Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.252
Filtrar
1.
Biochem Pharmacol ; 225: 116251, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38701867

RESUMEN

Hepatocellular carcinoma (HCC) is the main histological subtype of primary liver cancer and remains one of the most common solid malignancies globally. Ferroptosis was recently defined as an iron-catalyzed form of regulated necrosis. Because cancer cells exhibit higher iron requirements than noncancer cells, treatment with ferroptosis-inducing compounds may be a feasible strategy for cancer therapy. However, cancer cells develop acquired resistance to evade ferroptosis, and the mechanisms responsible for ferroptosis resistance are not fully clarified. In the current study, we reported that DDX39B was downregulated during sorafenib-induced ferroptosis in a dose- and time-dependent manner. Exogenous introduction of DDX39B ensured the survival of HCC cells upon exposure to sorafenib, while the opposite phenomenon was observed in DDX39B-silenced HCC cells. Mechanistically, we demonstrated that DDX39B increased GPX4 levels by promoting the splicing and cytoplasmic translocation of GPX4 pre-mRNA, which was sufficient to detoxify sorafenib-triggered excess lipid ROS production, lipid peroxidation accumulation, ferrous iron levels, and mitochondrial damage. Inhibition of DDX39B ATPase activity by CCT018159 repressed the splicing and cytoplasmic export of GPX4 pre-mRNA and synergistically assisted sorafenib-induced ferroptotic cell death in HCC cells. Taken together, our data uncover a novel role for DDX39B in ferroptosis resistance by modulating the maturation of GPX4 mRNA via a posttranscriptional approach and suggest that DDX39B inhibition may be a promising therapeutic strategy to enhance the sensitivity and vulnerability of HCC cells to sorafenib.

2.
Inorg Chem ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747511

RESUMEN

Herein, we detail the synthesis, structure, and photoconductivity of the uranyl dithiophosphinate single crystal UO2[S2P(C6H5)2]2(CH3OH)·CH3OH (denoted as U-DPDPP). The formation of bonds between uranyl ions and sulfur-based ligands endows U-DPDPP with a distinct electronic absorption property with a broadband spectrum spanning from 250 to 550 nm, giving rise to a unique semiconductive property. Under X-ray illumination, U-DPDPP displays a distinctive photoconductivity response, with a charge carrier mobility lifetime (µτ) of 2.78 × 10-4 cm2·V-1 achieved, which contradicts the electronic-silence behavior of uranyl nitrate crystal.

3.
J Am Chem Soc ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747544

RESUMEN

A tetragermacyclobutane-1,3-diyl was prepared and structurally characterized via the reduction of chlorogermylene-coordinated germylgermylene with potassium graphite, which represents the first all-germanium analogue of cyclobutane-1,3-diyl. Single-crystal X-ray analysis of the tetragermacyclobutane-1,3-diyl disclosed that it adopts a planar-cis structure, which is different from those reported all-silicon cyclobutane-1,3-diyls. DFT calculations revealed that both the bulky substituents on the germanium atoms and the tethering of the amido groups are important for the planar cis-configuration of 5.

4.
Phys Rev E ; 109(4-1): 044705, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38755847

RESUMEN

Active materials possess unique properties of being able to respond autonomously to external stimuli, yet realizing and regulating the motion behavior of active machines remains a major challenge. Conventional control approaches, including sensor control and external device control, are both complex and difficult to implement. In contrast, active materials-based self-oscillators offer distinct properties such as periodic motion and ease of regulation. Inspired by paddle boats, we have proposed a conceptual light-fueled self-paddling boat with a photothermally responsive liquid crystal elastomer (LCE)-based motor that operates under steady illumination and incorporates an LCE fiber. Based on the well-established dynamic LCE model and rotation dynamics, the dynamic equations for governing the self-paddling of the LCE-steered boat are derived, and the driving torque of the LCE-based motor and the paddling velocity of the LCE-steered boat are formulated successively. The numerical results show that two motion modes of the boat under steady illumination: the static mode and the self-paddling mode. The self-paddling regime arises from the competition between the light-fueled driving torque and the frictional torque. Moreover, the critical conditions required to trigger the self-paddling are quantitatively examined as well as the significant system parameters affecting the driving torque, angular velocity, and paddling velocity. The proposed conceptual light-fueled self-paddling LCE-steered boat exhibits benefits including customizable size and being untethered and ambient powered, which provides valuable insights into the design and application of micromachines, soft robotics, energy harvesters, and beyond.

