Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nat Commun ; 15(1): 4518, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806491

RESUMEN

The semiconductors industry has put its eyes on two-dimensional (2D) materials produced by chemical vapour deposition (CVD) because they can be grown at the wafer level with small thickness fluctuations, which is necessary to build electronic devices and circuits. However, CVD-grown 2D materials can contain significant amounts of lattice distortions, which degrades the performance at the device level and increases device-to-device variability. Here we statistically analyse the quality of commercially available CVD-grown hexagonal boron nitride (h-BN) from the most popular suppliers. h-BN is of strategic importance because it is one of the few insulating 2D materials, and can be used as anti-scattering substrate and gate dielectric. We find that the leakage current and electrical homogeneity of all commercially available CVD h-BN samples are significantly worse than those of mechanically exfoliated h-BN of similar thickness. Moreover, in most cases the properties of the CVD h-BN samples analysed don't match the technical specifications given by the suppliers, and the sample-to-sample variability is unsuitable for the reproducible fabrication of capacitors, transistors or memristors in different batches. In the short term, suppliers should try to provide accurate sample specifications matching the properties of the commercialized materials, and researchers should keep such inaccuracies in mind; and in the middle term suppliers should try to reduce the density of defects to enable the fabrication of high-performance devices with high reliability and reproducibility.

2.
Adv Mater ; 36(11): e2310921, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38118051

RESUMEN

Next-generation nanodevices require 2D material synthesis on insulating substrates. However, growing high-quality 2D-layered materials, such as hexagonal boron nitride (hBN) and graphene, on insulators is challenging owing to the lack of suitable metal catalysts, imperfect lattice matching with substrates, and other factors. Therefore, developing a generally applicable approach for realizing high-quality 2D layers on insulators remains crucial, despite numerous strategies being explored. Herein, a universal strategy is introduced for the nonepitaxial synthesis of wafer-scale single-crystal 2D materials on arbitrary insulating substrates. The metal foil in a nonadhered metal-insulator substrate system is almost melted by a brief high-temperature treatment, thereby pressing the as-grown 2D layers to well attach onto the insulators. High-quality, large-area, single-crystal, monolayer hBN and graphene films are synthesized on various insulating substrates. This strategy provides new pathways for synthesizing various 2D materials on arbitrary insulators and offers a universal epitaxial platform for future single-crystal film production.

3.
Foods ; 11(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36553854

RESUMEN

Pulsed electric field (PEF) is an effective way to modulate the structure and activity of enzymes; however, the dynamic changes in enzyme structure during this process, especially the intermediate state, remain unclear. In this study, the molten globule (MG) state of α-amylase under PEF processing was investigated using intrinsic fluorescence, surface hydrophobicity, circular dichroism, etc. Meanwhile, the influence of coexisting carrageenan on the structural transition of α-amylase during PEF processing was evaluated. When the electric field strength was 20 kV/cm, α-amylase showed the unique characteristics of an MG state, which retained the secondary structure, changed the tertiary structure, and increased surface hydrophobicity (from 240 to 640). The addition of carrageenan effectively protected the enzyme activity of α-amylase during PEF treatment. When the mixed ratio of α-amylase to carrageenan was 10:1, they formed electrostatic complexes with a size of ~20 nm, and carrageenan inhibited the increase in surface hydrophobicity (<600) and aggregation (<40 nm) of α-amylase after five cycles of PEF treatment. This work clarifies the influence of co-existing polysaccharides on the intermediate state of proteins during PEF treatment and provides a strategy to modulate protein structure by adding polysaccharides during food processing.

4.
Nanomaterials (Basel) ; 12(22)2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36432364

RESUMEN

Transition-metal-based materials show great promise for energy conversion and storage due to their excellent chemical properties, low cost, and excellent natural properties. In this paper, through simple strategies such as classical electrospinning, air calcination, and the one-step hydrothermal method, a large area of Ni(OH)2 nanosheets were grown on NiMoO4 nanofibers, forming NiMoO4@Ni(OH)2 nanofibers. The one-dimensional nanostructure was distributed with loose nanosheets, and this beneficial morphology made charge-transfer and diffusion more rapid, so the newly developed material showed good capacitance and conductivity. Under the most suitable experimental conditions, the optimal electrode exhibited the highest specific capacitance (1293 F/g at 1 A/g) and considerable rate capability (56.8% at 10 A/g) under typical test conditions. Most interestingly, the corresponding asymmetrical capacitors exhibited excellent electrochemical cycle stability, maintaining 77% of the original capacitance. NiMoO4@Ni(OH)2 nanofibers were verified to be simple to prepare and to have good performances as energy-storage devices within this experiment.

5.
Adv Mater ; 34(44): e2206080, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36052575

RESUMEN

Controlling the morphology of graphene and other 2D materials in chemical vapor deposition (CVD) growth is crucial because the morphology reflects the crystal quality of as-synthesized nanomaterials in a certain way, and consequently it indirectly represents the physical properties of 2D materials such as bandgap, selective ion transportation, and impermeability. However, precise control of the morphology is limited by the complex formation mechanism and sensitive growth-environment factors of graphene. Therefore, the CVD synthesis of single-crystal hexagonal-shaped graphene islands with specific sizes is challenging. Herein, an unconventional nonlinear-carbon-supply growth strategy is proposed to realize controllable CVD growth of desired hexagonal graphene islands with specific sizes on Cu substrates. Large-area graphene films of isolated islands with desired densities, sizes, and distances between the islands are successfully synthesized. Subsequently, the direct growth of a planar-tunnel-junction structure based on two parallel gapped graphene islands is achieved by specific adjustment of the growth and etching processes of graphene CVD synthesis. It is therefore demonstrated that the nonlinear-carbon-supply growth strategy is a reliable method for the synthesis of high-quality graphene and can facilitate the direct growth of graphene-based nanodevices in the future.

6.
Adv Sci (Weinh) ; 9(21): e2201324, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35618473

RESUMEN

van der Waals heterostructures based on graphene and hBN layers with different stacking modes are receiving considerable attention because of their potential application in fundamental physics. However, conventional exfoliation fabrication methods and layer-by-layer transfer techniques have various limitations. The CVD synthesis of high-quality large-area graphene and hBN multilayer heterostructures is essential for the advancement of new physics. Herein, the authors propose an in situ CVD growth strategy for synthesizing wafer-scale AAB-stacked single-crystal graphene/hBN/graphene trilayer van der Waals heterostructures. Single-crystal CuNi(111) alloys are prepared on sapphire, followed by the pre-dissolution of carbon atoms. Single-crystal monolayer hBN is synthesized on a plasma-cleaned CuNi(111) surface. Then, a single-crystal monolayer graphene is epitaxially grown onto the hBN surface to form graphene/hBN bilayer heterostructures. A controlled decrease in the growth temperature allows the carbon atoms to precipitate out of the CuNi(111) alloy to form single-crystal graphene at the interface between hBN and CuNi(111), thereby producing graphene/hBN/graphene trilayer van der Waals heterostructures. The stacking modes between as-grown 2D layers are investigated through Raman spectroscopy and transmission electron microscopy. This study provides an in situ CVD approach to directly synthesize large-scale single-crystal low-dimensional van der Waals heterostructures and facilitates their application in future 2D-material-based integrated circuits.

7.
Adv Mater ; 34(48): e2201253, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35307871

RESUMEN

In addition to conventional monolayer or bilayer graphene films, graphene-mesh metamaterials have attracted considerable research attention within the scientific community owing to their unique physical and optical properties. Currently, most graphene-mesh metamaterials are fabricated using common lithography techniques on exfoliated graphene flakes, which require the deposition and removal of chemicals during fabrication. This process may introduce contamination or doping, thereby limiting their production size and application in nanodevices. Herein, the controlled production of wafer-scale high-quality single-crystal nucleus-free graphene-mesh metamaterial films with zigzag edges is demonstrated. The 13 C-isotopic labeling graphene-growth approach, large-area Raman mapping techniques, and a uniquely designed high-voltage localized-space air-ionization etching method are utilized to directly remove the graphene nuclei. Subsequently, a hydrogen-assisted anisotropic etching process is employed for transforming irregular edges into zigzag edges within the hexagonal-shaped holes, producing a large-scale single-crystal high-quality graphene-mesh metamaterial film on a Cu(111) substrate. The carrier mobilities of the fabricated field-effect transistors on the as-produced films are measured. The findings of this study enable the large-scale production of high-quality low-dimensional graphene-mesh metamaterials and provide insights for the application of integrated circuits based on graphene and other 2D metamaterials.

8.
Nat Mater ; 21(7): 740-747, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35058609

RESUMEN

The growth of inch-scale high-quality graphene on insulating substrates is desirable for electronic and optoelectronic applications, but remains challenging due to the lack of metal catalysis. Here we demonstrate the wafer-scale synthesis of adlayer-free ultra-flat single-crystal monolayer graphene on sapphire substrates. We converted polycrystalline Cu foil placed on Al2O3(0001) into single-crystal Cu(111) film via annealing, and then achieved epitaxial growth of graphene at the interface between Cu(111) and Al2O3(0001) by multi-cycle plasma etching-assisted-chemical vapour deposition. Immersion in liquid nitrogen followed by rapid heating causes the Cu(111) film to bulge and peel off easily, while the graphene film remains on the sapphire substrate without degradation. Field-effect transistors fabricated on as-grown graphene exhibited good electronic transport properties with high carrier mobilities. This work breaks a bottleneck of synthesizing wafer-scale single-crystal monolayer graphene on insulating substrates and could contribute to next-generation graphene-based nanodevices.

9.
Int J Biol Macromol ; 154: 1245-1254, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31730955

RESUMEN

Similarities and differences of assembly for ovalbumin (OVA) and two kinds of sodium alginate (SA1 and SA2) varying in charge densities (λSA1: λSA2 ≈ 2:1) were investigated. The assembly processes of OVA/SA mixtures were characterized by phase diagram, particle size, and microstructure. Two differences between OVA/SA1 and OVA/SA2 mixtures in the phase diagram were distinctly observed. First, due to the higher charge density of SA1, the strong interaction between OVA and SA1 caused only pHφ1 to be recorded. A higher linear charge density of SA1 narrowed the pHφ1-pHφ2 range at ratios of 2:1 and 1:1. Second, OVA/SA1 complexes formed a coacervate with a relatively strong resistance to ion-induced shielding effects. This maintained the smaller size (tighter structure) with a larger number of complexes in the coacervate without 250 mM NaCl. The regulating polysaccharides with different charge densities could control the soluble region of complexes and endow various size or morphology of the coacervate assembled by proteins and polysaccharides.


Asunto(s)
Alginatos/química , Ovalbúmina/química , Polisacáridos/química , Sales (Química)/química
10.
Materials (Basel) ; 12(14)2019 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-31373301

RESUMEN

High-throughput production of highly efficient photocatalysts for hydrogen evolution remains a considerable challenge for materials scientists. Here, we produced extremely uniform high-quality graphene and molybdenum disulfide (MoS2) nanoplatelets through the electrochemical-assisted liquid-phase exfoliation, out of which we subsequently fabricated MoS2/graphene van der Waals heterostructures. Ultimately, zinc oxide (ZnO) nanoparticles were deposited into these two-dimensional heterostructures to produce an artificial ZnO/MoS2/graphene nanocomposite. This new composite experimentally exhibited an excellent photocatalytic efficiency in hydrogen evolution under the sunlight illumination ( λ > 400   n m ), owing to the extremely high electron mobilities in graphene nanoplatelets and the significant visible-light absorptions of MoS2. Moreover, due to the synergistic effects in MoS2 and graphene, the lifetime of excited carriers increased dramatically, which considerably improved the photocatalytic efficiency of the ZnO/MoS2/graphene heterostructure. We conclude that the novel artificial heterostructure presented here shows great potential for the high-efficient photocatalytic hydrogen generation and the high throughput production of visible-light photocatalysts for industrial applications.

11.
Adv Mater ; 31(35): e1902431, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31265203

RESUMEN

The precise control of the shape and quality of 2D materials during chemical vapor deposition (CVD) processes remains a challenging task, due to a lack of understanding of their underlying growth mechanisms. The existence of a fractal-growth-based mechanism in the CVD synthesis of several 2D materials is revealed, to which a modified traditional fractal theory is applied in order to build a 2D diffusion-limited aggregation (2D-DLA) model based on an atomic-scale growth mechanism. The strength of this model is validated by the perfect correlation between theoretically simulated data, predicted by 2D-DLA, and experimental results obtained from the CVD synthesis of graphene, hexagonal boron nitride, and transition metal dichalcogenides. By applying the 2D-DLA model, it is also discovered that the single-domain net growth rate (SD-NGR) plays a crucial factor in governing the shape and quality of 2D-material crystals. By carefully tuning SD-NGR, various fractal-morphology high-quality single-crystal 2D materials are synthesized, achieving, for the first time, the precise control of 2D-material CVD growth. This work lays the theoretical foundation for the precise adjustment of the morphologies and physical properties of 2D materials, which is essential to the use of fractal-shaped nanomaterials for the fabrication of new-generation neural-network nanodevices.

12.
Nat Prod Res ; 24(1): 13-7, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20013467

RESUMEN

A new dinorclerone diterpenoid glycoside, named 1-deacetyltinosposide A (1), was isolated from the stem of Tinospora sinensis together with 10 known compounds. Their structures were elucidated on the basis of extensive spectroscopic techniques (MS, IR, 1D and 2D NMR experiments).


Asunto(s)
Diterpenos/química , Glicósidos/química , Tinospora/química , China , Diterpenos/aislamiento & purificación , Indicadores y Reactivos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Tallos de la Planta/química , Espectrofotometría Infrarroja , Espectrofotometría Ultravioleta
13.
Bioorg Med Chem Lett ; 19(7): 1956-9, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19251412

RESUMEN

A new cardenolide, 12beta,14beta-dihydroxy-3beta,19-epoxy-3alpha-methoxy-5alpha-card-20(22)-enolide (6), and a new doubly linked cardenolide glycoside, 12beta-hydroxycalotropin (13), together with eleven known compounds, coroglaucigenin (1), 12beta-hydroxycoroglaucigenin (2), calotropagenin (3), desglucouzarin (4), 6'-O-feruloyl-desglucouzarin (5), calotropin (7), uscharidin (8), asclepin (9), 16alpha-hydroxyasclepin (10), 16alpha-acetoxycalotropin (11), and 16alpha-acetoxyasclepin (12), were isolated from the aerial part of ornamental milkweed, Asclepias curassavica and chemically elucidated through spectral analyses. All the isolates were evaluated for their cytotoxic activity against HepG2 and Raji cell lines. The results showed that asclepin (9) had the strongest cytotoxic activity with an IC(50) value of 0.02 microM against the two cancer cell lines and the new compound 13 had significant cytotoxic activity with IC(50) values of 0.69 and 1.46 microM, respectively.


Asunto(s)
Asclepias/química , Cardenólidos/química , Glicósidos/química , Cardenólidos/aislamiento & purificación , Cardenólidos/toxicidad , Línea Celular , Glicósidos/aislamiento & purificación , Glicósidos/toxicidad , Humanos
14.
Steroids ; 73(6): 594-600, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18328519

RESUMEN

Six new C(21) steroidal glycosides, named curassavosides A-F (3-8), were obtained from the aerial parts of Asclepias curassavica (Asclepiadaceae), along with two known oxypregnanes, 12-O-benzoyldeacylmetaplexigenin (1) and 12-O-benzoylsarcostin (2). By spectroscopic methods, the structures of the six new compounds were determined as 12-O-benzoyldeacylmetaplexigenin 3-O-beta-D-oleandropyranosyl-(1-->4)-beta-D-digitoxopyranoside (3), 12-O-benzoylsarcostin 3-O-beta-D-oleandropyranosyl-(1-->4)-beta-D-digitoxopyranoside (4), sarcostin 3-O-beta-D-oleandropyranosyl-(1-->4)-beta-D-canaropyranosyl-(1-->4)-beta-D-oleandropyranosyl-(1-->4)-beta-D-digitoxopyranoside (5), sarcostin 3-O-beta-D-oleandropyranosyl-(1-->4)-beta-D-canaropyranosyl-(1-->4)-beta-D-canaropyranosyl-(1-->4)-beta-D-digitoxopyranoside (6), 12-O-benzoyldeacylmetaplexigenin 3-O-beta-D-glucopyranosyl-(1-->4)-beta-D-oleandropyranosyl-(1-->4)-beta-D-canaropyranosyl-(1-->4)-beta-d-oleandropyranosyl-(1-->4)-beta-D-digitoxopyranoside (7), and 12-O-benzoylsarcostin 3-O-beta-D-glucopyranosyl-(1-->4)-beta-D-oleandropyranosyl-(1-->4)-beta-d-canaropyranosyl-(1-->4)-beta-D-oleandropyranosyl-(1-->4)-beta-D-digitoxopyranoside (8), respectively. All compounds (1-8) were tested for in vitro cytotoxicity; only compound 3 showed weak inhibitory activity against Raji and AGZY cell lines.


Asunto(s)
Asclepias/química , Glicósidos/aislamiento & purificación , Esteroides/aislamiento & purificación , Secuencia de Carbohidratos , Glicósidos/química , Modelos Moleculares , Datos de Secuencia Molecular , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa Bombardeada por Átomos Veloces , Espectrofotometría Infrarroja , Esteroides/química
15.
Chem Biodivers ; 3(7): 791-8, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17193311

RESUMEN

Four new compounds, 3-(4-hydroxy-3,5-dimethoxyphenyl)propyl formate (1), 2,6-dimethoxy-4-[(1S)-3-methoxypropyl]phenol (2), (1R,2R)-4-[(3R)-3-hydroxybutyl]-3,3,5-trimethylcyclohex-4-ene-1,2-diol (3), and (1S,3R,3aR,6S,7S,9aR)-decahydro-1-(hydroxymethyl)-1,7-dimethyl-3a,7-methano-3aH-cyclopentacyclooctene (4) were isolated from the leaves of Acer truncatum, together with twelve known compounds. Their structures were elucidated on the basis of extensive spectroscopic techniques. The absolute configuration of compound 3 was established by the modified Mosher's method. All compounds were evaluated for antibacterial activities.


Asunto(s)
Acer/química , Ciclohexanoles/química , Formiatos/química , Pirogalol/análogos & derivados , Sesquiterpenos/química , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Bacillus cereus/efectos de los fármacos , Ciclohexanoles/farmacología , Escherichia coli/efectos de los fármacos , Formiatos/farmacología , Bacterias Grampositivas/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Estructura Molecular , Hojas de la Planta/química , Pirogalol/química , Pirogalol/farmacología , Sesquiterpenos/farmacología
16.
Molecules ; 11(12): 1009-14, 2006 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-18007405

RESUMEN

A new neolignan glycoside, (7R,8R)-7,8-dihydro-9'-hydroxyl-3'-methoxyl- 8-hydroxymethyl-7-(4-hydroxy-3-methoxyphenyl)-1'-benzofuranpropanol 9'-O-beta-D- glucopyranoside (1) was isolated from the leaves of Acer truncatum along with (7R,8R)-7,8-dihydro-9'-hydroxyl-3'-methoxyl-8-hydroxymethyl-7-(4-O-alpha-L-rhamno- pyranosyloxy-3-methoxyphenyl)-1'-benzofuranpropanol (2), schizandriside (3), lyoniresinol (4), berchemol (5), (-)-pinoresinol-4-O-beta-D-glucopyranoside (6), hecogenin (7), chlorogenic acid (8) and neochlorogenic acid (9). Their structures were elucidated on the basis of extensive spectroscopic data. The absolute configuration of compounds 1 was established by its CD spectrum. The antibacterial activities of compounds 1-7 were evaluated.


Asunto(s)
Acer/química , Glicósidos/aislamiento & purificación , Lignanos/aislamiento & purificación , Hojas de la Planta/química , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Isótopos de Carbono , Glicósidos/química , Glicósidos/farmacología , Lignanos/química , Lignanos/farmacología , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Protones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA