Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Front Microbiol ; 15: 1466096, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39411436

RESUMEN

Bovine coronavirus (BCoV), a persistent threat to global cattle industry, has caused significant economic losses worldwide. In this study, a viral strain was isolated from the intestinal content of a diseased calve, and identified by cytopathic effects observation, indirect immunofluorescence assay and electron microscopy. Results showed that BCoV NXWZ2310 belonging to the GIIb genotype and has a three-amino-acid deletion in the serine-rich region of the N gene. Importantly, the BCoV NXWZ2310 strain exhibited strong pathogenicity, causing nasal discharge and watery diarrhea in calves for 8 and 10 days, respectively. Viral shedding was detected in nasal, throat and rectal swabs at levels reaching 106.228 copies/mL, 105.0 copies /mL and 106.692 copies/mL, respectively. Pathological examination showed that NXWZ2310 resulted in parenchymal lesions of the pulmonary lobe and significant intestinal lesions. Both the lungs and intestines displayed marked microscopic lesions with clear viral antigens present. BCoV NXWZ2310 strain with N-gene deletion mutations, caused severe respiratory and digestive disease in calves. Therefore, effective strategies are needed for the prevention and control of this isolate.

2.
J Virol ; 98(10): e0130924, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39254314

RESUMEN

Variant Porcine epidemic diarrhea virus (PEDV), which causes diarrhea and high mortality in piglets, has become a major pathogen, and co-epidemics of different subtypes of the virus have become a very thorny problem for the clinical prevention and control of PEDV. However, cross-protection between epidemic G2a and G2b subtype strains has not been observed, and there is currently no vaccine against both G2a and G2b strains. In this study, we demonstrate the low cross-protection between G2a and G2b strains with piglet immunization and challenge tests. The trimeric full-length S proteins of G2a and G2b variants were purified and a bivalent subunit vaccine against PEDV G2a/G2b-S was developed. In active and passive immune protection tests, the bivalent subunit vaccine produced high neutralizing antibody titers and S-specific immunoglobulin G (IgG) and IgA titers against both the G2a and G2b strains in piglets and sows. In the attack phase of the viruses, the clinical symptoms and microscopic lesions in the immunized groups were significantly alleviated. Importantly, the PEDV G2a/G2b-S bivalent subunit vaccine conferred effective passive immunity against PEDV G2a and G2b challenges in the form of colostrum-derived antibodies from the immunized sows. In conclusion, our data demonstrate the low cross-protection of PEDV epidemic G2a and G2b strains and show that the G2a/G2b-S bivalent subunit vaccine is protective against both G2a and G2b strains. It is therefore a candidate vaccine for PEDV prevention. IMPORTANCE: The detection rate of PEDV G2a subtype strains is currently increasing. Although commercial vaccines are available, most vaccines do not exert an ideal protective effect against these strains. Furthermore, there is no definitive research into the cross-protection between G2a and G2b strains, and no bivalent vaccine provides joint protection against both. Therefore, in this study, we investigated the cross-protection between PEDV G2a and G2b strains and designed a candidate bivalent subunit vaccine combining the trimeric S proteins of the G2a and G2b subtypes. We demonstrate that the cross-protection between strains G2a and G2b is poor and that this bivalent subunit vaccine protects piglets from viral attack by inducing both active and passive immunity. This study emphasizes the effectiveness of the PEDV G2a/G2b-S bivalent subunit vaccine and provides a feasible method for the development of efficient PEDV vaccines.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infecciones por Coronavirus , Protección Cruzada , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Vacunas de Subunidad , Vacunas Virales , Virus de la Diarrea Epidémica Porcina/inmunología , Animales , Porcinos , Protección Cruzada/inmunología , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Vacunas de Subunidad/inmunología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Chlorocebus aethiops , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Células Vero , Femenino , Glicoproteína de la Espiga del Coronavirus/inmunología , Inmunoglobulina A/inmunología
3.
J Virol ; 98(9): e0053524, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39158273

RESUMEN

Coronaviruses (CoVs) are important pathogens for humans and other vertebrates, causing severe respiratory and intestinal infections that have become a threat to public health because of the potential for interspecies transmission between animals and humans. Therefore, the development of safe, effective vaccines remains a top priority for the control of CoV infection. The unique immunological characteristics of vaccines featuring messenger RNA (mRNA) present an advantageous tool for coronavirus vaccine development. Here, we designed two lipid nanoparticle (LNP)-encapsulated mRNA (mRNA-LNP) vaccines: one encoding full-length spike (S) protein and the other encoding the spike ectodomain (Se) from porcine deltacoronavirus (PDCoV). Fourteen days after primary immunization, both mRNA vaccines induced high levels of immunoglobulin G and neutralizing antibodies in mice, with the S vaccine showing better performance than the Se vaccine. Passive immune protection of the S mRNA vaccine in suckling piglets was confirmed by the induction of robust PDCoV-specific humoral and cellular immune responses. The S mRNA vaccine also showed better protective effects than the inactivated vaccine. Our results suggest that the novel PDCoV-S mRNA-LNP vaccine may have the potential to combat PDCoV infection. IMPORTANCE: As an emerging porcine enteropathogenic coronavirus, porcine deltacoronavirus (PDCoV) has the potential for cross-species transmission, attracting extensive attention. Messenger RNA (mRNA) vaccines are a promising option for combating emerging and re-emerging infectious diseases, as evidenced by the demonstrated efficacy of the COVID-19 mRNA vaccine. Here, we first demonstrated that PDCoV-S mRNA-lipid nanoparticle (LNP) vaccines could induce potent humoral and cellular immune responses in mice. An evaluation of passive immune protection of S mRNA vaccines in suckling piglets confirmed that the protective effect of mRNA vaccine was better than that of inactivated vaccine. This study suggests that the PDCoV-S mRNA-LNP vaccine may serve as a potential and novel vaccine candidate for combating PDCoV infection.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infecciones por Coronavirus , Glicoproteína de la Espiga del Coronavirus , Enfermedades de los Porcinos , Vacunas Virales , Animales , Porcinos , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Ratones , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Vacunas de ARNm , Deltacoronavirus/inmunología , Deltacoronavirus/genética , Nanopartículas , ARN Mensajero/genética , ARN Mensajero/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Ratones Endogámicos BALB C , Femenino , Inmunidad Humoral , Liposomas
4.
Arch Virol ; 169(9): 180, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150572

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is an enteric coronavirus that has been the main cause of diarrhea in piglets since 2010 in China. The aim of this study was to investigate sequence variation and recombination events in the spike (S) gene of PEDV isolates from China. Thirty complete S gene sequences were obtained from PEDV-positive samples collected in six provinces in China from 2020 to 2023. Phylogenetic analysis showed that 10% (3/30) belonged to subtype GII-a, 6.67% (2/30) were categorized as subtype GII-b, 66.67% (20/30) were categorized as subtype GII-c, and 16.66% (5/30) were clustered with the S-INDEL strains. Amino acid sequence alignments showed that, when compared to strains of other subtypes, the GII-c strains had two characteristic amino acid substitutions (N139D and I289M). Five S-INDEL subtype strains had a single amino acid deletion (139N) and four amino acid substitutions (N118G, T137S, A138S, and D141G). Recombination analysis allowed six putative recombination events to be identified, one involving recombination between GII-c strains, two involving GII-c and GII-b strains, two involving GII-c and GI-a strains, and one involving GII-a and GI-b strains. These results suggest that recombination between PEDV strains has been common and complex in recent years and is one of the main reasons for the continuous variation of PEDV strains.


Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Recombinación Genética , Glicoproteína de la Espiga del Coronavirus , Enfermedades de los Porcinos , Animales , Secuencia de Aminoácidos , Sustitución de Aminoácidos , China/epidemiología , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/epidemiología , Diarrea/virología , Diarrea/veterinaria , Diarrea/epidemiología , Variación Genética , Genotipo , Filogenia , Virus de la Diarrea Epidémica Porcina/genética , Virus de la Diarrea Epidémica Porcina/clasificación , Virus de la Diarrea Epidémica Porcina/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/genética , Porcinos , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/epidemiología
5.
Vet Microbiol ; 297: 110211, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39096790