5.
Heliyon ; 10(9): e30388, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38756581

RESUMEN

Objective: This study aimed to investigate the mechanism of long noncoding ribonucleic acid (lncRNA) SNHG16 on kidney clear cell carcinoma (KIRC) cells by targeting miR-506-3p/ETS proto-oncogene 1, transcription factor (ETS1)/RAS/Extracellular regulated protein kinases (ERK) molecular axis, thus to provide reference for clinical diagnosis and treatment of KIRC in the future. Methods: Thirty-six patients with KIRC were enrolled in this study, and their carcinoma tissues and adjacent tissues were obtained for the detection of SNHG16/miR-506-3p/ETS1/RAS/ERK expression. Then, over-expressed SNHG16 plasmid and silenced plasmid were transfected into KIRC cells to observe the changes of their biological behavior. Results: SNHG16 and ETS1 were highly expressed while miR-506- 3p was low expressed in KIRC tissues; the RAS/ERK signaling pathway was significantly activated in KIRC tissues (P < 0.05). After SNHG16 silence, KIRC cells showed decreased proliferation, invasion and migration capabilities and increased apoptosis rate; correspondingly, increase in SNHG16 expression achieved opposite results (P < 0.05). Finally, in the rescue experiment, the effects of elevated SNHG16 on KIRC cells were reversed by simultaneous increase in miR-506-3p, and the effects of miR-506-3p were reversed by ETS1. Activation of the RAS/ERK pathway had the same effect as increase in ETS1, which further worsened the malignancy of KIRC. After miR-506-3p increase and ETS1 silence, the RAS/ERK signaling pathway was inhibited (P < 0.05). At last, the rescue experiment (co-transfection) confirmed that the effect of SNHG16 on KIRC cells is achieved via the miR-506-3p/ETS1/RAS/ERK molecular axis. Conclusion: SNHG16 regulates the biological behavior of KIRC cells by targeting the miR-506-3p/ETS1/RAS/ERK molecular axis.

6.
Anal Chim Acta ; 1307: 342648, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719409

RESUMEN

In contrast to the conventional fluorescence enhancement resulting from the cessation of the photoinduced electron transfer effect upon capturing nitric oxide (NO) by o-phenylenediamine, we found an interesting fluorescence quench within small molecule fluorophores characterized by intramolecular hydrogen bonding. Herein, the integration of a push-pull electron system with intramolecular hydrogen bonding onto an ultra-small fluorophore was employed to fabricate a hydrogen bond-tuned single benzene core fluorescent probe with an exceptional fluorescence quantum yield of 26 %, denoted as HSC-1. By virtue of its small size and low molecular weight (mere 192 g/mol), it demonstrated superior solubility and biocompatibility. Given the optimized conditions, HSC-1 manifested extraordinary linearity in detecting NO concentrations ranging from 0.5 to 60 µM, with an outstanding detection limit of 23.8 nM. Theoretical calculations unraveled the photophysical properties of hydrogen bonding-related probe molecules and highlighted the NO sensing mechanism. This pioneering work offers an important platform for the design of small fluorescence probes only with a single benzene core applied to NO sensing, which will potentially emerge as a new frontier in the area.

7.
Nat Commun ; 15(1): 3874, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719826

RESUMEN

The "terminal hydroxyl group anchoring mechanism" has been studied on metal oxides (Al2O3, CeO2) as well as a variety of noble and transition metals (Ag, Pt, Pd, Cu, Ni, Fe, Mn, and Co) in a number of generalized studies, but there is still a gap in how to regulate the content of terminal hydroxyl groups to influence the dispersion of the active species and thus to achieve optimal catalytic performance. Herein, we utilized AlOOH as a precursor for γ-Al2O3 and induced the transformation of the exposed crystal face of γ-Al2O3 from (110) to (100) by controlling the calcination temperature to generate more terminal hydroxyl groups to anchor Ag species. Experimental results combined with AIMD and DFT show that temperature can drive the atomic rearrangement on the (110) crystal face, thereby forming a structure similar to the atomic arrangement of the (100) crystal face. This resulted in the formation of more terminal hydroxyl groups during the high-temperature calcination of the support (Al-900), which can capture Ag species to form single-atom dispersions, and ultimately develop a stable and efficient single-atom Ag-based catalyst.

8.
J Adv Res ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38705256

RESUMEN

INTRODUCTION: Per- and polyfluoroalkyl substances (PFAS) have infiltrated countless everyday products, raising concerns about potential effects on human health, specifically on the cardiovascular system and the development of abdominal aortic calcification (AAC). However, our understanding of this relationship is still limited. OBJECTIVES: This study aims to investigate the effects of PFAS on AAC using machine learning algorithms. METHODS: Leveraging the power of machine learning technique, extreme gradient boosting (XGBoost), we assessed the relationship between PFAS exposure and AAC risk. We focused on three PFAS compounds, perfluorodecanoic acid (PFDeA), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA) through multiple logistic regression, restricted cubic spline (RCS), and quantile g-computation (QGC) models. To get more insight into the underlying mechanisms, mediation analyses are used to investigate the potential mediating role of fatty acids and blood cell fractions in AAC. RESULTS: Our findings indicate that elevated serum levels of PFHxS and PFDeA are associated with the increased risk of AAC. The QGC analyses underscore the overall positive association between the PFAS mixture and AAC risk, with PFHxS carrying the greatest weight, followed by PFDeA. The RCS analyses reveal a dose-dependent increase between serum PFHxS concentration and AAC risk in an inverted V-shape way. Moreover, age and PFHxS exposure are identified as the primary factors contributing to abdominal aortic calcification risk in SHapley Additive exPlanation (SHAP) summary plot combined with XGBoost technique. Although PFAS significantly change the profile of fatty acids, we do not find any mediating roles of them in AAC. Despite strong associations between PFAS exposure and hematological indicators, our analysis does not find evidence that these indicators mediate the development of AAC. CONCLUSIONS: In summary, our study highlights the detrimental impact of PFAS on abdominal aortic health and emphasizes the need for further research to understand the underlying mechanisms involved.

9.
Bioresour Technol ; 402: 130774, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38701983

RESUMEN

Formate as an ideal mediator between the physicochemical and biological realms can be obtained from electrochemical reduction of CO2 and used to produce bio-chemicals. Yet, limitations arise when employing natural formate-utilizing microorganisms due to restricted product range and low biomass yield. This study presents a breakthrough: engineered Corynebacterium glutamicum strains (L2-L4) through modular engineering. L2 incorporates the formate-tetrahydrofolate cycle and reverse glycine cleavage pathway, L3 enhances NAD(P)H regeneration, and L4 reinforces metabolic flux. Metabolic modeling elucidates C1 assimilation, guiding strain optimization for co-fermentation of formate and glucose. Strain L4 achieves an OD600 of 0.5 and produces 0.6 g/L succinic acid. 13C-labeled formate confirms C1 assimilation, and further laboratory evolution yields 1.3 g/L succinic acid. This study showcases a successful model for biologically assimilating formate in C. glutamicum that could be applied in C1-based biotechnological production, ultimately forming a formate-based bioeconomy.

10.
Front Genet ; 15: 1249501, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699234

RESUMEN

Background: Numerous studies have reported a high incidence and risk of severe illness due to coronavirus disease 2019 (COVID-19) in patients with type 2 diabetes (T2DM). COVID-19 patients may experience elevated or decreased blood sugar levels and may even develop diabetes. However, the molecular mechanisms linking these two diseases remain unclear. This study aimed to identify the common genes and pathways between T2DM and COVID-19. Methods: Two public datasets from the Gene Expression Omnibus (GEO) database (GSE95849 and GSE164805) were analyzed to identify differentially expressed genes (DEGs) in blood between people with and without T2DM and COVID-19. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on the common DEGs. A protein-protein interaction (PPI) network was constructed to identify common genes, and their diagnostic performance was evaluated by receiver operating characteristic (ROC) curve analysis. Validation was performed on the GSE213313 and GSE15932 datasets. A gene co-expression network was constructed using the GeneMANIA database to explore interactions among core DEGs and their co-expressed genes. Finally, a microRNA (miRNA)-transcription factor (TF)-messenger RNA (mRNA) regulatory network was constructed based on the common feature genes. Results: In the GSE95849 and GSE164805 datasets, 81 upregulated genes and 140 downregulated genes were identified. GO and KEGG enrichment analyses revealed that these DEGs were closely related to the negative regulation of phosphate metabolic processes, the positive regulation of mitotic nuclear division, T-cell co-stimulation, and lymphocyte co-stimulation. Four upregulated common genes (DHX15, USP14, COPS3, TYK2) and one downregulated common feature gene (RIOK2) were identified and showed good diagnostic accuracy for T2DM and COVID-19. The AUC values of DHX15, USP14, COPS3, TYK2, and RIOK2 in T2DM diagnosis were 0.931, 0.917, 0.986, 0.903, and 0.917, respectively. In COVID-19 diagnosis, the AUC values were 0.960, 0.860, 1.0, 0.9, and 0.90, respectively. Validation in the GSE213313 and GSE15932 datasets confirmed these results. The miRNA-TF-mRNA regulatory network showed that TYH2 was targeted by PITX1, PITX2, CRX, NFYA, SREBF1, RELB, NR1L2, and CEBP, whereas miR-124-3p regulates THK2, RIOK2, and USP14. Conclusion: We identified five common feature genes (DHX15, USP14, COPS3, TYK2, and RIOK2) and their co-regulatory pathways between T2DM and COVID-19, which may provide new insights for further molecular mechanism studies.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38700966

RESUMEN

This article puts forth a new training data-untethered model poisoning (MP) attack on federated learning (FL). The new MP attack extends an adversarial variational graph autoencoder (VGAE) to create malicious local models based solely on the benign local models overheard without any access to the training data of FL. Such an advancement leads to the VGAE-MP attack that is not only efficacious but also remains elusive to detection. VGAE-MP attack extracts graph structural correlations among the benign local models and the training data features, adversarially regenerates the graph structure, and generates malicious local models using the adversarial graph structure and benign models' features. Moreover, a new attacking algorithm is presented to train the malicious local models using VGAE and sub-gradient descent, while enabling an optimal selection of the benign local models for training the VGAE. Experiments demonstrate a gradual drop in FL accuracy under the proposed VGAE-MP attack and the ineffectiveness of existing defense mechanisms in detecting the attack, posing a severe threat to FL.

12.
Front Psychol ; 15: 1365310, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725957

RESUMEN

Aim: This research sought to identify the association between sports participation and resilience in children and adolescents as a means to enhance mental health. Methods: A comprehensive survey was carried out, encompassing primary, middle, and high school students from chosen educational institutions. The analytical sample comprised 67,281 students of school age. Sports participation and resilience were evaluated using validated assessment tools, while relevant covariates, such as sex and school grade, were assessed through self-reported questionnaires. Generalized Linear Models were applied to ascertain the association between sports participation and resilience for the entire sample, and separately for subgroups divided by gender or school grade, after controlling for covariates. Results: Among the 67,281 school students, males constituted 51.9% of the sample. Approximately 47.1% of the entire sample reported no sports participation, and the average resilience score was 24.7. The regression model analysis revealed that, in the entire sample, increased in sports participation was linked to higher resilience scores (odds ratio [OR] for 1-3 times per month: 1.20, 95%CI: 1.16-1.24; OR for 1-2 times per week: 1.38, 95%CI: 1.33-1.43; OR for 3 times or more per week: 1.72, 95%CI: 1.65-1.79). Analyses stratified by gender and school grade indicated that sports participation was consistently associated with greater resilience. Conclusion: This study provides cross-sectional evidence supporting the positive association between sports participation and the resilience of children and adolescents, underscoring the potential of encouraging sports participation as a strategy for promoting mental health resilience. The findings presented herein should be subject to further confirmation or refutation in future research endeavors.

13.
Phytochemistry ; 223: 114113, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38697241

RESUMEN

Eleven undescribed cembrane-type diterpenoids, named litoamentenes A-K (1-11), were isolated from the soft coral Litophyton amentaceum collected from the South China Sea. Their structures were elucidated by extensive analysis of spectroscopic data, comparison with the literature data, single crystal X-ray diffraction, quantum chemical calculations and TDDFT-ECD calculations. This is the first systematic investigation of L. amentaceum. In particular, compounds 1-3 are cembrane-type norditerpenoids that lack isopropyl side chains. Compound 6 is a cembrane-type norditerpenoid without a methyl group at C-4, the first natural product identified with this carbon skeleton. Compounds 6, 9 and 10 showed modest cytotoxicity against several human cancer cell lines with IC50 values ranging from 3.99 to 14.56 µM.

14.
Environ Sci Technol ; 58(20): 8631-8642, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38728100

RESUMEN

The global trade of plastic waste has raised environmental concerns, especially regarding pollution in waste-importing countries. However, the overall environmental contribution remains unclear due to uncertain treatment shares between handling plastic waste abroad and domestically. Here, we conduct a life cycle assessment of global plastic waste trade in 2022 across 18 countries and six plastic waste types, alongside three "nontrade" counterfactual scenarios. By considering the required cycling rate, which balances importers' costs and recycling revenues, we find that the trade resulted in lower environmental impacts than treating domestically with the average treatment mix. The trade scenario alone reduced climate change impact by 2.85 million tonnes of CO2 equivalent and mitigated damages to ecosystem quality, human health, and resource availability by 12 species-years, 6200 disability-adjusted life years (DALYs), and 1.4 billion United States dollars (USD in 2013), respectively. These results underscore the significance of recognizing plastic waste trade as a pivotal factor in regulating global secondary plastic production when formulating a global plastics treaty.


Asunto(s)
Plásticos , Reciclaje , Comercio , Humanos , Cambio Climático , Ambiente
15.
J Am Chem Soc ; 146(20): 14318-14327, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38718345

RESUMEN

Multiband convergence has attracted significant interest due to its positive effects on further improving thermoelectric performance. However, the current research mainly focuses on two- or three-band convergence in lead chalcogenides through doping and alloying. Therefore, exploring a new strategy to facilitate more-band convergence has instructive significance and practical value in thermoelectric research. Herein, we first propose a high-entropy strategy to achieve four-band convergence for optimizing thermoelectric performance. Taking high-entropy AgSbPbSnGeTe5 as an example, we found that the emergence of more-band convergence occurs as the configuration entropy increases; in particular, the four-band convergence occurs in high-entropy AgSbPbSnGeTe5. The overlap of multiatom orbitals in the high-entropy sample contributes to the convergence of four valence bands, promoting the improvement of electrical performance. Meanwhile, due to large lattice distortion and disordered atoms, the phonon mean free path is effectively compressed, resulting in low lattice thermal conductivity of high-entropy AgSbPbSnGeTe5. Consequently, AgSbPbSnGeTe5 achieved an intrinsically high ZT value of 1.22 at 673 K, providing a cornerstone for further optimizing thermoelectric performance. For example, by generally optimizing the carrier concentration, a peak ZT value of ∼1.75 at 723 K is achieved. These insights offer a comprehensive understanding of the band structure affected by unique structures of high-entropy materials and also shed useful light on innovation mechanisms and functionalities for future improvement of thermoelectric performance.

16.
J Ethnopharmacol ; : 118376, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38782310

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Zingiberis rhizoma recens-/wine-/euodiae fructus-processed Coptidis Rhizoma (CR, zCR/wCR/eCR) are the commonly used processed products of CR in clinic. After being processed with different excipients, the efficacy of CR will change accordingly. I.e., wCR could resolve excessive heat of the upper energizer, zCR could eliminate gastric heat and harmonize the stomach, eCR could smooth the liver and harmonize the stomach. However, the underlying mechanisms were still unclear. AIM OF THE STUDY: To further verify the differential efficacy of the three processed CR products and compare the mechanisms on gastric ulcer. MATERIAL AND METHODS: First, a GU model, whose onset is closely related to the heat in stomach and the disharmony between liver and stomach, was established, and the therapeutic effects of zCR/wCR/eCR/CR were evaluated by pathologic observation and measurement of cytokine levels. Second, metabolomics analysis and network pharmacology were conducted to reveal the differential intervening mechanism of zCR/eCR on GU. Third, the predicted mechanisms from metabolomics analysis and network pharmacology were validated using western blotting, flow cytometry and immunofluorescence. RESULTS: zCR/wCR/eCR/CR could alleviate the pathologic damage to varying degrees. In metabolomics research, fewer metabolic pathways were enriched in serum samples, and most of them were also present in the results of gastric tissue samples. The gastroprotective, anti-inflammatory, antioxidant, and anti-apoptotic effects of zCR/wCR/eCR/CR might be due to their interference on histidine, arachidonic acid, and glycerophospholipids metabolism. Quantitative results indicated that zCR/eCR had a better therapeutic effect than wCR/CR in treating GU. A comprehensive analysis of metabolomics and network pharmacology revealed that zCR and eCR exerted anti-GU effects via intervening in five core targets, including AKT, TNF-α, IL6, IL1B and PPARG. In the validation experiment, zCR/eCR could significantly reverse the abnormal expression of proteins related to apoptosis, inflammation, oxidative stress, gastric function, as well as the PI3K/AKT signaling pathways. CONCLUSION: zCR and eCR could offer gastroprotective benefits by resisting inflammation and apoptosis, inhibiting gastric-acid secretion, as well as strengthening gastric mucosal defense and antioxidant capacity. Integrating network pharmacology and metabolomics analysis could reveal the acting mechanism of drugs and promote the development of medications to counteract GU.

17.
Biomed Pharmacother ; 175: 116769, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38776678

RESUMEN

Pro-inflammatory macrophages (M1-polarized) play a crucial role in neuroinflammation and neuropathic pain following nerve injury. Redirecting macrophage polarization toward anti-inflammatory (M2-polarized) phenotypes offers a promising therapeutic strategy. Recognized for their anti-inflammatory and immunomodulatory properties, probiotics are becoming a focal point of research. This study investigated the effects of Lactobacillus plantarum on macrophage polarization, nerve protection, and neuropathic pain behavior following chronic constriction injury (CCI) of the median nerve. Rats received daily oral doses of L. plantarum for 28 days before and 14 days after CCI. Subsequently, behavioral and electrophysiological assessments were performed. The M1 marker CD86 levels, M2 marker CD206 levels, and concentrations of pro-inflammatory and anti-inflammatory cytokines in the injured median nerve were assessed. L. plantarum administration effectively reduced neuropathic pain behavior and the Firmicutes to Bacteroidetes ratio after CCI. Moreover, L. plantarum treatment increased serum short-chain fatty acids (SCFAs) levels, preserved myelination of the injured median nerve, and suppressed injury-induced discharges. In CCI rats treated with L. plantarum, there was a reduction in CD86 and pro-inflammatory cytokine levels, accompanied by an increase in CD206 and the release of anti-inflammatory cytokines. Furthermore, receptors for anti-inflammatory cytokines were localized on Schwann cells, and their expression was significantly upregulated in the injured nerves of CCI rats receiving L. plantarum. In conclusion, L. plantarum shifts macrophage phenotypes from M1 to M2 by promoting the production of SCFAs and enhancing the release of anti-inflammatory cytokines. Ultimately, this process preserves nerve fiber integrity and impedes the onset of neuropathic pain.

18.
J Chromatogr A ; 1726: 464975, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38735118

RESUMEN

In conventional chromatographic ligand screening, underperforming ligands are often dismissed. However, this practice may inadvertently overlook potential opportunities. This study aims to investigate whether these underperforming ligands can be repurposed as valuable assets. Hydrophobic charge-induction chromatography (HCIC) is chosen as the validation target for its potential as an innovative chromatographic mode. A novel dual-ligand approach is employed, combining two suboptimal ligands (5-Aminobenzimidazole and Tryptamine) to explore enhanced performance and optimization prospects. Various dual-ligand HCIC resins with different ligand densities were synthesized by adjusting the ligand ratio and concentration. The resins were characterized to assess appearance, functional groups, and pore features using SEM, FTIR, and ISEC techniques. Performance assessments were conducted using single-ligand mode resins as controls, evaluating the selectivity against human immunoglobulin G and human serum albumin. Static adsorption experiments were performed to understand pH and salt influence on adsorption. Breakthrough experiments were conducted to assess dynamic adsorption capacity of the novel resin. Finally, chromatographic separation using human serum was performed to evaluate the purity and yield of the resin. Results indicated that the dual-ligand HCIC resin designed for human antibodies demonstrates exceptional selectivity, surpassing not only single ligand states but also outperforming certain high-performing ligand types, particularly under specific salt and pH conditions. Ultimately, a high yield of 83.9 % and purity of 96.7 % were achieved in the separation of hIgG from human serum with the dual-ligand HCIC, significantly superior to the single-ligand resins. In conclusion, through rational design and proper operational conditions, the dual-ligand mode can revitalize underutilized ligands, potentially introducing novel and promising chromatographic modes.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Inmunoglobulina G , Ligandos , Humanos , Adsorción , Inmunoglobulina G/química , Inmunoglobulina G/sangre , Triptaminas/química , Cromatografía Liquida/métodos , Bencimidazoles/química , Concentración de Iones de Hidrógeno
19.
Angew Chem Int Ed Engl ; : e202402371, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38763920

RESUMEN

2D compounds exfoliated from weakly bonded bulk materials with van der Waals (vdW) interaction are easily accessible. However, the strong internal ionic/covalent bonding of most inorganic crystal frameworks greatly hinders 2D material exfoliation. Herein, we first proposed a radical/strain-synergistic strategy to exfoliate non-vdW interacting pseudo-layered phosphate framework. Specifically, hydroxyl radicals (•OH) distort the covalent bond irreversibly, meanwhile, H2O molecules as solvents, further accelerating interlayered ionic bond breakage but mechanical expansion. The innovative 2D laminar NASICON-type Na3V2(PO4)2O2F crystal, exfoliated by •OH/H2O synergistic strategy, exhibits enhanced sodium-ion storage capacity, high-rate performance (85.7 mA h g-1 at 20 C), cyclic life (2300 cycles), and ion migration rates, compared with the bulk framework. Importantly, this chemical/physical dual driving technique realized the effective exfoliation for strongly coupled pseudo-layered frameworks, which accelerates 2D functional material development.

20.
Artículo en Inglés | MEDLINE | ID: mdl-38775663

RESUMEN

OBJECTIVE: This study aims to develop a facial vascular enhancement imaging system and analyze vascular distribution in the facial region to assess its potential in preventing unintended intravascular injections during cosmetic facial filling procedures. METHODS: A facial vascular enhancement imaging system based on optical detection technology was designed, and volunteers were recruited. The system was utilized to detect and analyze vascular distribution in various anatomical regions of the faces. The vascular visualization-enhanced images generated by the system were compared with visible light images to validate the vascular visualization capability of the system. Additionally, the reliability of vascular visualization was assessed by comparing the observed vascular patterns in the vascular visualization-enhanced images with those in near-infrared light images. RESULTS: Thirty volunteers were recruited. The vascular visualization-enhanced images produced by the system demonstrated a significant capacity to identify vascular morphology and yielded a higher vessel count compared to visible light images, particularly in the frontal, orbital, perioral, mental, temporal, cheek, and parotid masseter regions (p < 0.05). The temporal region exhibited the highest vascular density, followed by the cheek region and then the frontal region. Reliability analysis of vascular visualization enhancement indicated that the system's imaging of facial vasculature not only demonstrated reliability but also enhanced physicians' visual perception. CONCLUSION: Blood vessel distribution varies across facial regions. The facial vascular enhancement imaging system facilitates real-time and clear visualization of facial vasculature, offering immediate visual feedback to surgeons. This innovation holds promise for enhancing the safety and effectiveness of facial filling procedures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA