accumulation variation. It also emphasizes the uneven distribution of NANI among continents, with Asia and Africa having the highest proportions, yet their high and low values are notably lower than those of Europe and South America. A similar pattern is observed in global lakes, where Asia has the smallest quantity and volume, but the highest NANI intensity. In contrast, North America and Europe have larger quantities and volumes but the lowest NANI intensity. The global distribution characteristics reveal a clustering pattern in high and low values, with 1.25 % of the area having a sum of NANI exceeding 20 %. The uncertainty analysis regarding model parameters indicates that continents with the highest NANI do not always exhibit the highest uncertainty. These results bridge the gap between global nitrogen sustainable management and anthropogenic nitrogen input. They support research on spatiotemporal changes and controlling factors of global river nutrient loads, as well as the impact of climatic factors on basin nitrogen loss and its variability.
RESUMEN
Postmenopausal osteoporosis (PMO) is characterized by bone loss and microstructural damage, and it is most common in older adult women. Currently, there is no cure for PMO. The flavonoid chemical 7,8-dihydroxyflavone (7,8-DHF) specifically activates tropomyosin receptor kinase B (TRKB). Furthermore, 7,8-DHF has various biological characteristics, including anti-inflammatory and antioxidant effects. However, the specific implications and fundamental mechanisms of 7,8-DHF in PMO remain unclear. We used protein imprinting, flow cytometry, tissue staining, and other methods to estimate the preventive mechanisms of 7,8-DHF against hydrogen peroxide (H2O2)-induced apoptosis in primary mouse bone marrow mesenchymal stem cells (BMSCs), osteogenic differentiation ability, and bone mass in ovariectomized (OVX) mice. We found that 7,8-DHF effectively prevented H2O2-induced reductions in the viability and osteogenic differentiation capacity of primary BMSCs. Mechanistically, 7,8-DHF induced the TRKB to activate the PI3K/AKT/NRF2 pathway. In vivo experiments with the OVX mouse model confirmed that 7,8-DHF can inhibit oxidative stress and promote bone formation, indicating that 7,8-DHF improves the viability and osteogenic differentiation ability of BMSCs stimulated via H2O2 by activating the TRKB/PI3K/AKT and NRF2 pathways, thereby improving PMO.
Asunto(s)
Flavonas , Peróxido de Hidrógeno , Células Madre Mesenquimatosas , Factor 2 Relacionado con NF-E2 , Osteogénesis , Osteoporosis Posmenopáusica , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Receptor trkB , Transducción de Señal , Animales , Estrés Oxidativo/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Ratones , Femenino , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Flavonas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Osteoporosis Posmenopáusica/metabolismo , Osteoporosis Posmenopáusica/patología , Osteoporosis Posmenopáusica/tratamiento farmacológico , Osteogénesis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Humanos , Receptor trkB/metabolismo , Receptor trkB/genética , Diferenciación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Ovariectomía , Ratones Endogámicos C57BLRESUMEN
Social isolation was associated with emotional problems (depression and anxiety) among older adults, however, little is known in China. Thus, we conducted a cross-sectional study including 6,664 ≥ 65 years older adults in Ningbo, China. We collected data on social isolation, depression, and anxiety by specific scales. The relationship between social isolation and emotional problems was estimated by multivariate-adjusted logistic regression models. The population-attributable risk percentage (PAR%) was used to explore the contribution of social isolation to emotional problems. Overall, the percentage of participants who had experienced social isolation, depression, and anxiety was 12.67%, 4.83%, and 2.63%. Compared with the elderly without social isolation, the adjusted odds ratios (95% confidence interval) of depression and anxiety with social isolation were 1.77 (1.25-2.51) and 1.66 (1.05-2.63), respectively. The PAR analysis showed that 10.66% of depression and 9.03% of anxiety could be attributable to social isolation. In the gender subgroup, ORs and PAR% were only significantly observed in female participants. In Chinese older adults, social isolation has been linked to depression and anxiety, suggesting the importance of taking effective and feasible interventions to reduce social isolation and emotional problems, especially among females.
Asunto(s)
Ansiedad , Depresión , Aislamiento Social , Humanos , Aislamiento Social/psicología , Anciano , Masculino , Femenino , China/epidemiología , Depresión/epidemiología , Depresión/psicología , Ansiedad/epidemiología , Ansiedad/psicología , Estudios Transversales , Anciano de 80 o más AñosRESUMEN
With the shift of coal seam mining to the deep, the in-situ stress of coal and rock mass increases gradually. High ground stress can limit the generation of rock cracks caused by blasting, and blasting usually shows different crushing states than low stress conditions. In order to study the blasting expansion rule of rock mass with cavity under high ground stress and the rock mass fracture state under different side stress coefficients. In this paper, the effective range of blasting and the stress distribution under blasting load are analyzed theoretically. The RHT (Riedel-Hiermaier-Thoma) model is used to numerically simulate the blasting process of rock mass with cavity under different ground stress, and the influence of ground stress and lateral pressure coefficient on the crack growth of rock mass is studied. The results show that when there is no ground stress, the damage cracks in rock mass are more concentrated in the horizontal direction and the fracture development tends to the direction where the holes are located, which confirms the guiding effect and stress concentration effect of the holes in rock mass, which helps to promote the crack penetration between the hole and the hole. The length difference of horizontal and vertical damage cracks in rock mass increases with the increase of horizontal and vertical stress difference. Under the same lateral stress coefficient, the larger the horizontal and vertical stress difference is, the stronger the inhibition effect on crack formation is. For blasting of rock mass with high ground stress, the crack formation length between gun holes decreases with the increase of stress level, and the crack extends preferentially in the direction of higher stress. Therefore, the placement of gun holes along the direction of greater stress and the shortening of hole spacing are conducive to the penetration of cracks between gun holes and empty holes. The research can provide reference for rock breaking behavior of deep rock mass blasting.
RESUMEN
OBJECTIVE: To determine whether ultrasonic manifestations of Hashimoto's thyroiditis (HT) related to embryo qualities or pregnancy outcomes in women with thyroid autoimmunity (TAI) undergoing in vitro fertilization/intracytoplasmic sperm injection. METHODS: Our study was a retrospective cohort study. A total of 589 euthyroid women enrolled from January 2017 to December 2019. 214 TAI women and 375 control women were allocated in each group according to serum levels of thyroid peroxidase antibodies (TPOAb) and/or anti-thyroglobulin antibodies (TgAb). Basal serum hormone levels and thyroid ultrasound were assessed, embryo qualities, pregnancy outcomes were collected from medical records. Diagnosis of thyroid ultrasound was used for subanalysis. Logistic regression was used to evaluate outcomes of embryo development and pregnancy. RESULTS: Implantation rate was significantly lower in euthyroid women with TAI compared with control group (TAI group: 65.5% vs. Control group: 73.0%, adjusted OR (95% CI): 0.65 (0.44, 0.97), p = 0.04). We further stratified TAI group into two groups: one group with HT features under ultrasound and another group with normal thyroid ultrasound. After regression analysis, TAI women with HT morphological changes had a lower chance of implantation compared with control group (TAI group with HT: 64.1% vs. Control group: 73.0%, adjusted OR (95% CI): 0.63 (0.41, 0.99), p = 0.04), while there was no significant difference on implantation rate between TAI women with normal thyroid ultrasound and control group. Other outcomes, such as embryo qualities and pregnancy rate, were comparable between TAI and control groups. CONCLUSIONS: A higher risk of implantation failure was seen among euthyroid women with TAI, especially women with HT morphological changes under ultrasound. The underlying mechanisms of implantation failure among euthyroid HT patients need further research.
Asunto(s)
Implantación del Embrión , Inyecciones de Esperma Intracitoplasmáticas , Glándula Tiroides , Ultrasonografía , Humanos , Femenino , Adulto , Embarazo , Estudios Retrospectivos , Glándula Tiroides/diagnóstico por imagen , Glándula Tiroides/inmunología , Fertilización In Vitro , Enfermedad de Hashimoto/sangre , Enfermedad de Hashimoto/diagnóstico por imagen , Enfermedad de Hashimoto/inmunología , Índice de Embarazo , Autoanticuerpos/sangre , Resultado del Embarazo , AutoinmunidadRESUMEN
Two new cationic meso-thiazolium-BODIPY-based water-soluble and red-shifted fluorescent probes were constructed for the first time. They can monitor cellular viscosity in dual organelles and show aggregation-induced emission (AIE), which is ascribed to the efficient restricted rotation of meso-thiazolium in viscous or hindered systems. Probe 3 with an N-benzyl group shows better AIE as compared to probe 2 with an N-methyl group.
RESUMEN
An exceptional surface (ES) has advantages in improving sensing robustness and enhancing frequency splitting. Typically, the eigenvalue splitting must exceed the mode linewidth in order to be clearly visible in the spectrum, which limits the precision of the ES-based sensing structure. In this paper, a strategy for manipulating spectral line shape in an ES-based structure is experimentally realized. In addition, the limit of the minimum detectable displacement can be further reduced by monitoring the peak intensity of the Fano interference line shape. The demonstration of Fano interference in an ES-based system opens the way for a new class of ultrasensitive optical sensors.
RESUMEN
CONTEXT: Embryo biopsy, which is necessary for preimplantation genetic testing (PGT), has not been fully investigated regarding its potential influences and safety. Previous studies of children born from biopsied embryos (PGT children) have primarily centered around their growth and neuropsychological development, while there remains limited knowledge concerning their endocrine and metabolic parameters. OBJECTIVE: This study aims to examine the effect of trophectoderm (TE) biopsy on metabolic outcomes for PGT children. METHODS: A total of 1267 children from the Center for Reproductive Medicine, Shandong University, who were conceived through in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) with and without PGT, were analyzed in this study. Three sets of measurements pertaining to growth and metabolism were taken at each predetermined follow-up time point. The linear regression models within a generalized estimating equation were employed to examine the associations between the PGT and each outcome measure and the approach of false discovery rate was used to correct for multiple comparisons. RESULTS: After controlling for confounding factors and correcting for multiple comparisons, no statistically significant difference was identified in any of the measured variables between the PGT children and children conceived by IVF alone (IVF children) and children conceived through IVF using ICSI (ICSI children). The same is true also for age- or sex-based subgroup analyses. CONCLUSION: Between the ages of 1 and 5 years, there are no clinically adverse metabolic outcomes observed in PGT children, and their metabolic profiles are essentially identical to those of IVF children and ICSI children.
RESUMEN
Developing inexpensive, efficient, and stable catalysts is crucial for reducing the cost of electrolytic hydrogen production. Recently, polyoxometalates (POMs) have gained attention and widespread use due to their excellent electrocatalytic properties. This study designed and synthesized three composite materials, NF/PMonW12-n, by using phosphomolybdic-tungstic heteropolyacids as precursors to grow in situ on nickel foam via the hydrothermal process and subsequent calcination. Then, their catalytic performances are systematically investigated. This work demonstrates that the NF/PMonW12-n catalysts generate more low valent oxides under the synergistic effect of Mo and W, further enhancing activity for hydrogen evolution reaction (HER). Among these electrocatalysts, NF/PMo6W6 exhibits the perfect HER performance, η10 is only 74 mV. It also shows great stability during long-term electrolysis. The current study introduces a fresh approach for producing electrocatalysts that are both cost-effective and highly efficient.
RESUMEN
Traditional spiking methods for preparing matrix reference material of aquatic products is difficult to control the drug content in the matrix, especially one matrix containing multiple drugs. Minced fish is commonly used for the preparation of matrix reference materials in aquatic products, which is a relatively complex matrix with stickiness and difficult handling. Drug loading capacity is a key factor affecting the effectiveness of matrix reference materials. Here, we proposed a new spiking approach to improve the drug loading capacity of seven quinolones based on microfluidics, simultaneously. Fresh grass carp tissue underwent grinding, fine filtration, centrifugation and reconstituted in distilled water to form a liquid sample, which was subsequently mixed with a sodium alginate solution (1â¯%) at a ratio of 1:1.2. The mixed solution was supplemented with seven quinolones of equal concentration, followed by the preparation of uniform fish gel microspheres using microfluidic technology. The results indicated that the recoveries of seven quinolones ranged from 82.54â¯% to 114.17â¯%, demonstrating a significant improvement in the drug loading capacity of these quinolones compared to traditional methods. Moreover, the drug concentration in the matrix can be precisely controlled. A strong linear relationship was observed between the concentration of seven quinolones in the matrix and its initial concentration, which could serve as a reference for the development of other matrix reference materials.
Asunto(s)
Microfluídica , Quinolonas , Animales , Quinolonas/química , Microfluídica/métodos , Carpas , Alginatos/química , Peces , MicroesferasRESUMEN
In Chinese archaeological research, analyzing the evolution of motifs in ancient pottery is crucial for studying the spread and growth of cultures across various eras and regions. However, such analyses are often challenging due to the complexities of identifying motifs with evolutionary connections that may manifest concurrent changes in appearance, space, and time, compounded by ineffective documentation. We propose PM-Vis, a visual analytics system for tracing and analyzing the evolution of pottery motifs. PM-Vis is anchored in a "selection-organization-documentation" workflow. In the selection stage, we design a three-fold projection paired with a motif-based search mechanism, displaying the appearance similarity and temporal and spatial proximities of all motifs or a specific motif, aiding users in selecting motifs with evolutionary connections. The organization stage helps users establish the evolutionary sequence and segment the selected motifs into distinct evolutionary phases. Finally, the documentation stage enables users to record their observations and insights through various forms of annotation. We demonstrate the usefulness and effectiveness of PM-Vis through two case studies, expert feedback, and a user study.
RESUMEN
High primary rock stress can limit the generation of rock cracks caused by blasting, and blasting usually shows different rock breaking states under different primary rock stress conditions. There are a large number of naturally formed joints in rock mass, due to the limitations of laboratory tests, a numerical model of jointed rock mass was established using LS-DYNA software to investigate the evolution of blasting damage under various in-situ stresses and open joints. In this simulation, using the Lagrange-Euler (ALE) procedure and the equation of state (JWL) that defines explosive materials, the study considered different joint thicknesses (2cm, 4cm, and 6cm), joint angles (0°, 30°, 60°, and 90°), and in-situ stress conditions (lateral stress coefficients of 0.5, 1, and 2, with vertical in-situ stresses of 10MPa and 20MPa), through stress analysis and damage area comparison, the relationship between damage crack propagation and horizontal and vertical stress difference is explored. The research aimed to understand the mechanisms underlying crack initiation and propagation. The results show that: (1) The presence of joints exerts a barrier effect on the expansion and penetration of cracks. When explosion stress waves reach the joint surface, their propagation is impeded, leading to the diffusion of wing cracks at the joint ends. When the lateral stress coefficient and joint angle are the same, an increase in initial in-situ stress results in a reduction in the area of the blasting damage zone. (2) Under the same initial in-situ stress conditions, the area of the blasting damage zone initially increases and then decreases with an increasing joint angle. However, it remains larger than that without a joint, and there exists an optimal angle that maximizes the damage area. In the simulated conditions, the area of damage cracks is greatest when the joint angle is 60° dip angle. (3) The presence of initial in-situ stress has a certain impact on the initiation and expansion of blasting cracks. The degree and nature of this influence are not solely related to the lateral stress coefficient but also depend on the joint's angle and thickness. When in-situ stress is present, the initial in-situ stress field's pressure is not conducive to the initiation and propagation of blasting cracks. However, the existence of a joint has a noticeable guiding and promoting effect on crack propagation, and the pattern of crack propagation is influenced by both joint and in-situ stress conditions.