RESUMEN

Porcine deltacoronavirus (PDCoV), a cross-species transmissible enterovirus, frequently induces severe diarrhea and vomiting symptoms in piglets, which not only pose a significant menace to the global pig industry but also a potential public safety risk. In a previous study, we isolated a vaccine candidate, PDCoV CZ2020-P100, by passaging a parental PDCoV strain in vitro, exhibiting attenuated virulence and enhanced replication. However, the factors underlying these differences between primary and passaged strains remain unknown. In this study, we present the transcriptional landscapes of porcine kidney epithelial cells (LLC-PK1) cells infected with PDCoV CZ2020-P1 strain and P100 strain using the RNA-sequencing. We identified 105 differentially expressed genes (DEGs) in P1-infected cells and 295 DEGs in P100-infected cells. Enrichment analyses indicated that many DEGs showed enrichment in immune and inflammatory responses, with a more and higher upregulation of DEGs enriched in the P100-infected group. Notably, the DEGs were concentrated in the MAPK pathway within the P100-infected group, with significant upregulation in EphA2 and c-Fos. Knockdown of EphA2 and c-Fos reduced PDCoV infection and significantly impaired P100 replication compared to P1, suggesting a novel mechanism in which EphA2 and c-Fos are highly involved in passaged virus replication. Our findings illuminate the resemblances and distinctions in the gene expression patterns of host cells infected with P1 and P100, confirming that EphA2 and c-Fos play key roles in high-passage PDCoV replication. These results enhance our understanding of the changes in virulence and replication capacity during the process of passaging.


Asunto(s)
Deltacoronavirus , Receptor EphA2 , Transcriptoma , Replicación Viral , Animales , Porcinos , Deltacoronavirus/genética , Deltacoronavirus/fisiología , Deltacoronavirus/patogenicidad , Receptor EphA2/genética , Enfermedades de los Porcinos/virología , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Células LLC-PK1 , Línea Celular , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/veterinaria
6.
J Virol ; 98(8): e0061124, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39078151

RESUMEN

Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, is a serious threat to piglets and has zoonotic potential. Here, we aimed to further explore the role of aminopeptidase N (APN) as a receptor for PDCoV and test the inhibitory effect of a chimeric APN protein strategy on PDCoV infection. PK-15 cells and LLC-PK1 cells expressing chimeric APN were selected and infected with PDCoV. Viral replication was significantly decreased in these chimeric APN cells compared with that in control group cells. To further characterize the effect of the chimeric APN strategy on PDCoV infection in vitro, primary intestinal epithelial cells isolated from chimeric APN pigs were inoculated with PDCoV. Viral challenge of these cells led to decreased PDCoV infection. More importantly, virally challenged chimeric APN neonatal piglets displayed reduced viral load, significantly fewer microscopic lesions in the intestinal tissue, and no diarrhea. Taken together, these findings deepen our understanding of the mechanism of PDCoV infection and provide a valuable model for the production of disease-resistant animals. IMPORTANCE: Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, causes diarrhea in piglets and possesses the potential to infect humans. However, there are currently no effective measures for the prevention or control of PDCoV infection. Here, we have developed PK-15 cells, LLC-PK1 cells, and primary intestinal epithelial cells expressing chimeric APN, and viral challenge of these cells led to decreased PDCoV infection. Furthermore, virally challenged chimeric APN neonatal piglets displayed reduced viral load, significantly fewer microscopic lesions in the intestinal tissue, and no diarrhea. These data show that chimeric APN is a promising strategy to combat PDCoV infection.


Asunto(s)
Animales Recién Nacidos , Antígenos CD13 , Infecciones por Coronavirus , Deltacoronavirus , Enfermedades de los Porcinos , Replicación Viral , Animales , Porcinos , Antígenos CD13/genética , Antígenos CD13/metabolismo , Enfermedades de los Porcinos/virología , Deltacoronavirus/genética , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/prevención & control , Carga Viral , Edición Génica/métodos , Línea Celular , Células Epiteliales/virología , Diarrea/virología
7.
Front Microbiol ; 15: 1418959, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962124

RESUMEN

In recent years, porcine diarrhea-associated viruses have caused significant economic losses globally. These viruses present similar clinical symptoms, such as watery diarrhea, dehydration, and vomiting. Co-infections with porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) are common. For the rapid and on-site preliminary diagnosis on the pig farms, this study aimed to develop a colloidal gold immunochromatography assay (GICA) strip for the detection of PEDV and TGEV simultaneously. The GICA kit showed that there was no cross-reactivity with the other five common porcine viruses. With visual observation, the lower limits were approximately 104 TCID50/mL and 104 TCID50/mL for PEDV and TGEV, respectively. The GICA strip could be stored at 4°C or 25°C for 12 months without affecting its efficacy. To validate the GICA strip, 121 clinical samples were tested. The positive rates of PEDV and TGEV were 42.9 and 9.9%, respectively, and the co-infection rate of the two viruses was 5.8% based on the duplex GICA strip. Thus, the established GICA strip is a rapid, specific, and stable tool for on-site preliminary diagnosis of PEDV- and TGEV-associated diarrhea.

8.
Vet Sci ; 11(6)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38921977

RESUMEN

Bovine coronavirus (BCoV), bovine rotavirus, bovine viral diarrhea virus, and bovine astrovirus are the most common intestinal pathogenic viruses causing diarrhea in cattle. We collected 1646 bovine fecal samples from January 2020 to August 2023. BCoV was the major pathogen detected, with a positive rate of 34.02% (560/1646). Of the 670 diarrheal samples and 976 asymptomatic samples, 209 and 351 were BCoV-positive, respectively. Studying the relevance of diarrhea associated with BCoV has shown that the onset of diarrheal symptoms post-infection is strongly correlated with the cattle's age and may also be related to the breed. We amplified and sequenced the hemagglutinin esterase (HE), spike protein, and whole genomes of the partially positive samples and obtained six complete HE sequences, seven complete spike sequences, and six whole genomes. Molecular characterization revealed that six strains were branched Chinese strains, Japanese strains, and partial American strains from the GⅡb subgroup. Strains HBSJZ2202 and JSYZ2209 had four amino acid insertions on HE. We also analyzed ORF1a and found disparities across various regions within GIIb, which were positioned on separate branches within the phylogenetic tree. This work provides data for further investigating the epidemiology of BCoV and for understanding and analyzing BCoV distribution and dynamics.

9.
Virology ; 597: 110150, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38917690

RESUMEN

Coronaviruses (CoVs) comprise a group of important human and animal pathogens that threaten public health because of their interspecies transmission potential to humans. However, virus-like particles (VLPs) constitute versatile tools in CoVs vaccine development due to their favorable immunological characteristics. Here, we engineered the VLPs composed of the spike (S), membrane (M), and envelope (E) structural proteins of the Porcine deltacoronavirus (PDCoV) and examined their immune responses in mice. Neutralization assays and flow Cytometry demonstrated that PDCoV VLPs induced highly robust neutralizing antibodies (NAbs) and elicited cellular immunity. To assess the protective efficacy of VLPs in newborn piglets, pregnant sows received vaccinations with either a PDCoV-inactivated vaccine or VLPs at 40 and 20 days before delivery. Five days post-farrowing, piglets were orally challenged with the PDCoV strain. Severe diarrhea, high viral RNA copies, and substantial intestinal villus atrophy were detected in piglets born to unimmunized sows. However, piglets from sows immunized with VLPs exhibited high NAbs titers and markedly reduced microscopic damage to the intestinal tissues, with no piglet showing diarrhea. Hence, the results indicate that the VLPs are a potential clinical candidate for PDCoV vaccination, while the strategy may serve as a platform for developing other coronavirus vaccines.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infecciones por Coronavirus , Deltacoronavirus , Enfermedades de los Porcinos , Vacunas de Partículas Similares a Virus , Vacunas Virales , Animales , Porcinos , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/inmunología , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Femenino , Deltacoronavirus/inmunología , Ratones , Embarazo , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Animales Recién Nacidos
10.
Vet Microbiol ; 295: 110137, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38851153

RESUMEN

Porcine deltacoronavirus (PDCoV) is an emergent enteric coronavirus, primarily inducing diarrhea in swine, particularly in nursing piglets, with the additional potential for zoonotic transmission to humans. Despite the significant impact of PDCoV on swine populations, its pathogenic mechanisms remain incompletely understood. Complement component 3 (C3) plays a pivotal role in the prevention of viral infections, however, there are no reports concerning the influence of C3 on the proliferation of PDCoV. In this study, we initially demonstrated that PDCoV is capable of activating the C3 and eliciting inflammatory responses. The overexpression of C3 significantly suppressed PDCoV replication, while inhibition of C3 expression facilitated PDCoV replication. We discovered that nonstructural proteins Nsp7, Nsp14, and M, considerably stimulated C3 expression, particularly Nsp14, through activation of the p38-MAPK-C/EBP-ß pathway. The N7-MTase constitutes a significant functional domain of the non-structural protein Nsp14, which is more obvious to upregulate C3. Furthermore, functional mutants of the N7-MTase domain suggested that the D44 and T135 of N7-Mtase constituted a pivotal amino acid site to promote C3 expression. This provides fresh insights into comprehending how the virus manipulates the host immune response and suggests potential antiviral strategies against PDCoV.


Asunto(s)
Complemento C3 , Deltacoronavirus , Proteínas no Estructurales Virales , Replicación Viral , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Complemento C3/genética , Complemento C3/metabolismo , Complemento C3/inmunología , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Porcinos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Deltacoronavirus/genética , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/genética , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/inmunología , Sistema de Señalización de MAP Quinasas , Humanos , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/genética
11.
Microb Pathog ; 192: 106714, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38801864

RESUMEN

Porcine deltacoronavirus (PDCoV), a novel enteropathogenic coronavirus, causes diarrhea mainly in suckling piglets and has the potential to infect humans. Whereas, there is no commercially available vaccine which can effectively prevent this disease. In this study, to ascertain the duration of immune protection of inactivated PDCoV vaccine, suckling piglets were injected subcutaneously with inactivated PDCoV vaccine using a prime/boost strategy at 3 and 17-day-old. Neutralizing antibody assay showed that the level of the inactivated PDCoV group was still ≥1:64 at three months after prime vaccination. The three-month-old pigs were orally challenged with PDCoV strain CZ2020. Two pigs in challenge control group showed mild to severe diarrhea at 10-11 day-post-challenge (DPC), while the inactivated PDCoV group had no diarrhea. High levels of viral shedding, substantial intestinal villus atrophy, and positive straining of viral antigens in ileum were detected in challenge control group, while the pigs in inactivated PDCoV group exhibited significantly reduced viral load, minor intestinal villi damage and negative straining of viral antigens. These results demonstrated that PDCoV was pathogenic against three-month-old pigs and inactivated PDCoV vaccine can provide effective protection in pigs lasting for three months.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infecciones por Coronavirus , Diarrea , Enfermedades de los Porcinos , Vacunas de Productos Inactivados , Vacunas Virales , Esparcimiento de Virus , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/administración & dosificación , Porcinos , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/veterinaria , Diarrea/prevención & control , Diarrea/inmunología , Diarrea/virología , Vacunación , Coronavirus/inmunología , Carga Viral , Antígenos Virales/inmunología
12.
Vet Microbiol ; 293: 110070, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593624

RESUMEN

Stress granules (SGs), the main component is GTPase-activating protein-binding protein 1 (G3BP1), which are assembled during viral infection and function to sequester host and viral mRNAs and proteins, are part of the antiviral responses. In this study, we found that porcine deltacoronavirus (PDCoV) infection induced stable formation of robust SGs in cells through a PERK (protein kinase R-like endoplasmic reticulum kinase)-dependent mechanism. Overexpression of SGs marker proteins G3BP1 significantly reduced PDCoV replication in vitro, while inhibition of endogenous G3BP1 enhanced PDCoV replication. Moreover, PDCoV infected LLC-PK1 cells raise the phosphorylation level of G3BP1. By overexpression of the G3BP1 phosphorylated protein or the G3BP1 dephosphorylated protein, we found that phosphorylation of G3BP1 is involved in the regulation of PDCoV-induced inflammatory response. Taken together, our study presents a vital aspect of the host innate response to invading pathogens and reveals attractive host targets for antiviral target.


Asunto(s)
ADN Helicasas , Inflamación , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Animales , Porcinos , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Fosforilación , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , ARN Helicasas/metabolismo , ARN Helicasas/genética , ADN Helicasas/metabolismo , ADN Helicasas/genética , Replicación Viral , Coronavirus/inmunología , Coronavirus/fisiología , Línea Celular , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/genética , Inmunidad Innata
13.
Vet Sci ; 11(4)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38668409

RESUMEN

Mammalian orthoreovirus (MRV) infections are ubiquitous in multiple mammalian species including humans, and mainly causes gastroenteritis and respiratory disease. In this study, we developed a rapid and sensitive TaqMan qRT-PCR method for MRV detection based on the primers and probe designed within the conserved L1 gene. The qRT-PCR assay was evaluated for its sensitivity, specificity, efficiency and reproducibility. It was found that the detection sensitivity was equivalent to 10 DNA copies/µL, and the standard curves had a linear correlation of R2 = 0.998 with an amplification efficiency of 99.6%. The inter- and intra-assay coefficients of variation (CV%) were in the range of 0.29% to 2.16% and 1.60% to 3.60%, respectively. The primer sets specifically amplified their respective MRV segments and had the highest detection sensitivities of 100.25 TCID50/mL with amplification efficiencies of 99.5% (R2 = 0.999). qRT-PCR was used for MRV detection from samples of sheep, goats, and calves from four regions in China, and the overall MRV prevalence was 8.2% (35/429), whereas 17/429 (4.0%) were detected by RT-PCR and 14/429 (3.3%) by virus isolation. The qRT-PCR assay showed significantly higher sensitivity than RT-PCR and virus isolation. Results from an epidemiological survey indicated that the positive rate of MRV in rectal swabs from sheep and goats tested in Shaanxi, Jiangsu, and Xinjiang were 9/80 (11.3%), 12/93 (12.9%) and 14/128 (10.9%), respectively. In goats and sheep, MRV prevalence was obviously associated with season and age, with a high positive rate of more than 8% during September to April and approximately 13% in small ruminant animals under two months of age. This is the first instance of MRV infection in sheep and goats in China, thus broadening our knowledge of MRV hosts. Consequently, primer optimization for qRT-PCR should not only prioritize amplification efficiency and specificity, but also sensitivity. This assay will contribute to more accurate and rapid MRV monitoring by epidemiological investigation, viral load, and vaccination efficacy.

14.
Adv Healthc Mater ; 13(15): e2304575, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38436662

RESUMEN

The Coronavirus Disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 has a significant impact on global health and the economy. It has underscored the urgent need for a stable, easily produced and effective vaccine. This study presents a novel approach using SARS-CoV-2 spike (S) protein-conjugated nanoparticles (NPs) in combination with cyclic GMP-AMP (cGAMP) (S-NPs-cGAMP) as a subunit vaccine. When mice are immunized, the antiserum of S-NPs-cGAMP group exhibits a 16-fold increase in neutralizing activity against a pseudovirus, compared to S protein group. Additionally, S-NPs-cGAMP induces even higher levels of neutralizing antibodies. Remarkably, the vaccine also triggers a robust humoral immune response, as evidenced by a notable elevation in virus-specific IgG and IgM antibodies. Furthermore, after 42 days of immunization, there is an observed increase in specific immune cell populations in the spleen. CD3+CD4+ and CD3+CD8+T lymphocytes, as well as B220+CD19+ and CD3-CD49b+ NK lymphocytes, show an upward trend, indicating a positive cellular immune response. Moreover, the S-NPs-cGAMP demonstrates promising results against the Delta strain and exhibits good cross-neutralization potential against other variants. These findings suggest that pDMDAAC NPs is potential adjuvant and could serve as a versatile platform for future vaccine development.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Nanopartículas , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunas de Subunidad , Animales , Nanopartículas/química , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/química , Vacunas contra la COVID-19/farmacología , Vacunas contra la COVID-19/administración & dosificación , Ratones , SARS-CoV-2/inmunología , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/química , Vacunas de Subunidad/administración & dosificación , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/química , COVID-19/prevención & control , COVID-19/inmunología , Femenino , Anticuerpos Neutralizantes/inmunología , Ratones Endogámicos BALB C , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/farmacología , Humanos , Inmunidad Humoral/efectos de los fármacos , Adyuvantes de Vacunas/química , Adyuvantes de Vacunas/farmacología , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacología , Polímeros/química
15.
Microb Pathog ; 190: 106612, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38467166

RESUMEN

Rotavirus group A (RVA) is a main pathogen causing diarrheal diseases in humans and animals. Various genotypes are prevalent in the Chinese pig herd. The genetic diversity of RVA lead to distinctly characteristics. In the present study, a porcine RVA strain, named AHFY2022, was successfully isolated from the small intestine tissue of piglets with severe diarrhea. The AHFY2022 strain was identified by cytopathic effects (CPE) observation, indirect immunofluorescence assay (IFA), electron microscopy (EM), high-throughput sequencing, and pathogenesis to piglets. The genomic investigation using NGS data revealed that AHFY2022 exhibited the genotypes G9-P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1, using the online platform the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) (https://www.bv-brc.org/). Moreover, experimental inoculation in 5-day-old and 27-day-old piglets demonstrated that AHFY2022 caused severe diarrhea, fecal shedding, small intestinal villi damage, and colonization in all challenged piglets. Taken together, our results detailed the virological features of the porcine rotavirus G9P[23] from China, including the whole-genome sequences, genotypes, growth kinetics in MA104 cells and the pathogenicity in suckling piglets.


Asunto(s)
Diarrea , Genoma Viral , Genotipo , Filogenia , Infecciones por Rotavirus , Rotavirus , Enfermedades de los Porcinos , Animales , Rotavirus/genética , Rotavirus/aislamiento & purificación , Rotavirus/clasificación , Rotavirus/patogenicidad , Porcinos , Infecciones por Rotavirus/virología , Infecciones por Rotavirus/veterinaria , China , Enfermedades de los Porcinos/virología , Diarrea/virología , Diarrea/veterinaria , Intestino Delgado/virología , Intestino Delgado/patología , Heces/virología , Secuenciación de Nucleótidos de Alto Rendimiento
16.
Vaccine ; 42(4): 828-839, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38220489

RESUMEN

Porcine epidemic diarrhea virus (PEDV) has caused serious economic losses to the pig husbandry worldwide, and the effects of existing commercialized vaccines are suboptimal. Therefore, research to develop an efficacious vaccine for prevention and control of PEDV is essential. In this study, we designed and produced trimerized proteins of full-length PEDV spike (S) protein, S1 subunit, and a tandem of multiple epitopes of S protein using an efficient mammalian expression vector system in HEK 293F cells. The immunogenicity of two commercial adjuvants, M401 and M103, was also evaluated in mice. Enzyme-linked immunosorbent assays demonstrated that all immunized mice generated highly systemic PEDV S-specific IgG and IgA antibodies. Mice in S/M103-immunized group generated the highest neutralizing antibody titer with 1:96. Compared with control group, the subunit vaccines elicited multifunctional CD3+CD4+ and CD3+CD8+ T cells, B220+CD19+ B cells, and CD3-CD49b+ natural killer cells in the spleen. PEDV S/M103 vaccine, which had the best immune effect, was selected for further evaluation in piglets. Immunization with S/M103 vaccine induced high levels of S-specific IgG, IgA, and neutralizing antibodies, and increased the proliferation of peripheral blood mononuclear cells and the expression levels of interferon-γ and interleukin-4 in peripheral blood of piglets. Virus challenge test results showed significantly lower diarrheal index scores and fecal viral loads, and less pathological damage to the intestines in S/M103-immunized piglets than in controls, indicating that S/M103 provides good protection against the virulent virus challenge. Our findings suggest that trimeric PEDV S/M103 has potential as a clinical vaccine candidate.


Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Vacunas Virales , Animales , Porcinos , Ratones , Anticuerpos Antivirales , Vacunas de Subunidades Proteicas , Linfocitos T CD8-positivos , Leucocitos Mononucleares , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Vacunas de Subunidad , Inmunoglobulina A , Inmunoglobulina G , Glicoproteína de la Espiga del Coronavirus , Mamíferos
17.
J Virol ; 97(11): e0095823, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37846983

RESUMEN

IMPORTANCE: As an emerging porcine enteropathogenic coronavirus that has the potential to infect humans, porcine deltacoronavirus (PDCoV) is receiving increasing attention. However, no effective commercially available vaccines against this virus are available. In this work, we designed a spike (S) protein and receptor-binding domain (RBD) trimer as a candidate PDCoV subunit vaccine. We demonstrated that S protein induced more robust humoral and cellular immune responses than the RBD trimer in mice. Furthermore, the protective efficacy of the S protein was compared with that of inactivated PDCoV vaccines in piglets and sows. Of note, the immunized piglets and suckling pig showed a high level of NAbs and were associated with reduced virus shedding and mild diarrhea, and the high level of NAbs was maintained for at least 4 months. Importantly, we demonstrated that S protein-based subunit vaccines conferred significant protection against PDCoV infection.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Enfermedades de los Porcinos , Vacunas de Subunidad , Animales , Femenino , Humanos , Ratones , Coronavirus/genética , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Deltacoronavirus , Porcinos , Vacunas de Subunidad/administración & dosificación
19.
Microbiol Spectr ; 11(3): e0523322, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37022185

RESUMEN

Porcine epidemic diarrhea (PED) is a highly contagious intestinal infectious disease caused by porcine epidemic diarrhea virus (PEDV). Large-scale outbreaks of PEDV have caused huge economic losses to the pig industry since 2010. Neutralizing antibodies play a pivotal role in protecting piglets from enteric infections. However, there has been no systematic report on the correlations between neutralizing antibody titers (NTs) and absorbance values of IgG or IgA to all PEDV individual structural proteins in clinical serum, fecal, and colostrum samples. In this study, the spike protein S1 domain (S1), membrane protein (M), envelope protein (E), and nucleocapsid protein (N) of the variant PEDV strain AH2012/12 were expressed and purified by using the human embryonic kidney (HEK) 293F expression system. A total of 92 clinical serum samples, 46 fecal samples, and 33 colostrum samples were collected, and the correlations between IgG or IgA absorbance values and NTs were analyzed. R2 values revealed that anti-S1 IgA absorbance values show the highest agreement with NTs in all serum, fecal, and colostrum samples, followed by the N protein. The correlations between anti-E or M IgA and NTs were very low. However, in the colostrum samples, both IgG and IgA to S1 showed high correlations with NTs. In addition, compared with E and M, the highest correlations of IgA absorbance values were with N and S1 in serum and fecal samples. Overall, this study revealed the highest correlation between NTs and IgA to PEDV S1 protein. Therefore, the diagnostic method with anti-S1 IgA can be used as a powerful tool for assessing the immune status of pigs. IMPORTANCE The humoral immune response plays an important role in virus neutralization. Against PEDV, both IgG and the mucosal immune component IgA play roles in virus neutralization. However, which plays a more prominent role and whether there are differences in different tissue samples are not clearly reported. Additionally, the relationship between IgG and IgA against individual structural proteins and viral neutralization remains unclear. In this study, we systematically determined the relationship between IgG and IgA against all PEDV structural proteins and viral neutralization in different clinical samples and found the highest correlation between neutralization activity and IgA to PEDV S1 protein. Our data have important guiding implications in the evaluation of immune protection.


Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Humanos , Animales , Porcinos , Inmunoglobulina G , Anticuerpos Antivirales , Formación de Anticuerpos , Inmunoglobulina A , Infecciones por Coronavirus/veterinaria , Enfermedades de los Porcinos/prevención & control
20.
Heliyon ; 9(4): e14710, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37035382

RESUMEN

Porcine Teschoviruses (PTVs) are associated with polioencephalomyelitis and various diseases, including reproductive and gastrointestinal disorders of pigs and wild boars, but rarely detected in the feces of pigs. In this study, a sample of swine diarrhea that tested positive for PTVs is subjected to high-throughput sequencing. The viral genome was 7221 nucleotides (nt) in length, which was consisted of twelve genes. Phylogenetic analysis showed and it was closely related to the PTV-HNMY(MG755212.1). The nucleotide homology of VP1 gene of PTVs JS2021 with PTV-1AF 296102.1 reached 82.97%, belonging to a branch of PTV-1 serotype. The nucleotide homology of VP1 protein with other serotypes of PTV is quite different from that of other serotypes of PTV. Bioinformatics analysis showed that PTVs have four capsid proteins, namely VP1, VP2, VP3 and VP4. The VP1 encodes a 29 kDa protein, which is the main protective antigen, a theoretical isoelectric point of 6.73, no transmembrane domain, no signal peptide and potential phosphorylation site. The VP1 protein is an unstable hydrophilic intracellular protein, which contains four secondary structures: irregular curl (c), extended chain (e), α-helix (h) and ß-folded (t). The tertiary structure is heart-shaped and has multiple B cell epitopes. By analyzing the tertiary structure, we found that the amino acid at position 129 of VP1 mutated and reduction a larger alpha helix. This may lead to the main cause of piglet diarrhea. These findings enriched our knowledge of the viruses in the role of swine diarrhea, and help to develop an effective strategy for disease prevention and control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA